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Experimental data show that perceptual cues can either exacerbate or ameliorate

freezing of gait (FOG) in Parkinson’s Disease (PD). For example, simple visual stimuli

like stripes on the floor can alleviate freezing whereas complex stimuli like narrow

doorways can trigger it. We present a computational model of the cognitive and motor

cortico-basal ganglia loops that explains the effects of sensory and cognitive processes

on FOG. The model simulates strong causative factors of FOG including decision conflict

(a disagreement of various sensory stimuli in their association with a response) and

cognitive load (complexity of coupling a stimulus with downstream mechanisms that

control gait execution). Specifically, the model simulates gait of PD patients (freezers and

non-freezers) as they navigate a series of doorways while simultaneously responding to

several Stroop word cues in a virtual reality setup. The model is based on an actor-critic

architecture of Reinforcement Learning involving Utility-based decision making, where

Utility is a weighted sum of Value and Risk functions. Themodel accounts for the following

experimental data: (a) the increased foot-step latency seen in relation to high conflict

cues, (b) the high number of motor arrests seen in PD freezers when faced with a complex

cue compared to the simple cue, and (c) the effect of dopamine medication on these

motor arrests. The freezing behavior arises as a result of addition of task parameters

(doorways and cues) and not due to inherent differences in the subject group. The model

predicts a differential role of risk sensitivity in PD freezers and non-freezers in the cognitive

and motor loops. Additionally this first-of-its-kind model provides a plausible framework

for understanding the influence of cognition on automatic motor actions in controls and

Parkinson’s Disease.
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INTRODUCTION

Deterioration of gait in Parkinson’s Disease (PD) is of major concern as it severely affects the quality
of life of patients. Some characteristics of gait disturbance include increased double support time,
reduced stride length and velocity (Hausdorff et al., 1998; Morris et al., 1998). In addition to these
features, freezing of gait (FOG) is a paroxysmal phenomenon where patients feel they are glued
to the ground despite the desire to walk (Giladi et al., 2001; Nutt et al., 2011). A diverse range of
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environmental contexts can trigger FOG such as passing
through narrow and confined spaces like doorways (Almeida
and Lebold, 2010; Cowie et al., 2010; Shine et al., 2013a),
turning and increased cognitive processing such as dual tasking
(Schaafsma et al., 2003; Spildooren et al., 2010). The specific
contribution of set-shifting, attention, visuo-spatial processing,
sensory integration and emotions like anxiety have also been
found to trigger FOG in PD (Lewis and Barker, 2009; Nutt et al.,
2011; Martens et al., 2014).

Multiple neural networks are involved in gait processing
and freezing including the sensory and motor cortices along
with the association and prefrontal cortices, anterior cingulate
cortex, basal ganglia and the brainstem (Shine et al., 2013b).
Gait impairment in PD indicates a role for basal ganglia (BG)
in these processes (Hausdorff et al., 1998; Morris et al., 1998).
The cortico-basal ganglia system is organized as parallel loops
associated with specific functional domains (Alexander et al.,
1986; Parent and Hazrati, 1995; Graybiel, 1998). Competitive
interactions among the cortico-basal-ganglia loops are thought to
be a major factor for triggering freezing (Lewis and Barker, 2009).
This is due to the impaired balance in demands to resources, that
is, increased demands from cognitive, motor and limbic loops
under depleted dopamine resources leading to the inhibition of
brainstem locomotor systems (Lewis and Barker, 2009; Shine
et al., 2013d). Several studies have investigated and reported
deficits related to the effect of cognitive processes on gait in PD
subjects especially freezers. The studies investigate the ability of
these subjects to resolve conflict in the cognitive aspect of the
task or in its interaction with a motor activity. Some examples
include tasks such as the attention network task (ANT), the
virtual reality gait task (Shine et al., 2013a), “timed up and go”
task (TUG) (Weiss et al., 2010; Herman et al., 2011), object
avoidance (Snijders et al., 2010; Pieruccini-Faria et al., 2014), and
dual tasking (Yogev et al., 2005; Springer et al., 2006).

Our previous work (Muralidharan et al., 2013) on modeling
PD gait explored the possibility of neuromodulator deficiency
in PD freezers, particularly serotonin and norepinephrine. The
model could explain deceleration and gait (step/stride length)
changes observed in experiments involving walking through
doorways with variable widths (Almeida and Lebold, 2010; Cowie
et al., 2010). However, the role of cognitive factors was not
included in our previous gait model. Furthermore, the prior
model was only a Value based model, and did not consider the
possible contributions of Risk (expected uncertainty), a quantity
representing ambiguity associated with decision-making and
is significant for understanding PD (Balasubramani et al.,
2015). The current paper models gait performance in healthy
controls and PD patients using Utility-based decision making
that combines Value and Risk estimates for generating the
decision variable toward executing behavior. Risk (or expected
uncertainty) estimates capture the variance in reward outcome
observed due to decision making (Balasubramani et al., 2014).
Moreover, the sensitivity of the subjects to risk has previously
been hypothesized to be a correlate of serotonin (5HT) function
in the striatum. Based on the hypothesis that striatal serotonin
levels code for risk-sensitivity, computational models have been
able to unify several existing theories of serotonin function

into a single theory (Balasubramani et al., 2014, 2015). In
the experimental tasks modeled here, a word cue is associated
with a specific motor action (walk/stop) resulting in a specific
outcome (reward/punishment). Increased inconsistency in the
relationship between cue and actions, results in greater reward
variance or greater risk. Our model is built on the lines that this
uncertainty in outcomes during the presentation of complex cue
(also reflected as cognitive load as it demands the recruitment of
more cognitive resources to achieve optimal behavior) facilitates
the generation of a risk estimate. Along with the expected
reward (or value) estimates, risk combines to generate the utility
measure of decision process. The objective of the study is then to
understand the interaction between cognitive and motor aspects
in gait control, and analyze roles of conflict and load in the
task design on simulated subjects (agent) as they approach a
doorway. We also want to see whether the risk sensitivity of
the subjects has any role in explaining the freezing behavior of
certain PD patients and the implications of these measures on the
therapeutic strategies. The results of the simulation are compared
to behavioral results from PD patients (Matar et al., 2013; Shine
et al., 2013d).

