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There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive
monitoring of human cognitive state, including cognitive workload. Too often, however,
effective BCIs based on machine learning techniques may function as “black boxes”
that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we
studied a family of N-back working memory tasks using a machine learning model,
Gaussian Process Regression (GPR), which was both powerful and amenable to
analysis. Participants performed the N-back task with three stimulus variants, auditory-
verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR
models were trained and tested on EEG data from all three task variants combined,
in an effort to identify a model that could be predictive of mental workload demand
regardless of stimulus modality. To provide a comparison for GPR performance, a
model was additionally trained using multiple linear regression (MLR). The GPR model
was effective when trained on individual participant EEG data, resulting in an average
standardized mean squared error (sMSE) between true and predicted N-back levels
of 0.44. In comparison, the MLR model using the same data resulted in an average
sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which
EEG features are relevant for prediction of cognitive workload in an individual participant.
A fraction of EEG features accounted for the majority of the model’s predictive power;
using only the top 25% of features performed nearly as well as using 100% of features.
Subsets of features identified by linear models (ANOVA) were not as efficient as subsets
identified by GPR. This raises the possibility of BCIs that require fewer model features
while capturing all of the information needed to achieve high predictive accuracy.

Keywords: EEG, BCI, Gaussian Process Regression, machine learning, neuroergonomics

Frontiers in Human Neuroscience | www.frontiersin.org 1 January 2017 | Volume 10 | Article 647

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2016.00647
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2016.00647
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00647&domain=pdf&date_stamp=2017-01-11
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00647/abstract
http://loop.frontiersin.org/people/217201/overview
http://loop.frontiersin.org/people/218498/overview
http://loop.frontiersin.org/people/217176/overview
http://loop.frontiersin.org/people/33364/overview
http://loop.frontiersin.org/people/287731/overview
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00647 January 10, 2017 Time: 17:14 # 2

Caywood et al. Predictive Interpretable Machine Learning Models

INTRODUCTION

Neuroimaging methods, particularly inexpensive and non-
invasive techniques such as electroencephalography (EEG)
and functional near infrared spectroscopy (fNIRS), are
increasingly being used to continuously assess the cognitive
state of individuals during task performance, an example of
Neuroergonomics (Parasuraman, 2003; Parasuraman and Rizzo,
2006). This information can be used to better understand the
demands of the task being performed, assess the limitations
of the individual, or be fed back into the system to adjust
the task relative to the individual’s current state. The use of
physiological data to assess operator state has also recently
been described as a ‘passive’ brain-computer interface (BCI)
(Zander et al., 2009; Zander and Kothe, 2011), in contrast to
traditional ‘active’ BCIs which utilize physiological data to allow
an individual to act on the outside world (Wolpaw and Wolpaw,
2012).

Workload, the demand on the individual’s attention and
working memory, is a cognitive state of special interest for passive
measurement during task performance. Cognitive Load Theory
(CLT) (Sweller et al., 1998) for example, suggests that maintaining
an optimal level of workload for a given task can assist in
learning new material. Further, Coyne et al. (2009) incorporate
CLT with Multiple Resource Theory (MRT) (Wickens, 2008),
which distinguishes between different modes of mental demand,
suggesting that real-time measurement of participant workload
could be utilized to optimally redirect mental demand across the
several modes of resources available, for example presentation of
information in a spatial versus verbal code as delineated by MRT
(see Coyne et al., 2009). Physiological measures of workload have
been sought in a variety of tasks including N-back (Grimes et al.,
2008; Baldwin and Penaranda, 2011; Ayaz et al., 2012; Brouwer
et al., 2012), the Sternberg Memory Scanning Task (Wilson and
Fisher, 1995; Baldwin and Penaranda, 2011), memory span tests
(Baldwin and Penaranda, 2011; Chaouachi et al., 2011), the MAT-
B multi-tasking scenario (Wilson and Russell, 2003b; Kothe and
Makeig, 2011); and operational simulations (Wilson and Russell,
2003a; Ayaz et al., 2012). The extent of this literature reflects
scientific awareness of the limitations of behavioral or subjective
workload assessment techniques, including limited sensitivity
(Gevins and Smith, 2003; Just et al., 2003), subjective bias, and
intrusiveness.

EEG based workload monitoring has been explored
using a variety of different machine learning approaches,
including step-wise linear discriminant analysis (SWDA)
(Wilson and Fisher, 1995; Wilson and Russell, 2003a),
artificial neural networks (ANN) (Wilson and Russell, 2003a;
Baldwin and Penaranda, 2011), naïve Bayes models (Grimes
et al., 2008), and least-angle regression (Kothe and Makeig,
2011).

To estimate workload as defined above based on EEG spectra,
we applied a supervised machine learning approach, performing
a statistical regression to take processed neurophysiological
signals as inputs and to predict the load parameter N from the
N-back task as an output. Many previous projects seeking to
predict mental workload have used a classifier rather than a

regressor approach. For example Baldwin and Penaranda (2011)
used three working memory tasks, each with two levels of
imposed difficulty, Wilson and Fisher (1995) used a battery of
tasks, each with two levels of difficulty, while both Wilson and
Russell (2003b) and Kothe and Makeig (2011) used the Multi-
Attribute Task Battery with two levels of difficulty. Wilson and
Russell (2003a) distinguished between up to seven conditions,
using three different simulated ATC tasks with three, three,
and one level of difficulty, respectively. However, the condition
levels were treated as categorical, with the authors using ANN
and stepwise discriminant analysis as classifiers to discriminate
between data from each condition. Similarly, Grimes et al. (2008)
predicted working memory load within 4 levels of the N-back task
(0- through 3-back), but classified the levels as categorical labels,
rather than as a continuous construct.

Treating mental workload as a series of categorical states
has the effect of forcing estimates of workload to reside in
discrete categorical bins without any continuous variation. The
N-back task is comprised of discrete task load levels N = 1,
2, 3, and considered in isolation, this task is readily amenable
to prediction based on a classifier. However, we conceptualize
the mental state of workload as potentially lying along a
continuum of values that the N-back task visits at discrete levels
due solely to the structure of the task, not necessarily due
to the inherent structure of working memory and attentional
resources. The neurophysiological data is continuous in nature,
and in order to preserve any potential information about
workload as a continuously varying mental state, we treated
the predicted N as a continuous variable even though all the
training data for N was discrete. This required the use of a
regression method rather than a classification method. One
consequence of treating workload as a continuous measure
is that the appropriate measure of error to be minimized
in supervised training, as well as for operational testing, is
continuous rather than discrete. For this reason, we present
predictor performance primarily in standardized mean square
error (sMSE), discussed more fully in the Section “Materials and
Methods.”