METHODS

Computational Modeling of the Virtual
Reality Gait Task Setup
The model simulates performance in a series of virtual reality
experiments conducted on controls, PD non-freezers, and PD
freezers (Matar et al., 2013; Shine et al., 2013d) to study the
effects of conflict and cognitive load in PD patients. These
behavioral experiments used a modified version of the Stroop
task (Treisman and Fearnley, 1969) where there is an association
of a color-word stimulus to a specific motor action (i.e., to
walk or to stop) while subjects navigate a series of doorways.
These virtual reality (VR) tasks assessed gait performance of the
subjects, which require effective interaction between the cortico-
basal ganglia circuits. The task setup for the model is inspired by
two experiments (Matar et al., 2013; Shine et al., 2013d).

Patient Description
In the Matar et al. (2013) experiement there were 18 healthy
controls, 37 PD patients classified as non-freezers and 36 PD
patients classified as freezers. The freezers were identified reliably
using the item 3 of the FOG questionnaire (FOG-Q3—“Do
you feel as if your feet are glued to the floor while walking,
making a turn or while trying to initiate walking?”). Patients also
performed theMinimental State Examination (MMSE) and none
had dementia according to the Movement Disorders Society PD
dementia criteria.

The Shine et al. (2013d) experiment considered only PD non-
freezers (n = 10) and freezers (n = 10) as part of the study.
Since the study took place in both the ON and OFF conditions,
clinically defined OFF condition was a minimum of 18 h without
dopaminergic medication, with an average of 22.5± 3.1 h. Apart
from the FOG questionnaire, the PD patients were also required
to perform a few timed up and go trials with 180◦ left and right
turns to identify patients with freezing behavior.
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Model Setup
In the simulation, the track that the agent navigates consists of
300 doorways (each doorway appearing at a distance of 4 length
units). The agent (simulated subject; circular with about 1 unit
in diameter) navigates a series of doorways (wide—3 length units
and narrow—2 length units), while simultaneously performing
the cognitive task of responding to word cues (Figure 1). At any
time step, the output exhibited by the agent includes performing
a forward motion (dubbed as a “step”), associated with a specific
latency estimated as the number of time steps required to reach a
decision threshold. The experiments gave the subjects, who were

seated in front of a computer monitor, a first person view of the
virtual reality (VR) environment which they could interact using
a set of foot pedals. Alternate pressing of the foot pedals leads to
forward motion in the VR setting, simulating the experience of
locomotion, while the word cues were presented at the bottom of
the monitor (Figure 1B). The model simulates this by executing
a forward motion in the virtual environment. Additionally, to
indicate walking or stopping within a trial, the task utilizes a
set of simple and complex cues. The simple cues include the
word “WALK” (usually presented in green) that indicated the
subject to walk and the word “STOP” (usually presented in

FIGURE 1 | The task setup (A) used in the VR paradigm. The agent navigates a series of doorways (wide or narrow), while making decisions upon visualization of a

cue or deciding the latency on traveling toward the doorway. The agent is presented with any one of the cue listed in the figure at random. The current position and

the orientation of the agent are (X, Y) and (1X, 1Y) respectively. The doorways appearing could be narrow (2 units) or wide (3 units) again in a random fashion. The

height of the doorways is kept constant at 1.6 units. A schematic of the view of doorways and cues (B) seen in the virtual reality by the subjects performing the task

(adapted from Shine et al., 2013a).
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red) that indicated stopping. Simple cues are also presented in
neutral color (e.g., BLACK). The task complexity is increased by
interlacing simple cues with blocks of Stroop’s words (complex
cues). These words could be congruent (word and color are the
same) or incongruent (word and color are different). Here, we
use words RED, GREEN, and BLUE and the colors red, green
and blue with their combinations providing a set of 13 different
cues (see Figure 1 and Table 1). To represent a word stimulus,
we adopt the following format “WORD (color).” The metric used
for assessing freezing is inter-step length latency, defined as the
time period between two consecutive alternating (left-right-left)
presses of the foot pedals. Using this measure the following gait
parameters are defined (Matar et al., 2013).

(a) Modal Latency (preferred step latency): the mode of the
latency distribution. It is assumed to be the baseline with
respect to which a motor arrest or freeze episode is defined.

(b) Motor Arrest: an instance where the step latency is two times
more than that of themodal latency (Shine et al., 2013d). This
measure has shown good correlation to the amount of real
freezing of gait in the classic “timed up and go” (TUG) tasks
(Shine et al., 2013a).

(c) Maximum footstep Latency (MFSL): maximum latency
exhibited within one to three steps following the presentation
of a cue scaled to the modal footstep latency (Matar et al.,
2013).

Model Architecture
The proposed cortico-basal ganglia model simulates the
interaction between the motor and cognitive loops (using a
“Motor Module” and “Cognitive Module”). Both the Cognitive
and Motor Modules of the proposed BG model are based on the
Actor-Critic architecture, each having its respective Critic and
Actor. Evidences from the two modules are combined to execute
the final output. These two modules build their respective
evidences based on different sensory stimuli—the Motor Module
based on visual appearance of the doorway, and the Cognitive
Module based on the word cue. The first evidence (EI) involves
the Cognitive Module identifying the salience of a word cue
upon its presentation (Figure 2). Since a word cue does not
appear at every moment, EI is taken only upon the presentation
of the word cue. The second evidence (EII) involving the Motor

TABLE 1 | The list of cues used in the virtual reality paradigm and the

actions associated with their appearance as used in the experiments and

the model.

Type Cues Actions References

Simple WALK, STOP,

WALK, STOP

Direct

associations

Complex Congruent: RED,

GREEN, BLUE

Walk

Walk/Stop

Matar et al., 2013

Shine et al., 2013d*

Incongruent: RED,

GREEN, BLUE, RED,

GREEN, BLUE

Stop

Stop/Walk

Matar et al., 2013

Shine et al., 2013d*

*The blocks are counterbalanced so that half of the patients associate a congruent cue

to walk and incongruent to stop and vice versa for the other half.

Module takes the visual appearance of the doorway as input
and computes the direction of the step as well as the latency
associated with it as outputs (Figure 2). EII is computed at every
time step. The GEN (Go/Explore/Nogo) policy, which is the
Actor, adopts hill-climbing over the Utility landscape to calculate
the velocity of the agent. The evidences of the two modules are
combined subsequently to get the step latency.

Below we describe the following modeling components: (1)
Utility-based decision making, (2) Cognitive Module, (3) Motor
Module, (4) computations of gait parameters, and (5) Modeling
PD condition.

UTILITY-BASED DECISION MAKING

The Value function “Q” under a policy π , which is defined as the
expected discounted sum of rewards, associated with a state, “s,”
and an action, “a,” pair, at time, “t” is given as,

Qπ (s, a) = Eπ (r(t + 1)+ γ r(t + 2)+ γ 2 r(t + 3)

+...|s(t) = s, a(t) = a) (1)

where, r is a scalar reward obtained at time t, γ , is the discount
factor controlling the time scale of reward prediction (Sutton and
Barto, 1998). The update form of the Value function is as follows:

Q(t + 1) = Q(t)+ ηQδ(t) (2)

where, ηQ is the learning rate and ’δ’ is the temporal difference
(TD) error.

δ(t) = r(t)+ γQ (t + 1) − Q (t) (3)

or

δ(t) = r(t)− Q (t) (4)

for instantaneous rewards.
The Utility function formulation combines the Value function

defined above with the Risk function, h, which represents reward
variance (Bell, 1995; d’Acremont et al., 2009). In recent work, we
showed that the Utility function formulation can be effectively
used to model the interactions between dopamine and serotonin
in BG (Balasubramani et al., 2014, 2015).

The Risk function is updated as follows:

h(t + 1) = h(t)+ ηhξ (t) (5)

where, ξ (t) is the Risk prediction error given by:

ξ (t) = δ(t)2 − h(t) (6)

We proposed a slightly modified form of Utility “U,” expressed
as a combination of the Value function and the Risk function
weighted again by the function sign(Q), as follows:

U(t) = Q(t)− α sign(Q(t))
√

h(t) (7)

where, α that controls the risk sensitivity representing the
functioning of serotonin (5HT) in the BG (Balasubramani et al.,
2014). The sign() term in Equation (7) represents the non-linear
risk sensitivity (Balasubramani et al., 2014).
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FIGURE 2 | A schematic of the model. There are two modules (cognitive and motor) each making their respective evidences. The two evidences are combined

subsequently to compute step latency.

THE COGNITIVE MODULE

The Cognitive Module is a two-layer neural network (Figure 3)
that receives its input as the word cues, which is a color-word
pair defined in the format WORD (color). It returns as output
the Utility associated with the action “walk.” The word stimulus
is represented as a 9-dimensional vector S

cog

k
). The first 5 bits

correspond to the word inputs (STOP,WALK, RED, GREEN, and
BLUE) and the last 4 bits correspond to the color associated with
that word (red, green, blue and neutral). The respective bits are
turned to 1’s for a specific color-word stimulus. The input is fed
into an association layer (M

cog
j ) which consists of 5 nodes, with

sigmoidal non-linearity. The output (Q
cog
i ) consists of 2 nodes

representing the Action Values for walking and stopping, i ε [w,
s]. In accordance to the experiments, upon visualization of a cue,
the agent has two actions to select from, that is, to walk or to stop.

Critic
The simulated agents performing the VR experiments are trained
to associate the cues with actions to at least an accuracy level
of 95%. The network gives the Action Values for the cue that
is Qw and Qs. The weights (W

cog

jk
and W

cog
ij ) of the network are

randomly initialized and upon presentation of a cue (S
cog

k
), one

of the output nodes (Q
cog
i ) is selected via competitive dynamics.

Here Scog represents the input word vector, andMcog denotes the
hidden layer (association layer) of the neural network.

M
cog
j (t) = g(W

cog

jk
S
cog

k
(t)) (8)

Q
cog
i (t) = A

cog
Q g(W

cog
ij M

cog
j (t)) (9)

where g(x) = 1

1+e−λcog x
and λcog is the slope of the sigmoid

function. The Qs are initially trained by selecting a node through
the forced alternative choice method. A reward (rcog) is obtained
upon selecting an action (rcog = 1 for the correct action; rcog = 0
for the incorrect action). The weights for the corresponding node
are updated with learning rate ηcog using the following rule:

1W
cog
ij = ηcogδ

cog
i (t)M

cog
j (10)

1W
cog

jk
= ηcogδ

cog2
j (t)S

cog

k
(11)

where the prediction error defined as, δcog(t) = rcog(t) −

Q
cog
i (t), is used to update the output weights (W

cog
ij ) and is

backpropagated as δ
cog2
j (t) = 6

i
W

cog
ij g′(W

cog

jk
S
cog

k
(t))δsi (t) for

updating the weightsW
cog

jk
. The prediction error δcog is an analog

of temporal difference error correlated with dopamine signaling
in the Cognitive Module (Schultz, 2010).

The training procedure is as follows:

1. The Cognitive Module is trained initially for approximately
600 trials on only the simple cues (Table 1) which include the
WALK (neutral), STOP (neutral), WALK (green) and STOP
(red) appearing in random order. This training biases the
network toward the implicit responses toward a WALK or a
STOP cue and the color in which it is presented.

2. The network is then subjected to the complex (congruent and
incongruent) cues (Table 1) for additional 1000 trials. Further,
in this step the simple and the congruent cues are presented
more frequently (2:1) than the incongruent cues. This is done
to ensure consistency with the behavioral experiments.

3. The selection of a node “i” at the output (Q
cog
i ) leads to changes

in the weights (W
cog
ij ) for only that particular node at the

output level; however, all the weights (W
cog

jk
) from the input

to the association layer are updated.