Our choice of regression on a continuous task load variable
was also motivated by a follow-on application of methods
described here for estimating cognitive workload in a highly
realistic en-route air traffic control (ATC) simulation, in which
task difficulty was multivariate, and in each dimension highly
granular and ordinal. This required a regressor rather than a
classifier. The results presented here are meant to relate workload
estimation to the dominant baseline literature on workload, and
to generalize those studies to a broad variety of operational
contexts including but not limited to ATC.

We employed Gaussian Process Regression (GPR; Rasmussen
and Williams, 2005), a type of non-parametric regression, in
which a single unknown target variable’s status (in this case, the
number ‘N’ back) is estimated as a function of the state of one or
more known input variables (in this case, power spectra at each
electrode in the EEG montage).

Parametric regression methods, for example multiple linear
regression (MLR), replace training data with a user-specified
function, such as a line or curve or surface in the geometric
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space of inputs and outputs, whose parameters can be fitted to
optimize estimation of outputs from inputs over the training
data. For parametric methods, after the regression weights have
been obtained, the original training data may be discarded.
Non-parametric regression methods, by contrast, may keep the
original training data to use as a scaffold for constructing a
regressor function. Test data is compared to the training data
points, with output value of the test point estimated via the
distance of the test data input to the training data input. As
a result of this weighting, estimates of output values form a
locally smooth surface spanning the input data, in a process often
referred to simply as smoothing. Non-parametric regression only
assumes that data points with similar input values will be close
in the output space. For GPR specifically, the form of the local
weighting is defined by the covariance function and associated
hyperparameters learned during model training.

This non-parametric GPR approach has several benefits
with respect to cognitive monitoring. First, GPR makes few
assumptions about the shape of the estimator function beyond
the assumptions associated with the choice of covariance
function. This is beneficial especially in high-dimensional
input spaces, as is the case when there are many known
variables for each data point, and the shape of the relationship
between knowns and unknowns cannot easily be visualized and
understood by a researcher.

Second, a GPR model can be constructed to change the
width of the local weighting functions separately for each known
input dimension during training, providing an indirect measure
of that input dimension’s relevance. Measuring relevance adds
interpretability to the model, and can be used to relate the features
used by the model to existing literature, or aid in understanding
which of the input variables could be left out of the analysis with
little or no reduction in predictive accuracy.

A third benefit of GPR is its robustness to spontaneous failure
of sources of input during operational test use of a BCI, such
as the loss of good electrical contact by an EEG electrode or
other equipment failure. Changes in the set of features available
to machine learning methods challenge parametric methods such
as linear or quadratic models, which typically have dependencies
between features. In contrast, GPR depends more directly on the
data and is robust to such changes; it can even be applied to data
containing many fewer features than the model received during
training.

Finally, a fourth major benefit of GPR for cognitive
monitoring is its inherently probabilistic nature, returning
both point predictions and confidence intervals around those
predictions. Confidence values associated with each prediction
may be used to dynamically inform decisions about when to trust
a trained model’s predictions in operational settings.

While GPR has been used to classify EEG in the context of a
BCI task involving imagined hand movement (Zhong et al., 2008;
Wang et al., 2009), its use in cognitive state assessment has been
limited (although see Chaouachi et al., 2011, 2015).

A reasonable assumption in cognitive neuroscience is
that similar regions of the brain are engaged in similar
functions across individuals during a specific task. This
assumption motivates an approach to research that seeks

constant neurophysiologic signatures for cognitive functions
that generalize broadly among human participants. The present
study has employed a more conservative and directed approach
based on another reasonable assumption, which is that brain
function involves learning, and that as a result, meaningful
idiosyncratic differences may be expected among individuals with
different learning histories, or within an individual over learning
timescales. As such, we focused our analysis on a same-day,
same-individual construct for training and testing our machine
learning methods. Further, we did not set out to evaluate the
neural basis of working memory and attention during task
loading, although we regard this as an important goal for other
research. Our goal was simply to evaluate the effectiveness and
interpretability of a best-of-class machine learning approach for
real-time, passive BCI targeted to cognitive monitoring in its
simplest and most direct form.

We present a paradigm for assessment of cognitive workload
for an operator, specifically the working memory and attentional
demand based on measurable task load. We predict workload
within several N-back tasks by training a GPR model, then testing
it on held-out data from the same participant and session. The
N-back task variants, which were designed to have face validity
to an operational ATC task, include the following variations:
auditory, numeric, and spatial. Finally, we analyze the GPR model
to identify which EEG electrode sites, frequency bands, and
derived features are essential to the predictive accuracy of the
model, which serves to set a lower bound on the number of
features required for accurate prediction.

MATERIALS AND METHODS

Participants
The study included 16 male participants, aged 39–62 years old,
selected for operational experience in the target operational
domain of ATC. All participated voluntarily, and provided
written informed consent after having had the procedures
of the study described to them. Personally identifiable
information for all participants was anonymized and kept
secure by a trusted agent. All participants were salaried
employees of the MITRE Corporation, and were compensated
by allowing them to apply the time spent participating in
the study to their work hours. Human subjects procedures
were approved by the MITRE Corporation Institutional
Review Board (MIRB), to which the Code of Federal
Regulations, Title 45 (Public Welfare), Department of
Health and Human Services, Part 46 (Protection of Human
Subjects) applies for federally funded research involving human
subjects.

Task
To change working memory load in a controlled manner, we
used an N-back working memory task in one of three stimulus
modes (Auditory, Numeric, Spatial) and three task levels (N = 1,
2, 3) for each mode. The N-back task required participants to
view a series of stimuli and press the spacebar key when the
currently presented stimulus matched the stimulus presented
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N stimuli before the current one. The task was implemented
in BrainWorkshop (Hoskinson, 2011), modified to synchronize
with the EEG system.

The Auditory stimuli were NATO letters (‘Alpha,’ ‘Bravo,’
‘Charlie,’ etc.) spoken by a computer-generated voice. Numeric
stimuli were numbers of 3 or 4 digits, e.g., “505” or “6099,”
presented in the center of the screen. Spatial stimuli were blue
squares presented in one of eight spatial locations on the screen,
in a 3 × 3 grid leaving out the center square (Figure 1). Within
each condition, eight unique stimuli were presented over the
course of the block. Within the spatial condition, these eight
stimuli were the aforementioned eight spatial positions. Within
the Auditory and Numeric blocks, these eight stimuli were
eight sounds or images randomly selected from a pool of 26
possible NATO letter sounds or 26 possible Numeric images.
Each trial lasted 3 s, with visual stimuli in the Numeric and
Spatial conditions remaining onscreen for the first 500 ms of the
trial. The stimuli for each trial were selected pseudorandomly
from the eight possible stimuli within the block, with an N-back
match additionally forced on 1/8 of trials. The combination of the
inherent 1/8 probability of random match and the independent
forced match probability of 1/8 results in an overall 76.56%
(7/8 ∗ 7/8) chance of non-matching stimuli and 23.44% chance
of matching stimuli. Participants were instructed to respond to
matching stimuli by pressing the spacebar key on a standard
computer keyboard, while non-matching trials did not require a
response.