After learning the Q-Values, the network can in parallel be used
to compute the Utility for the cues using the following approach.
Since there is an uncertainty in the task toward the identification
of the appropriate action for a Stroop word, this uncertainty is
calculated by the probability of walking (pw) for a particular cue.

pw =
Qw

Qw + Qs
(12)

The Risk function (hcog) is then estimated by the following
expression.

hcog(t) =
pw(1− pw)

ap
(13)

ap is a constant used to scale up the Risk function so that the
maximum Risk is 1. The parameter ap is set to be 0.25 in all
simulations. The Utility is then defined for the cognitive network
as a combination of the Value (Qcog) and the uncertainty/Risk
function (hcog). The amount of Risk taken into account for the
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FIGURE 3 | The subcomponents of the Cognitive Module: input is the word cue (text + color)—S
cog
k ; “Critic Module” computes Action Values and Risk;

“Utility Module” combines Action Values (Q
cog
i ) and Risk (h

cog
i ) to compute Utility (U

cog
i ), which is the output of the Cognitive Module.

Utility computation is controlled by the sensitivity factor αcog

similar to the manner done in (Balasubramani et al., 2014).

Ucog(t) = Qcog(t)− αcogsign(Qcog(t))
√

hcog(t) (14)

The Utility is used as a measure of the salience of a cue and is
the EI of the task (Figure 2). It represents information regarding
the decision to be taken toward a specific stimulus upon its
presentation. The Utility for walking (U

cog
w ) is further passed on

to themotor network to estimate step latency (See Supplementary
Material S2: Table S1 for the list of parameter values to simulate
the Cognitive Module).

THE MOTOR MODULE

The ability of the agent to navigate through a series of doorways
based on the visual appearance of the doorway is controlled by
the Motor Module. The virtual reality paradigm used several
different characteristics of the doorway such as wide and narrow
doorways, wide and narrow passages and also sliding doorways
which open upon approaching the doorway (Matar et al., 2013;
Shine et al., 2013d). For simplicity, in the model we consider only
two different types of doorways, a wide and a narrow one; sliding
doorways are omitted. We assume that the only property of the
doorway that determines freezing or non-freezing is its width.

The agent is associated at every point on the track with a
heading direction/ velocity 1Z(t) =

[

1X(t) 1Y(t)
]

(where
X is the dimension along the track in the forward direction
and Y is perpendicular to it (Figure 1) which points to the
direction in which the agent is moving (or looking) at the
moment. Importantly, a successful passage through a doorway
yields a reward (rmot = 1) and collision with the sides leads
to punishment (rmot = −1). Using such a reward scheme, the
agent constructs a Value function and navigates through the
virtual corridor. So although in the experiments the subjects
looked straight and experienced only forward motion, in the
model the agent had a 2D motion. It was necessary for the
virtual agent to successfully pass through the doorway which
yielded a positive reward and bump with the sides that gave
it negative reward or punishment, which gave rise to a speed-
accuracy tradeoff close to the doorway resulting in the agent
slowing naturally as it approaches the doorway. In previous

studies, this approach helped explain deceleration of PD freezers
as they approached a narrow doorway (Muralidharan et al.,
2013).

Since the step latency is the desired parameter it is estimated
near the doorway using the following approach. A region of
around 0.1 length units on either side of a doorway is considered
as a significant distance to isolate the effect of the doorway on
reaction times. In this region, the maximum latency exhibited
by the agent is averaged across trials for the two doorway types.
In order to study the effect of cues on the latency near the
doorways, the agent is made to navigate through the track while
simultaneously presented with different cues.Within a single trial
(from the start point until encountering a doorway) the cues
always appear at a distance of about 2 length units before the
doorway. Unlike the Cognitive Module where the action occurs
at discrete steps when a word cue is presented, the actions of the
Motor Module are made every time step, since the doorway is
continuously visible to the agent (Figure 4).

Cue-Visual Input
The visual information represented by the “view vector,” φ, acts
as the state for the Critic of the Motor Module. The agent can
see around 120◦ along the width and 90◦ along the height.
Both the horizontal and vertical fields of vision are split into 50
sectors each. Thus, the visual vector is a 100-dimensional binary
vector [φ ε (−1 1)], where the first 50 bits code the width of
the doorway visualized by the agent and the last 50 code for
the height of the doorway. The heading direction vector (H)
determines the direction the agent is looking, at a particular time
step. The corresponding bits in the view vector are switched on
(=1) whenever a doorway is in the field of vision of the agent
(Figure 5). The factor of height played a role in distinguishing the
discrepancy in the code which might occur in certain conditions.
Since the height of the doorways remained the same throughout
the simulations, the view of a narrow doorway visualized close
by can be differentiated from seeing a wide doorway from far
away. The number and location of 1’s in the visual field becomes
a function of the position and the orientation of the agent and
forms an implicit code for representing space. A conceptual
illustration and the construction of the visual vector is seen in
Figure 5. See Supplementary Material S1 for the construction of
the view vector.
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FIGURE 4 | The subcomponents of the Motor Module. The input to the network is the “view vector” associated with the doorway. The Critic Module computes

Action Value and Risk, and combines the two into Utility function. The next step of the agent [1Z = (1X, 1Y)] is computed by using a policy (GEN Module). The next

step information is converted to Step Latency, which represents the evidence (EII) of the Motor Module. Utility from the Cognitive Module modulates the Step Latency

whenever a word cue is presented.

FIGURE 5 | The concept of visualizing the doorway (A) which shows the orthogonal lines that depict the view in terms of width (in red) and height (in blue). (B)

The construction of the view vector given a heading direction H, the agent’s current position (x, y) and the width of the doorway (wdoor ).

Critic
The Critic in the Motor Module is slightly different from that of
the Cognitive Module. The Critic of the Motor Module, unlike
the Critic in the Cognitive Module, estimates both Value and
Risk as a function of the view vector. This distinction is present
since the views close to the doorways themselves are sufficient
to encode the attribute of Risk because of high probability of
hitting the sides on approaching a doorway. The Critic computes
the Value “Qmot” for the view vector [φ(t)]. It is defined as an
estimation of the predicted reward at any time, t, for that state
?(t). We model Qmot(t) as in Equation (15):

Qmot(t) = Amot
Q f (

∑

Wvalue
l (t)φl(t)) (15)

where f (x) = 1

1+e−λmotx
and λcog is the slope of the sigmoid

function. The update equation for the weights in the above
approximation (having weight vector, Wvalue) is given by
Equation (16):

1Wvalue = ηmotδmotφ(t) (16)

Here, ηmot is the learning rate for the critic and “δmot” denotes
the temporal difference (TD) error in Value function, that has
been linked to dopamine signaling (Schultz, 2010). It is given by
Equation (17) in which γ is the discount factor.

δmot = rmot(t)+ γQmot(t)− Qmot(t − 1) (17)

The Risk function for the Motor Module is approximated using
the Equation 18. The weights for the Risk computation are
updated using (δmot)2 (Equation 19). Note that this same quantity
is estimated as uncertainty in the Cognitive Module (Equation
13).

hmot(t) = Amot
h f (

∑

Wrisk
i (t)φi(t)) (18)

1Wrisk = ηmot(δmot)2φ(t) (19)

The Utility function combines the Value function and αmot

controlled Risk function.

Umot(t) = Qmot(t)− αmotsign(Qmot(t))
√

hmot(t) (20)
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Actor/Go Explore NoGo Policy
The Actor in the model computes the direction of movement
for the agent using the latency is estimated. We assume in the
model that theremust be an actor only for theMotorModule, and
the Cognitive Module influences this information based on the
word stimulus that appeared during the trial, thereby controlling
the latency of the motor actions. The Actor dubbed as GEN or
the GO/EXPLORE/NOGO policy is a type of action selection
mechanism which performs a stochastic hill-climbing over the
Value function space. This type of action selection has been
shown to model a range of BG functions in healthy controls and
PD patients (Sridharan et al., 2006; Magdoom et al., 2011; Kalva
et al., 2012; Gupta et al., 2013; Muralidharan et al., 2013). In the
present model, however, the GEN policy is used to maximize the
Utility rather than the Value function, as in our prior models
(Balasubramani et al., 2014, 2015). This is achieved by modifying
the GEN equations of Muralidharan et al. (2013) and extending
them to the Utility function as follows:

δU = Umot(t)− Umot(t − 1) (21)

The 3 regimes of action selection (GO/EXPLORE/NOGO) can be
represented as a function of δU by the following expression

1Z(t) = AGsig(λGδU) 1Z(t − 1)

+AEχ exp(−δ2U/σ 2
E )

−ANsig(λNδU) 1Z(t − 1) (22)

where AG, AN , AE are the gains of GO, NOGO and EXPLORE
regimes respectively, λG and λNare the sensitivities of GO and
NOGO regimes and σ E is the parameter controlling the extent of
exploration. 1Z(t) =

[

1X(t) 1Y(t)
]

represents the change in
position at the time step t which includes both the components of
velocity, using which the current position of the agent is updated.
The GEN policy can give rise to negative velocities and thus can
hamper the agent’s movement by inducing backward motion in
the simulations. In order to prevent the agent from doing this,
the y component of the velocity [1Y(t)] is passed through a
sigmoidal function before addition to the position [Z(t)]

∼

1Y(t) =
1

1+ e(−λvel1Y(t))
(23)

1Z(t) =
[

1X(t)
∼

1Y(t)

]

(24)

Z(t + 1) = Z(t)+ 1Z(t) (25)

Here Z = (X,Y) and denotes the position of the agent on the
track. This gives rise to a different orientation and a view vector
and thus the cycle continues. The 1Z(t) represents EII of the
task (Figure 2) and is used to estimate the step latency. (See
Supplementary Material S2: Table 1 for the list of parameter
values to simulate the Motor Module)

ESTIMATING THE LATENCY OF MOTOR
ACTIONS

The final output of the model is the step latency which is
dependent on the outputs of both the Cognitive and Motor

Modules (Figure 4). Since the words appear only at certain
instants in the task, their contribution to the latency is maximal
only at the time of their presentation. A decision variable, s, which
can be thought to accumulate evidence for an action is used to get
the reaction times from the model. From the Motor Module, the
GEN output is used to estimate the latency at any given point in
time as,

•
s = κ ∗

∥

∥1Z(t)
∥

∥ (26)

κ = U
cog
W + b (27)

In Equation (26), the variable “s” is defined as “intent for walking”
(product of the Utility from the Cognitive Module and the GEN
output from the Motor module) as its rate of change indicates
how fast the agent would take a forward step, and has to cross a
threshold (th = 1) for the action to be executed. The time taken
for “s” to cross the threshold is the “step latency.” The velocity
term 1Z(t) comes from the Motor Module, and the coefficient
“κ” comes from the Cognitive Module. Upon the appearance of
a word, the U

cog
W is produced by the Cognitive Module which is

used along with the velocity to compute the latency. At instants
when there is no word cue, κ is set to the default value of
b (Equation 27). Thus, the walking latency is determined by
contributions from both Motor and Cognitive Modules.

MODELING PD

Parameters that represent PD conditions (freezers and non-
freezers) in the model include the temporal difference errors in
both motor (δmot) and cognitive (δcog) modules and sensitivity
parameters for the Risk function in the Utility computation (αmot

and αcog). In agreement with previous modeling efforts, the
temporal difference error is appropriately clamped to simulate
dopamine deficient conditions (Gupta et al., 2013; Muralidharan
et al., 2013; Balasubramani et al., 2014), using the factor δ∗.
Therefore, if [a, b] represents the range of dopamine levels in
healthy controls then [a, δ∗] represents the PD OFF condition,
where δ∗< b. The PD ON condition is modeled by the
addition of a medication factor δmed to the existing dopamine
level.

PD OFF:
If δ > δ∗

δ = δ∗
(28)

PD ON:

If δ > δ∗

δ = δ∗ + δmed

else
δ = δ + δmed

(29)

In addition to these parameters, from our previous work on
modeling PD freezers, the exploration factor σ E (Equation 22)
is also considered as a factor contributing to FOG behavior
(Muralidharan et al., 2013).