The task was performed in blocks of 100 comparison trials
of a single modality and task level. Participants were allowed
to take short breaks between 100 trial blocks. Three 100-trial
blocks of each N-back level were performed for each of three
stimulus modes, totaling 900 trials for each participant. Stimulus
modes were counterbalanced across participants, while N-back
levels were performed in the order 1-Back, 2-Back, 3-Back,
within each modality block. Before each block, a resting baseline
condition was recorded, however, data from this resting baseline
condition was not included in the regression models. Prior to
the experimental blocks, participants completed 20 practice trials
at each N-back level of a Color variant, in which participants
indicated if the color of the current stimulus (a square presented
in the center of the display) matched the color of the stimulus
presented N stimuli prior.

FIGURE 1 | N-back working memory tasks used three stimulus modes:
Numeric, Spatial, and Auditory. The visual and auditory stimuli associated
with each mode are shown.

Following each block, participants reported their subjective
rating of block difficulty (subjective workload) on a 1–7 Likert
scale from low to high workload. Subjective workload ratings
were collected in order to confirm that the N-back task was
subjectively experienced as more demanding as N-back level
increased, as well as to investigate any subjective differences in
demand between N-back modalities used (Auditory, Numeric,
Spatial).

Behavioral Data
Accuracy on the N-back task is evaluated within each block as
the number of true positive (TP) responses (correctly responding
when the current stimulus matched the stimulus presented “N”
back), divided by the sum of the TP responses, false positive (FP)
responses (incorrectly responding when the current stimulus did
not match the stimulus presented “N” back), and false negative
(FN) responses (incorrectly failing to respond when the current
stimulus matched the stimulus presented “N” back). This is
equivalently described as accuracy= TP/(TP+ FP+ FN). As the
N-back match probability was 23.44%, this places an upper limit
of chance performance at 23.44%. For example, responding to all
stimuli regardless of N-back match would generate an accuracy
of 23.44%, while responding to no stimuli regardless of N-back
match would generate an accuracy of 0%.

Behavioral accuracy and subjective workload were assessed
via separate two-way repeated-measures ANOVAs, with factors
N-back level (1, 2, 3) and task mode (Auditory, Numeric, Spatial).
Mauchly’s test was used to assess sphericity, with F-values
adjusted via Greenhouse–Geisser correction where appropriate.
Effect size is indicated by generalized eta squared (η2

G) (Olejnik
and Algina, 2003), a measure of effect size appropriate for
repeated measures designs (Bakeman, 2005).

EEG Collection
EEG data were collected via a 32-channel actiCAP active
electrode system and BrainAmp amplifier at a sampling rate of
500 Hz using Recorder software (Brain Products GmbH), with
online reference at electrode FCz and online bandpass filter from
0.1 to 250 Hz.

Processing
Offline data analysis was completed with the EEGLAB toolbox
for MATLAB (Delorme and Makeig, 2004) and custom MATLAB
scripts. EEG signals were band-pass filtered to 1–50 Hz, down-
sampled to 250 Hz, and re-referenced to the average of the left
and right mastoid sites (TP9 and TP10).

Trial epochs were extracted from 0 to 3 s post stimulus
onset, and labeled according to N-back level, stimulus mode,
and behavioral accuracy. Channels and epochs containing
paroxysmal artifacts such as gross EMG or cap movement
were identified via visual inspection, and were removed from
further analysis (Delorme et al., 2007). Between 0 and 4
electrodes were removed per participant (mean of 0.75 electrodes
were removed). The remaining epochs were decomposed via
independent component analysis (ICA), using the extended
InfoMax algorithm as implemented in EEGLAB. For each
participant, independent components (IC) representing sources

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2017 | Volume 10 | Article 647

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00647 January 10, 2017 Time: 17:14 # 5

Caywood et al. Predictive Interpretable Machine Learning Models

of artifact including eye blinks, lateral eye movements, and
muscle activity were manually identified based on IC topography,
frequency spectra, and time-domain activity, and were removed
from the data.

Feature Extraction
Band-power features were extracted by transforming each epoch
from the time to frequency domain via the Welch method.
The Welch method averages the Fast Fourier Transform (FFT)
results from several overlapping Hamming windowed segments.
A window size of 500 points (2 s) and overlap of 250 points (1 s)
were used, along with a 512 point FFT.

For each channel, frequencies were averaged into 6 pre-
specified bands, delta: 1–3 Hz, theta: 4–7 Hz, low alpha: 8–10 Hz,
high alpha: 11–12 Hz, beta: 13–25 Hz, gamma: 26–40 Hz.

Band power values were then converted to the natural
logarithm of their original values to more closely approximate a
Gaussian distribution, and each feature was then zero-centered
and normalized by its standard deviation on the training set. The
same normalization was applied to trials from both training and
test sets; both were z-scored relative to the mean and standard
deviation of the training set. Trials from the test set were z-scored
relative to the mean and standard deviation of the training set,
rather than the test set, to place the test trials on the same scale
as the training set. Scaling the test set trials to the test set mean
and standard deviation could eliminate meaningful differences
that could be present between training and test sets. For example,
when using a trained model to derive workload predictions on
a new task that is on average more difficult than the training
task. In addition, for online prediction applications the mean and
standard deviation of the full test set are unknown in advance.

Machine Learning: Gaussian Process
Regression
The Information present in EEG band-power features about task
level was analyzed using a continuum of methods including
ANOVA, MLR and GPR. Additionally, while imposed task level
(the number ‘N’ back) was of primary interest, models were
additionally constructed using participants’ subjective rating of
their mental demand as labels.

For machine learning, a feature vector composed of each of
the 6 bands at each of the 32 electrode sites, less any electrodes
rejected due to excessive artifact or poor electrode contact, was
taken as input. The features were normalized as described in
Section “Feature Extraction.” The length of the feature vector is
the product of the number of bands and number of electrode
sites analyzed, and was thus of length 192 (6 ∗ 32) for the 11
participants for whom no electrodes were rejected due to artifact,
and six elements (frequency bands) less for each rejected channel
for the remaining five participants.

Gaussian Process Regression
A GPR model, a form of Bayesian non-linear regression, was
trained using the Gaussian Processes for Machine Learning
(GPML) library for MATLAB (Rasmussen and Williams, 2005;
Rasmussen and Nickisch, 2010). A GPR model is defined
primarily by the selection of a covariance function, which defines

how the expected value of the target variable changes as values
change across the input space. Here, a squared-exponential
covariance function with automatic relevance determination
(ARD) was used, in conjunction with a constant zero mean
function. ARD refers to the inclusion of a length-scale for each
feature within the covariance function, which can be examined
after training to determine the relative importance of that
feature to prediction. As described by Rasmussen and Williams
(2005), the squared exponential covariance function with ARD is
defined as:

k(xp, xq) =

σ2
f ∗ exp

(
−

1
2
(xp − xq)ᵀ ∗ (diag(`)−2) ∗ (xp − xq)

)
(1)

Where xp and xq represent values in the input space, σ2
f

represents the noise free signal variance, and ` is a vector of
length-scales (one for each feature).

This covariance function is stationary in the sense that the
relationship between values in the input space depends only on
their distance, not to their particular location in the space. The
squared exponential covariance function was selected a priori
based on its relative simplicity, the assumption inherent in its use
is that data points that are close in the input space will tend to
be close in the output space. The constant zero mean function
was selected as the data was normalized to have zero mean in the
training set. Rasmussen and Williams (2005) present an in-depth
presentation of the properties of different covariance and mean
functions in the context of GPR.

The covariance and mean functions were used in conjunction
with a Gaussian likelihood for prediction via the following
equations, all from Rasmussen and Williams (2005):

f∗|X, y,X∗ ∼ N(f
∗
, cov(f∗)) (2)

Where f∗ is a posterior distribution, X is a matrix of training
inputs, y is a vector of training targets,X∗ is a matrix of test inputs,
f
∗

is the posterior mean, and cov(f∗) is the posterior covariance.
The posterior mean is specified as:

f∗
1
= E [f∗|X,Y,X∗] = K(X∗,X)[K(X,X)+ σ2

nI]
−1y (3)

The posterior covariance is specified as:

cov(f∗) =

K(X∗,X∗)− K(X∗,X)[K(X,X)+ σ2
nI]
−1K(X,X∗) (4)

Where K indicates a covariance matrix, and σ2
n is a noise

variance term.
The covariance function contains several hyperparameters,

which are optimized during model training. Hyperparameters for
the covariance function include a length-scale for each feature (`),
and a noise free signal variance (σ2

f ). In addition, the covariance
function is evaluated using a Gaussian likelihood function, which
has a single hyperparameter, the noise variance (σ2

n). The constant
zero mean function has no hyperparameters.
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FIGURE 2 | Participant performance and subjective workload on the N-back task changed monotonically with level.

Prior to each model run, these hyperparameters are set to
default values, which are subsequently adjusting during model
training. Here, for hyperparameters associated with the squared
exponential covariance function with ARD, the length-scale for
each feature was set to 10, and the signal variance was set
to 1. Additionally, for the hyperparameter associated with the
Gaussian likelihood function, the likelihood variance was set
to 1. These hyperparameters are then optimized within each
model run by the GPML library, by minimizing the negative
log marginal likelihood on the training set, over 100 function
evaluations.

After training the model, new predictions are made via the
conditional distribution of target output values, given the test
inputs, training inputs, training targets, covariance function,
and associated hyperparameters. The mean and variance of
the posterior target distribution are used to generate point
predictions and confidence intervals, respectively.

Evaluation of Model Performance
Model performance at predicting N-back task level (N) was
assessed via fivefold cross-validation with a five trial buffer
between training and test sets. Data from each modality and
N-back level block (9 blocks total) was split into five partitions,
with each partition containing a contiguous block of trials.
On any given fold of the fivefold cross-validation procedure,
4 of the 5 partitions (80% of data) were used for training
the GPR model, with the remaining partition held out as a
test set for assessing model performance. Additionally, any
trials from the test set that occurred within five trials of
a member of the training set were removed from the test
set and not included in measures of model performance.
Trials were removed from the test set, and not the training

set, to ensure a constant amount of training data (4 of 5
partitions or 80%) across runs. These neighboring trials were
removed in order to reduce any short-time scale effects of
attention or participant posture on model performance. After
identification of the training and test trials from each of the
9 blocks, the data, from these 9 blocks (3 N-back levels and
3 modalities) were pooled for training and testing, labeled
by N-back level and subjective workload rating provided by
each participant after each block, but not labeled by modality.
Data from the three modalities were pooled in an attempt to
identify features indicative of working memory load independent
of any particular stimulus modality. Measures of prediction
quality were obtained for each participant by combining
the results from the five model runs. Specifically, for each
participant, the true and predicted values from each model
run of collected and used to compute a single sMSE and
a single Pearson correlation coefficient for that participant.
On average, 661.25 trials were included in each training set,
and 88.66 trials were included in each test set. Despite the
use of fivefold cross-validation, the number of trials in the
average test set is less than 1/4 of the trials in the average
training set due to the removal of trials from the set test
partitions that occurred within five trials of a trial from the
training set.

As a parametric regression model for performance
comparison to GPR, we used MLR with one linear term
per feature plus a constant term. The model training and testing
functions were implemented using BCILAB (Kothe and Makeig,
2013). Our BCILAB plugins for Gaussian Processes (a BCILAB
wrapper around the GPML library), and for MLR (a BCILAB
wrapper around the ‘regress’ function in MATLAB), are available
as open source code.
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TABLE 1 | Predictive ability of feature subsets.

max # features Correlation r Standardized MSE

Feature subset

All 192 0.75 ± 0.03 0.44 ± 0.04

GPR-ARD subsets

50% shortest length scales 96 0.75 ± 0.03 0.44 ± 0.04

25% shortest length scales 48 0.74 ± 0.03 0.46 ± 0.04

ANOVA subsets

Top 50% ANOVA features 96 0.73 ± 0.03 0.47 ± 0.05

Top 25% ANOVA features 48 0.68 ± 0.03 0.59 ± 0.06

Electrode site subsets

B-Alert X-10 channels 54 0.53 ± 0.04 0.72 ± 0.04

Emotiv EPOCa channels 96 0.73 ± 0.03 0.46 ± 0.04

Parietal channels only 54 0.56 ± 0.04 0.68 ± 0.05

Occipital channels only 30 0.52 ± 0.04 0.72 ± 0.05

Frequency band subsets

Delta 32 0.21 ± 0.03 0.95 ± 0.02

Theta 32 0.23 ± 0.04 0.94 ± 0.02

Low alpha 32 0.24 ± 0.04 0.92 ± 0.03

High alpha 32 0.25 ± 0.04 0.93 ± 0.02

Beta 32 0.65 ± 0.03 0.57 ± 0.05

Gamma 32 0.74 ± 0.03 0.45 ± 0.04

Feature subsets are categorized by whether they are subsets of electrode sites (over all frequency bands), frequency bands (at all electrode sites), or selected from
sites × bands. aFor this analysis, Emotiv EPOC sites AF3 and AF4, which were not included in our configuration, were substituted by adjacent sites Fp1 and Fp2.