Model parameters representing the Motor and Cognitive
modules in (1) healthy controls, (2) PD ON, and (3) PD OFF
conditions, are estimated as follows. The critical parameters
including the gains of the critic network in both modules (Amot

Q ,
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Amot
h

, A
cog
Q ), the sensitivities of the critic networks (λmot , λcog),

the risk sensitivities (αmot , αcog), discount factor (γ ) and the
parameters of the GEN (AG, AN , AE, λG, λN , and σ E) needed
to simulate the model are first optimized for healthy controls
(Figure 6) using genetic algorithm (See Supplementary Material
S2: Table 2 for Genetic Algorithm conditions). Once optimized
for healthy controls, the parameters are then also used for the
simulation of PD conditions (both OFF and ON). Furthermore
the parameters (mentioned above) used to simulate the PD
conditions are further optimized using a grid search algorithm
(Supplementary Material S2: Table 3) to best fit the experimental
behavior.

A repeated measures ANOVA was done to estimate statistical
differences among subject groups (Controls, PD non-freezers
and PD freezers) in different conditions (doorway and cues).
Bonnferroni correction was applied to correct for type I
error inflation. Additionally planned t-tests were conducted to
measure statistical significance in specific cases. In simulations
each subject group for a particular task condition was run for 50
trials and the averaged results are presented. All the simulations
were done in MATLAB R2013a (Mathworks Inc.).

RESULTS

This section is organized as follows: We explain: (1) the effect
of Utility and Risk observed in both the Cognitive and Motor
Modules, (2) the effect of cognitive cues on gait and their
contribution to step latency under conflicting situations such as
while approaching the doorways, and finally (3) effect of cues as
a source of cognitive load. These effects have been modeled in
healthy controls, and PD patients under ON andOFFmedication
conditions.

Value and Risk as Functions of the Cues
As mentioned above, Matar et al. (2013) investigated the effect
of the modified Stroop cues on gait latency. The subject groups
tested were healthy controls, PD non-freezers and freezers. In our

model simulations of Matar et al. (2013), the agent is trained to
“walk” (as a response) for a congruent cue (stimulus) and “stop”
for an incongruent cue. Utility associated with the cues represents
the goodness associated with an action in presence of the said
cue. We derive Value, Risk, and Utility measures associated with
each of the cues. Analyzing the effects of simple and complex
cues, we found the following: the association of a complex cue
(congruent or incongruent) to the VR task can decrease the
certainty associated with the action, as these associations are not
pre-learnt. In Figures 7A–C, in PD freezers and non-freezers, it is
evident that complex cues are associated with low Utility for both
actions, walk [F(8, 2) = 95.79, p < 0.05] and stop [F(8, 2) = 97.53,
p < 0.05)], suggesting increased uncertainty in their responses.
Furthermore, the Utility is much lower in the freezers compared
to the non-freezers (t = 5.04, p < 0.05).

The conflict in the association between cues and actions
determines the Risk and Utility magnitudes of a cue component.
For example, the presentation of “RED (red)” makes the agent
continue walking, but the red color is initially primed to
the response stop. The weightage of influence provided by
the ink color and word meaning, and their magnitude of
conflict within these components for the different classes of cues
(simple, congruent and incongruent) can be analyzed by their
Risk magnitudes as seen in Figure 8A. The model estimates
higher Risks for all three subject groups for congruent and the
incongruent cues in comparison to the simple cues [F(36, 2) =

21.74, p < 0.05]. The congruent cues have higher Risk which
arises as a result of training the cue RED (red) to respond to
“walk” whereas the inherent priming of the red stimulus (color or
word) is to “stop.” This can be seen in Figure 8Bwhich represents
the Risk estimated by PD freezers for congruent cues in which
RED (red) shows the highest Risk in comparison to BLUE (blue)
and GREEN (green). The increased Risk observed in the model
affects the Utility through Equation 14. So in order to show
behavioral differences the risk sensitivity is modulated among
the groups. PD freezers have been modeled to have higher risk
sensitivity (αcog) in the cognitive loop (see Table 2).

FIGURE 6 | The trends observed in optimized parameters involved in Controls, PD Non-freezer and PD freezer conditions.

Frontiers in Human Neuroscience | www.frontiersin.org 9 January 2017 | Volume 10 | Article 649

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Muralidharan et al. Modeling Cognitive-Motor interactions in PD FOG

FIGURE 7 | The Utility obtained from the cognitive network for Controls (A), PD non-freezers (B) and PD freezers (C). PD freezers exhibit lower UWALK for the

congruent cues compared to the simple cue WALK, reflecting uncertainty in their responses. Abbreviations: CONG, congruent cue; INCONG, incongruent.

Utility and Risk Functions in Relation to
Gait
The variation among controls, PD non-freezers and PD freezers
is analyzed by examining the Utility (Umot) and the Risk (hmot)
functions obtained from the Motor Module. The differences are
presented as a function of the distance from the doorway in
Figure 9.

The amount of uncertainty that the model estimates is
computed for every subject group using Equation 18. The Utility
measure is the highest for controls followed by PD non-freezers
and then PD freezers (Figure 9A). While analyzing the subjective
Risk measures from the model for different subject groups, and
the corresponding α measure, we see that the subjective Risk
computed is very high for healthy controls as seen in Figure 9B.
The values of the sensitivity factor (αmot) are in Table 2. The
temporal difference error (correlate of dopamine) is clamped in
PD non-freezers and freezers, with the freezers having a stronger
clamp than non-freezers. Additionally the Risk function seems to
peak closer to the doorway for PD subjects, suggesting its role in
controlling latency near the doorways.

Effect of Cognitive Cues on Motor Activity
On extending the Cognitive Module’s contribution to the
Motor Module, the model predicts the conflict among the

different cues, which can be estimated as the response (step
latency) of the agent upon the presentation of a Stroop
word.

Behavioral Results
The model simulates the result of Matar et al. (2013) to
understand the effect of cognitive cues on motor activity.
Modal latency in Figure 10A shows no change in the latency
among controls, PD non-freezers and PD freezers, similar to
experimental results. This also augments the validity of the results
obtained as the behavior in the model is not affected by the
result of changes in the modal latency. The experimental results
(Figure 10B) show that cues like GREEN (green) which have an
implicit salience for “walk” response, evoke little or no change in
the step latency for PD freezers. The RED (red) cue which has
an implicit salience to “stop” response seems to increase the step
latency of the PD freezers.