Continuous prediction accuracy was quantified using two
metrics: standardized mean squared error (sMSE) and Pearson
correlation coefficient (r). sMSE is the mean squared error
(MSE) of true and predicted values, divided by the variance
of the true values. sMSE has a characteristic scale of 0–1
and, due to the standardization on the variance of the true
values, is dimensionless, unlike the MSE. Like MSE, sMSE
equals 0 for a perfectly accurate prediction. However, due
to standardization sMSE equals 1 for a naïve model which
always predicts the mean of the ground truth values, and
exceeds 1 for predictions that are more erroneous than could
be obtained by only predicting the mean of the ground truth
values. For machine learning purposes, r ranges from 1 (perfect
accuracy) to 0 (uncorrelated); however, a naïve model predicting
a constant output will show positive r. Additionally, although
mental workload is argued to be best treated as a continuous,
rather than discrete, variable, we have also included discretized
versions of the continuous MLR and GPR output. These
predictions were included to allow the presented results to be
more readily compared with other reports in which discrete
classification is performed, and are computed by rounding each
continuous prediction to the nearest label in the training set
(i.e., a continuous prediction of 2.4 is relabeled as 2), then
computing the fraction of predictions which have the correct
label.

While predicting the imposed task load is of primary focus, an
additional model was trained to predict subjectively experienced
workload, using the reports provided by each participant
following each task block. This model was computed in the same
manner as the previously described model for imposed task load,
with the exception of each trial being labeled according to the

subjective workload provided by that participant for that block
(a value that can range from 1 to 7), rather than the imposed task
load (1–3).

Additionally, models were constructed with data from single
task variants, in order to investigate the ability of the model to
predict the task load within task variants relative to across task
variants. Data from each task variant and load was split into
five partitions, with a separation of at least five trials between
partitions, as previously described for the primary analysis.
While the primary analysis combined data across the three
task variants for a given fold, the present analysis used data
from only a single task variant for training, and a single task
variant for testing. For example, the first run of training on
the Auditory task and testing on the Auditory task uses the
first training fold and first testing fold of exclusively Auditory
task data. In contrast, the first run of training on Auditory
task and testing on Spatial task uses the first training fold of
exclusively Auditory task data, and first testing fold of exclusively
Spatial task data. As three task variants were included in the
experiment, generating nine combinations of training and test
task variants.

Feature Analysis
To illuminate the association between individual participants’
EEG features and working memory load prediction, we used
two techniques. First, we applied a one-way ANOVA for task
level (the number N-back; 1, 2, 3) to individual participants’
EEG data. Second, using the trained GPR predictive model, we
examined ARD length scales of each feature to identify which
played the greatest role in prediction. ARD length scales were also
used to evaluate the predictive power of alternate EEG electrode
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FIGURE 3 | GPR predictions of N-back level for participants 1–8. The figure displays predictions derived from the 5 cross-validation folds in a single graph.
Main graph shows ground truth task load (black line). Predicted load is represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple
Linear Regression (MLR) predictors, displayed in blue x’s and green o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is
indicated by colored labels above the predictions. The gray region shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE
for both GP and MLR models are included in the lower left of each participant panel. Participant behavioral performance is shown in the line graph at top of each
subplot (+ = correct, − = incorrect, with incorrect points also colored in red) in order to visually examine the relation between model prediction and participant
behavioral performance on the task.
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FIGURE 4 | GPR predictions of N-back level for participants 9–16. The figure displays predictions derived from the 5 cross-validation folds in a single graph.
Main graph shows ground truth task load (black line). Predicted load is represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple
Linear Regression (MLR) predictors, displayed in blue x’s and green o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is
indicated by colored labels above the predictions. The gray region shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE
for both GP and MLR models are included in the lower left of each participant panel. Participant behavioral performance is shown in the line graph at top of each
subplot (+ = correct, − = incorrect, with incorrect points also colored in red) in order to visually examine the relation between model prediction and participant
behavioral performance on the task.
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TABLE 2 | Predictive ability of Gaussian Process Regression (GPR) model in comparison to multiple linear regression (MLR) model, predicting either task
load or subjective workload using all model features.

Predicted Variable Prediction method r sMSE Classification

Task load GP 0.75 ± 0.03 0.44 ± 0.04 0.70 ± 0.02

Task load MLR 0.69 ± 0.03 0.55 ± 0.04 0.63 ± 0.02

Subjective workload GP 0.76 ± 0.03 0.43 ± 0.04 0.52 ± 0.03

Subjective workload MLR 0.70 ± 0.02 0.54 ± 0.04 0.44 ± 0.02

Model performance is provided via Pearson’s correlation coefficient ‘r’, standardized mean squared error (sMSE), and categorical classification accuracy. Values displayed
are the mean performance across participants ± the standard error of the mean across participants.

montages mapped to other commercial EEG equipment, as is
further explained in Section “Results.”

RESULTS

Behavioral Data
Participants completed all N-back working memory tasks
(Auditory, Numeric and Spatial tasks) at above chance perfor-
mance within all N-back levels. As N-back level increased,
performance significantly decreased. Across all participants and
modalities, mean 1-back performance was 97%, mean 2-back
performance was 79%, and mean 3-back performance was 46%
(Figure 2). There was a main effect of level, F(2,30) = 135.108,
p < 0.001, η2

G = 0.747, as well as a main effect of mode,
F(2,30) = 14.457, p < 0.001, η2

G = 0.097, and a level by mode
interaction, F(4,60)= 3.336, p= 0.016, η2

G = 0.033.
As indicated by the reported measure of effect size generalized

eta squared (η2
G), the effect of N-back level on performance was

of greater magnitude than the effect of modality of performance.
Participants reported subjective workload levels spanning

from 1 to 7, with mean 1-back workload 2.0, mean 2-back
workload 3.9, and mean 3-back workload 5.9 (Figure 2).
For subjective workload, there is both a main effect of level,
F(2,30) = 181.449, p < 0.001, η2

G = 0.735, and a main effect of
mode, F(2,30)= 7.773, p= 0.002, η2

G = 0.042, while the level by
mode interaction was not significant (p > 0.10).

Similar to task accuracy, according to the reported measure
of effect size, generalized eta squared, the effect of N-back level
on subjective workload was of greater magnitude than the effect
of modality on subjective workload. Participants performed the
Spatial task more accurately, and additionally rated it as lower in
subjective workload, in comparison to the Auditory or Numeric
tasks. Although each task used only 8 stimuli within each block,
it is possible that the consistent use of the same 8 spatial locations
across blocks of the spatial task contributed to this performance
and subjective workload difference.

Predictive Accuracy of BCI
The GPR with ARD was trained to predict task level for individual
participants on a mixture of all three N-back tasks, and tested on
the left-out test data using fivefold cross-validation.

Individually trained GPR models were able to predict task level
across participants with high accuracy. sMSE mean and standard
error across multiple participants was 0.44 ± 0.04, where 0 is
perfect prediction and 1 is a model which performs no better

than a naive model always predicting the mean of ground truth
(Table 1). Pearson’s r correlation was 0.75 ± 0.03, where r = 1
is perfect, r = 0 is uncorrelated. (All error estimates are given as
standard error of the mean.) The GPR predictions of task level
for each trial are presented within Figure 3 (participants 1–8)
and Figure 4 (participants 9–16). The predictions derived from
the 5 model folds have been merged into a single dataset for
presentation.

The models trained using GPR and all features performed
significantly better than models trained using MLR and all
features, using the same training and test folds. GPR models had
mean sMSE of 0.44 ± 0.04, while MLR models had mean sMSE
of 0.55 ± 0.04, t(1,15) = −6.28, p < 0.001. Similarly, models
trained to predict subjective workload ratings performed better
using GPR than MLR. The subjective workload model trained
using GPR had mean sMSE of 0.43 ± 0.04, while the analogous
model trained using MLR had mean sMSE of 0.54 ± 0.04,
t(1,15) = −6.07, p < 0.001. Measures of model quality in
terms of Pearson r and discretized classification are provided
in Table 2 for comparison with other paradigms. The GPR
predictions of subjective workload for each trial are presented
within Figure 5 (participants 1–8) and Figure 6 (participants 9–
16). The predictions derived from the 5 model folds have been
merged into a single dataset for presentation. Table 3 additionally
displays the sMSE for each participant, both collected across the
5 runs prior to calculating sMSE, and the mean and standard
deviation of sMSE calculated by first computing sMSE within run.
The sMSE for each participant collected across the 5 runs prior to
calculating sMSE is very similar to the mean of sMSE calculated
by first computing sMSE within runs.

Comparing the performance of the GPR model trained on task
level to the equivalent model trained on subjective workload, the
ability to predict the two label types was not significantly different
t(1,15)= 0.53, p= 0.606.

Feature Analysis in the ANOVA, GPR, and
MLR Models
To determine which EEG band-site features were significantly
associated with N-back level, we applied a one-way ANOVA for
level to individual participants’ EEG data. Because the predictive
model was also individualized, it was necessary to analyze
individual data rather than group effects as is commonly done
in cognitive neuroscience.

Using the GPR predictive model, we examined the set of
features to identify which played the greatest role in prediction.
When ARD is used in training a GPR, the resulting length scale
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FIGURE 5 | GPR predictions of subjective workload for participants 1–8. The figure displays predictions derived from the 5 cross-validation folds in a single
graph. Main graph shows ground truth subjective workload (black line) provided by the participant at the end of the block. Predicted subjective workload is
represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple Linear Regression (MLR) predictors, displayed in blue x’s and green
o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is indicated by colored labels above the predictions. The gray region
shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE for both GP and MLR models are included in the lower left of each
participant panel. Participant behavioral performance is shown in the line graph at top of each subplot (+ = correct, − = incorrect, with incorrect points also colored
in red) in order to visually examine the relation between model prediction and participant behavioral performance on the task.
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FIGURE 6 | GPR predictions of subjective workload for participants 9–16. The figure displays predictions derived from the 5 cross-validation folds in a single
graph. Main graph shows ground truth subjective workload (black line) provided by the participant at the end of the block. Predicted subjective workload is
represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple Linear Regression (MLR) predictors, displayed in blue x’s and green
o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is indicated by colored labels above the predictions. The gray region
shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE for both GP and MLR models are included in the lower left of each
participant panel. Participant behavioral performance is shown in the line graph at top of each subplot (+ = correct, − = incorrect, with incorrect points also colored
in red) in order to visually examine the relation between model prediction and participant behavioral performance on the task.
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TABLE 3 | Individual participant GPR model performance.

Participant Total sMSE sMSE Mean
Over 5 Runs

sMSE standard
deviation over 5 runs

1 0.50 0.47 0.24

2 0.37 0.34 0.11

3 0.33 0.30 0.14

4 0.49 0.45 0.27

5 0.18 0.18 0.10

6 0.34 0.32 0.15

7 0.68 0.66 0.21

8 0.57 0.54 0.17

9 0.34 0.32 0.17

10 0.42 0.40 0.15

11 0.43 0.41 0.19

12 0.72 0.65 0.45

13 0.33 0.31 0.23

14 0.71 0.67 0.28

15 0.39 0.37 0.22

16 0.18 0.18 0.04

The total sMSE combines the results of each run into vectors of true and predicted
values, which weights each test example equally. The sMSE mean over 5 runs
averages the sMSE results derived from each test run. The sMSE standard
deviation is the standard deviation of the sMSE results derived from each test run.
The total sMSE and sMSE mean are not equal because each test run can have
different numbers of test trials, due to the removal of any test trials that occurred
within 5 trials of a training trial.

of each feature indicates the relative sensitivity of the model to
changes in that feature’s value (MacKay, 2003; Rasmussen and
Williams, 2005). A model is more sensitive to features with short
length scales and least sensitive (most invariant) to features with
long length scales.

Figures 7 and 8 show one-way ANOVA F-values compared
to GPR length scales for each channel × band power feature,
for each of the 16 participants. The values displayed are the
average of the values for that participant, over the 5 runs of cross-
validation performed. Although there is substantial between-
participant variability, gamma band features at occipital and
temporal sites are commonly utilized by the GPR models for
prediction.

Unlike the features with significant level effects in ANOVA,
the (most sensitive) features with the shortest length scales are
not generally clustered into individual frequency bands, with
the exception of the gamma band, where several channels are
uniformly short in length scale. This lack of spatial patterning was
also typical across participants.