Model Results
The model replicates this effect where the BLUE (blue) [F(49, 2) =
1376.88, p < 0.05] and RED (red) [F(49, 2) = 1048.01,
p < 0.05] cues produced maximum footstep latency (MFSL)
in the freezers in comparison to controls and non-freezers
(Figure 10C). Consequently these are the two cues for which the
Risk given by the Cognitive Module is high (Figure 8B). Several
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FIGURE 8 | Risk as function of cues (A) presented shows higher Risks estimated in the case of the congruent and the incongruent cues in all the three subject

groups. The Risk functions (B,C) associated with the congruent and incongruent cues respectively in PD freezers. The RED (red) shows the highest Risk compared to

the other two congruent cues. Abbreviations: CONG, congruent cue; INCONG, incongruent. (##p < 0.05).

TABLE 2 | Parameter values for simulating the behavior seen in the Matar

et al. (2013) and Shine et al. (2013d) experiments.

Matar et al., 2013

Motor Loop Cognitive Loop

δ
*

σexp α
mot

δ
*

α
cog

Controls – 0.5 0.5 – 0.1

PD Non-freezers 0.02 0.5 0.3 0.15 0.5

PD Freezers 0.005 0.2 0.1 0.04 1

Shine et al., 2013d

Motor Loop Cognitive Loop

OFF δ
*

σexp α
mot

δmed δ
*

α
cog

δmed

PD Non-freezers 0.02 0.5 0.3 – 0.15 1 –

PD Freezers 0.003 0.1 0.1 – 0.08 7 –

ON

PD Non-freezers 0.02 0.5 0.3 0.001 0.15 1 0.001

PD Freezers 0.003 0.1 0.1 0.001 0.08 1 0.001

The bold values highlight parameters differences in PD freezers in comparison to controls

and PD non-freezers.

studies propose the presence of higher uncertain component of
the environment as a reason for the inability to inhibit such latent
behavior (Vandenbossche et al., 2011, 2012). From observing
only the Cognitive Module, the uncertainty in the simulated PD
condition arises in the model due to (a) training the Cognitive
Network under clamped δ (dopamine) conditions (see δ∗ in
Table 2), and (b) by controlling the agent’s sensitivity toward
the Risk (hcog) associated with the cue using the parameter
αcog . The risk sensitivity (αcog)in freezers is set higher than the

other two groups, suggesting that the Risk taken into account
for computing the Utility for a specific cue could be higher in
freezers (Table 2). So, besides the Risk estimation being high, its
accountability for behavior is also found to be high through our
model.

The Influence of Doorways on Step
Latency
Behavioral Results
The experiments reported in Matar et al. (2013) suggest that the
PD freezers exhibit higher step latencies in both the wide and
narrow doorway cases, with the narrow doorway being more
significant than the wide doorway (Figure 11A) compared to
controls and non-freezers. There seemed to be a doorway width
and group interaction, which is enhanced in case of narrow
doorways. Moreover, in the experiment the latency during
navigating narrow doorways had good correlation to item 3 of
FOG questionnaire score (FOG-Q3—“Do you feel as if your feet
are glued to the floor while walking, making a turn or while
trying to initiate walking”). There is no significant doorway- word
cue interaction in the study suggesting that the cues might not
be involved in affecting the doorway latency within the subject
groups.

Model Results
As mentioned previously in the Methods section all the cues
presented to the agent appear in the region of 0–2 length units
from the doorway. We study the effects of doorways on the step
latency as the agent passes through them. The model captures
the trends seen in the experiment in relation to the step latency
exhibited by each subject group as they encountered a doorway
of a specific type (Figure 11B). The wide [F(49, 2) = 136.5,
p < 0.05] and narrow [F(49, 2) = 163.5, p < 0.05] doorways

Frontiers in Human Neuroscience | www.frontiersin.org 11 January 2017 | Volume 10 | Article 649

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Muralidharan et al. Modeling Cognitive-Motor interactions in PD FOG

FIGURE 9 | The Utility (A) and Risk (B) function for the Motor Module as a function of distance to the doorway. As seen in (A) the controls show the highest Utility

along with a gradual change in the gradient, while PD freezers show almost no change in the Utility far away followed by a sharp decrease near the doorway. The Risk

function (B) also peaks closer to the door in case of both the PD freezers and non-freezers.

FIGURE 10 | Experimental (Matar et al., 2013) and Modeling data of modal latency (A) observed in controls, PD non-freezers and PD freezers. The maximum

scaled footstep latency (MFSL) exhibited on the presentation of the congruent cues as seen in the Matar et al. experiment (B) and the model (C). It illustrates that PD

freezers show increased latencies on the high conflict cues like RED (red) compared to the low conflict case GREEN (green). (##p < 0.05).

provoked increased step latencies in PD freezers compared to
the controls and non-freezers. The behavioral performance in
PD non-freezer and PD freezer conditions is simulated by using
parameters described in Table 2. The temporal difference errors
in both Cognitive and Motor Modules are clamped to represent
PD conditions, although the level of clamping was different for
the two modules (Table 2). In PD freezers the values of both
the exploration factor (σ E) and the sensitivity of the motor Risk
function (αmot) are lesser than in case of the controls and the non-
freezers (Table 2), in contrast to the cognitive loop where the αcog

is higher for the PD freezers compared to the other subjects.

Cognitive Load and Motor Arrests
The effect of cognitive load on motor responses is a result of
the ability of the subject to map cues to appropriate actions,
depending on the nature of the cues. In this respect, simple
cues are easily associated with their corresponding—walking or
stopping. This is different for complex cues as mapping to actions
is not straightforward.