As the MLR predictions were derived from a multivariate
regression, multicollinearity between features can make
interpretation of the resulting regression coefficients difficult or
misleading (Haufe et al., 2014). Weights from the MLR models
were therefore transformed into activation patterns via Equation
(6) from Haufe et al. (2014). Specifically, the activations are
derived by:

A =
∑

x
W
∑−1

Ŝ
(5)

Where
∑

x is the covariance of the data, W is the multivariate
regression weights, and

∑
−1
Ŝ

is the inverse covariance matrix

of the latent factors, in this case simply the N-back level labels.
Figure 9 displays the activation patterns from the MLR models
predicting task load.

Feature Selection and Prediction
Accuracy
For each participant, we compared the predictive ability of several
feature subsets. The feature subset “All” (i.e., all electrodes × all
bands) was the upper bound on predictive accuracy for this data
set (Table 1).

To illuminate which frequency bands are important to the
task, we considered the predictive accuracy of feature subsets
corresponding to single frequency bands (e.g., the 32 features
corresponding to the beta band at all electrodes). While all bands
contributed to predictive accuracy, the largest contribution came
from features in the beta and gamma frequency range. This
suggests that information that might be discounted by standard
EEG analysis can be highly informative in the context of a BCI
predicting workload.

How important was it for the BCI to include all 32 electrodes
for this task? We considered feature subsets with a smaller
number of EEG electrode sites than were actually measured (but
all frequency bands). The model’s accuracy for several subsets of
electrode sites, averaged over all 16 participants, is also shown
(Table 1). We compared the montage of our laboratory EEG
headset to the montage of two EEG headsets including fewer
electrodes, one focused on rapid deployment (B-Alert X10) and
one on affordability for home use by consumers (Emotiv EPOC).
In this task, the 16 channels present in the Emotiv EPOC device,
primarily near equatorial sites such as F7, F8, P3, P4, P7, and
P8, capture much of the model’s predictive ability. However,
the montage of channels present in the B-Alert X-10, more
along midline sites such as Fz, Cz, and POz are less effective,
generating similar performance as achieved by only looking at
a single region’s channels (e.g., parietal channels or occipital
channels).

One operationally relevant scenario is that a full laboratory
electrode cap might be used to calibrate a model for a participant
before switching to a simpler EEG device for operational use.
We tested this concept by training the GPR model on the full
feature set, leaving out features using ARD or ANOVA F-values,
then testing the newly reduced model’s predictive power. With
this paradigm, we found that selecting a reduced feature model
using GPR length-scales was more resilient than reducing models
using ANOVA features. For both the top 25% and top 50%
of features, selection based on training data GPR length-scale
generated a model with lower test set sMSE in comparison to
selection based on training data ANOVA F-value, as evaluated
with paired samples t-tests; [t(1,15) = −5.62, p < 0.001 for the
top 25% of features, t(1,15) = −2.68, p = 0.017] for the top 50%
of features, see Table 1.

A similar method allowed us to measure the absolute
minimum number of features required for prediction of task
level. Each individual’s feature length scales were sorted from
shortest to longest, and the GPR model was tested on subsets of
increasing size, from 1 to 100% of total features, in increments of
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FIGURE 7 | EEG features (bands and sites) for participants 1–8. Top of each participant plot: ANOVA F-values for memory load. Red (higher values)
corresponds to larger F-value for feature. Bottom of each participant plot: log scaled Gaussian Process model length scales. Red (lower values) corresponds to
higher sensitivity for feature. The directionality of the colormap is swapped between ANOVA and GPR in order for warmer (redder) colors to always indicate greater
feature relevance.

1% (Figure 10). As features are added beyond the minimum level
required for the model to function, the trend is for classifier error
to decrease monotonically until it plateaus near the minimum
sMSE of the full model. Approximately 20% of the total number
of features are sufficient for prediction quality near the full
model.

Prediction within and across Task
Variants
Predictions obtained using single task variants for training and
testing are obtained in Table 4. When the training and test data

are from the same task variant (the diagonal of the table), sMSE
is approximately the same or lower than what was obtained
by combining training and test data across pooled modalities.
However, when training and test data are obtained from differing
task variants, prediction is no better than what could be obtained
by naively predicting the mean of the target distribution.

DISCUSSION

We used GPR to train a model capable of accurately predicting
N-back working memory load or workload. When data from
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FIGURE 8 | EEG features (bands and sites) for participants 9–16. Top of each participant plot: ANOVA F-values for memory load. Red (higher values)
corresponds to larger F-value for feature. Bottom of each participant plot: log scaled Gaussian Process model length scales. Red (lower values) corresponds to
higher sensitivity for feature. The directionality of the colormap is swapped between ANOVA and GPR in order for warmer (redder) colors to always indicate greater
feature relevance.

all three task variants were pooled for training and testing,
above chance predictions were obtained. This result is consistent
with a meta-analysis of functional magnetic resonance imaging
(fMRI) studies using N-back variations which showed a
frontoparietal network which, although affected by the nature
of the information retained, is generally active across all
N-back variants (Owen et al., 2005). However, if data was
trained exclusively on a single task variant, then prediction
on alterative task variants was no better than a naïve model
which always predicts the mean task load. Training exclusively
on a single task variant may overfit to that particular variant,

impairing prediction when the test variant differs. It is possible
that improved cross-variant prediction could be obtained by
modification of the GPR model to account for greater uncertainty
in predicting a new task variant.

For the pooled data, predictive accuracy was high overall
(sMSE = 0.44, r = 0.75), although the GPR model was less able
to predict (or extrapolate to) extreme values, tending to smooth
extreme values to middling values. This limitation is typical
of interpolation based regressors such as GPR, especially given
the limited number of data points (∼800) relative to the high
dimensionality of the data (up to 192 per participant, dependant
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FIGURE 9 | Activations derived from the Multiple Linear Regression models predicting task load, at each band and electrode site for all participants.
Red values indicate more positive activations; blue values indicate more negative activations.

on whether any channels were removed due to excessive artifact).
Extrapolation might be improved by the use of alternative
covariance functions incorporating linear terms.

GPR performed significantly better than the baseline
performance established by a simpler parametric technique,
MLR. This was the case for models trained and tested on N-back
task load, as well as for models trained and tested on subjective
workload ratings provided by the participants after each block
of the task. Model performance between N-back task load and
subjective workload was similar, likely due to the strong relation
between N-back task load and subjectively reported workload as
reported in the behavioral results.

Applying feature subset selection to the model revealed that
feature subsets selected based on techniques such as ANOVA are

significantly less efficient at prediction than the subsets identified
by GPR with ARD. For example, using the top 25% of features
derived from GPR generates model performance approximately
equivalent to the top 50% of features derived from an ANOVA
model. Similarly, models using GPR consistently outperformed
models utilizing MLR, a simpler but less flexible approach.

Periods of data containing obvious muscular artifacts were
manually rejected from the dataset prior to training the machine
learning model. Despite this, features in the gamma band of
the EEG were most sensitive to variations in N-back level.
Several works have cautioned against the use of higher frequency
band power features such as beta and gamma for workload
estimation (Gerjets et al., 2014; Brouwer et al., 2015), due to EMG
contamination from differential motor activity in different blocks
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FIGURE 10 | Model accuracy increases as features are added in order of informativeness. Black line indicates model performance as the percentage of
features are increased, averaged across participants. Gray shading indicates the standard error of the mean, across participants. Below a minimum number of
features, model error increases due to bias from insufficient dimensionality. After approximately the top 20% of features have been included in the model, adding
additional features provides little improvement to model performance. The left panel displays 1–100% of features, while for clarity the right panel displays only
5–100% of features, where the GPR model is able to function.

TABLE 4 | Predictive ability of Gaussian Process Regression (GPR) models
trained and tested on trials from single working memory task variants.

Test task

Training task Auditory Numeric Spatial

Auditory 0.45 ± 0.06 1.15 ± 0.13 0.97 ± 0.09

Numeric 1.07 ± 0.12 0.33 ± 0.04 1.15 ± 0.13

Spatial 1.13 ± 0.14 1.11 ± 0.13 0.35 ± 0.05

The predicted variable for all models was task load. Model performance is provided
as the mean and standardized error of the mean of standardized mean square error
(sMSE).

of the task. Here, the N-back task was utilized, in which mental
workload between task levels is varied by task instruction rather
than alteration of the perceptual or motor demands of the task.
While perceptual demands do vary between the modality variants
of the task utilized (auditory, numeric, spatial), as our predictor
was trained and tested on a random selection of data from each of
three modalities at each N-back level, the N-back level groupings
do not contain systematic differences in perceptual or motor
demands that would aid prediction.

As gamma band power is susceptible to contamination from
muscular artifact (Muthukumaraswamy, 2013), the source of
these features cannot be assumed to be of neural origin. However,
the consistency of the gamma band features across participants
despite the constant motor demands of the N-back suggests that,
if predictions result in part due to EMG activity, more direct

measures of EMG activity may prove useful for mental workload
classification. It is possible that the diagnosticity of the gamma
band feature is due not to a confound in how participants respond
between levels of the task, but subtle postural changes on the
part of participants as mental demand increases. In this sense,
gamma band features may be considered an artifact when EEG
is used to measure electrical activity of exclusively neural origin,
but in our analysis may also represent a feature that is truly
diagnostic of mental demand, and not simply an experimental
design confound.

It is often desirable to minimize the number of electrode sites
required for a BCI. In laboratory settings with standard electrode
caps, using fewer sites can reduce experimental preparatory time
or allow experimenters to allocate more time to ensuring a low-
impedance connection at key sites, improving data quality. In
custom-designed electrode caps, fewer sites may also reduce
the size, weight, and power (SWaP) and cost of BCI systems
intended to operate in real-time. Taking advantage of our
non-parametric GPR model, we were able to demonstrate a
method for determining subsets of channels that capture the
full predictive accuracy of the entire electrode cap – and even
determine the minimum number of channels, or even EEG
features, required for accuracy. We observed that the 16 channels
present in a commercial off-the-shelf device, mostly lateral
sites near the head’s equator, capture a very large fraction of
the predictive ability of the full 32 channel laboratory cap.
Devices with such electrode montages might be used in future
experiments, provided their EEG signal quality is acceptable.
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Despite what we believe to be an overall contribution to the
field, several limitations of the current report should be noted.
The present paradigm used 80% of the available data for training
on each cross-validation fold. This amount of training data may
not be practical to acquire before a real-time device could be
utilized. Additionally, our models were trained and tested within
each participant. A more optimal model would be participant
independent. It possible that these issues could be partially
mitigated by adapting data or Gaussian Process hyperparameters
that were learned from previous participants to reduce the
training time required for new participants. Additionally, the
present work contains data from 16 participants, all of whom
are male and middle-aged. Future reports should expand
workload prediction using larger and more demographically
variable participant samples. Finally, while stimulus modality
was randomized, participants completed increasingly demanding
experimental blocks within each modality. Therefore, fatigue or
tiredness could potentially contribute to estimations of mental
demand.

CONCLUSION

There is potentially great value in real-time, non-invasive
monitoring of cognitive states by ‘passive’ BCI using methods
such as electroencephalography (EEG). Cognitive variables
such as workload, which are predictive of operational errors,
are potentially valuable targets for real-time monitoring.
Information about these variables may be useful in a variety
of downstream applications, including providing situational
awareness for human operators, alerting operators about high-
workload situations, testing and training operators, redesign of
interfaces, and redesign of working practices to optimize operator
performance.

In this paper, we used EEG to monitor cognitive workload
during a simple working memory task (N-back) in multiple
sensory and cognitive modalities (Auditory, Numeric, and
Spatial). Calibration from training data was demonstrated to
be effective using GPR, out performing a more basic model
utilizing MLR. GPR also provided the ability to assess the relative
predictive value of each input variable (EEG electrode sites,
and frequency bands at each site, together summarized as EEG
‘features’) in predicting the workload variable of interest. The
GPR approach was superior to conventional analysis of variance

(ANOVA) methods in determining which reduced subsets of
EEG features from the training set would be most predictive
about the cognitive variable of interest in the test set. This type of
analysis may inform engineering efforts to produce EEG systems
with few electrodes placed at the most highly informative sites on
the scalp for the desired evaluations.

The current approach can be placed within a class of methods
that seek to use techniques from machine learning to not only
make predictions, but glean useful information about the neural
or behavioral processes under study. In another example, Noh
and de Sa (2014) have reported that a machine learning model
trained on a subset of EEG data can be used to select features
for traditional hypothesis testing on an independent test set.
As this method derives candidate features for discriminating
between conditions from the independent training set, it avoids
the issue of multiple comparisons encountered when performing
traditional hypothesis testing on several potential features within
a single set of data.

In addition, in contrast to more traditional statistical methods
such as MLR, the GPR approach provides confidence intervals
around each prediction. Information regarding the confidence
of a predictor may be useful in operational domains in order to
determine when to trust the outputs of the predictive model. For
example, a test point that contains data that is far outside what
was observed within the training set would be predicted with a
large confidence interval.
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