Behavioral Results
In the Shine et al. (2013d) experiment, PD non-freezers and
freezers were presented with cues both in the OFF and the
ON medicated conditions. The trials were also counterbalanced
among the patients such that a congruent cue is associated to
“walk” and incongruent to “stop” and vice versa. According to
the experiments, which were conducted on both PD freezers and
non-freezers, the outcome of loading is evident from the number
of motor arrests observed. The experiments were conducted
with patients ON and OFF their dopamine medications. The
PD freezers (OFF) showed the highest number of motor
arrests (Figure 12C), with the tendency of freezing about 2.7
times more than the non-freezers. Though, PD freezers were
generally more likely to suffer a motor arrest (both OFF and
ON) compared to the non-freezers, the high load situation
triggered more arrests in the PD freezers (Figure 12C). Similar
to the previous experiment, there were also no significant
differences in the modal latency between the PD freezers and the
non-freezers.
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FIGURE 11 | Maximum footstep latency (MFSL) observed for both the narrow and the wide doorways in the experiments (A) and the model (B). The

MFSL is higher for both the doorways for the PD freezers compared to the non-freezers and controls. (##p < 0.05).

FIGURE 12 | The frequency distributions of step latency observed from the model for the PD non-freezers (A) and the PD freezers where * represents the

modal points (B). Motor arrests seen in PD freezers and non-freezers under low and high levels of cognitive load in experiments (C) and the model (D). The PD

freezers (OFF) show a large number of motor arrests, which comes down under medicated conditions. PD non-freezers show no significant changes in the both the

loads as well as the medication. (Abbreviation NFR, Non-freezer; FR, Freezer) (##p < 0.05).

Model Results
In themodel, a similar strategy is imposed and the trials including
the low and the high load cues are extracted. The number of
motor arrests is estimated using the distribution of the step
latency (Figures 12A,B). As previously defined in the Methods,
a motor arrest is any event with step latency that is twice the modal
(preferred) step latency of the subject. The PD freezers seem to
have higher frequency of higher step latency events especially in
the regions of 30–50 in Figure 12B.

The modeling results are similar to experimental results
(Figure 12D), where under high load scenario, the PD freezers
OFF medication show maximum motor arrests, which is
comparatively less in the low load case [F(49, 1) = 4.30, p < 0.05].
Similar to the previously simulated experiment, the temporal
difference errors (δmot and δcog) in both the modules are clamped
along with appropriate modulation of the sensitivities (αmot

and αcog) of the Risk function. The introduction of medication
seems to bring down motor arrests in the freezers, suggesting
that the DA medications play a role in lowering the number of
such spontaneous events though its mechanism of action is still

unknown. However, in the model, the addition of a medication
factor (δmed) in the TD error eqn. (Equation 28) did not produce
the same effects as the experiments. In addition to δmedfactor,
the sensitivity toward the uncertainty in the cues (αcog) had to
be significantly reduced to simulate this behavior (Table 2). Such
effects are not seen in the PD non-freezer case and the model
predicts no significant changes in the motor arrests in both the
medication as well as the load states.

Additionally the involvement of the Cognitive Module in
motor arrests can also be ascertained by analyzing the Utility
of the Cognitive and Motor Modules at the time of a motor
arrest (Figure 13A). Since the Cognitive Module is active only
during the presentation of words, instances where a motor
arrest is elicited when a word cue is given are extracted and
the contribution of the Motor and the Cognitive Module is
visualized. It is clear that the average values of the Utility of
walking (U

cog
w ) of the Cognitive Module is much lower than

Utility of the Motor Module (Umot) in case of PD freezers
(t = 49.3, p < 0.05) compared to non-freezers. This further
strengthens the claim that there is a shift to more cognition based
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FIGURE 13 | The average Utility (A) for both the PD non-freezers and the PD freezers during events of motor arrests triggered upon the presentation of a word cue.

(##p < 0.05). The normalized motor arrests in the model (B) seen in PD freezers for different values of αmot and αcog. (C) The trend for the motor arrest as a function

of the medication factor (δmed ) for two cases (Case1 αmot = 0.1; αcog = 7 and Case2 αmot = 7; αcog = 7).

decision during a freeze episode and understanding the role of
these areas would lead to further insights into the phenomenon.

The Influence of Risk Sensitivities (αmot

and α
cog) and Medication (δmed) on Motor

Arrests
The contribution of each parameter to the normalized motor
arrests also reveals several trends (Figure 13B). Although lower
αmot values are used to simulate PD freezer conditions and are
the optimal range for accounting for the experimental data, the
trends suggest that higher αmot would lead to a high number of
motor arrests. The role of αcog to elicit motor arrests seems to be
more effective under conditions of low αmot values where there
is an increase in the number of motor arrests as αcog increases.
The model thus predicts an increase of αcog to differentiate a
control from a non-freezer but an increase in αmot to increase the
number of motor arrests. Medications are also found to play a
role in decreasing the number of motor arrests, and in particular,
a case of low αmot is shown to better responds to medications
(Figure 13C).

DISCUSSION

The current study simulates the impact of cognition on gait
in healthy and PD subjects while navigating a virtual reality
environment. In this task, an agent navigates a virtual corridor
consisting of doorways, while simultaneously responding to word
cues (Matar et al., 2013; Shine et al., 2013a,c,d). The word
cues could be either simple (direct) or complex like Stroop

words (color-word pair) mapped to an appropriate action (walk
or stop). The classical Stroop task involves either naming the
ink color of a color word or just reading the color out loud.
There seems to be facilitation in the responses (indicated by
shorter reaction times) when the word and its ink color match
(a congruent case). In the case of an incongruent cue, which
consists of a mismatch between the word and its color, there is an
inhibition of response and increased reaction times (MacLeod,
1991). Conflict in this association arises due to the mismatch
in association of action to WORD and COLOR aspects of
complex cues. Thus, our study attempts to model the effect
these interactions on gait execution. The model uses an actor-
critic based reinforcement learning (RL) model which performs
Utility-based decision making. An extensive literature supports
the function of the BG system as a reinforcement learning engine
(Albin et al., 1989; Frank et al., 2004; Chakravarthy et al., 2010;
Chakravarthy and Balasubramani, 2014).

The main observations from the model are as follows

1. Modal latency is the same among all the subject groups
and match experimental results. This stresses the fact that
the results obtained from the model are a consequence of
changes due to the introduction of task parameters (cues
and doorways) and not due to inherent differences among
the subject groups. Freezing is a paroxysmal event such
that observed motor arrests come as a result of a shift to
higher latencies. This can be considered as the involvement
of higher cognitive areas over the action which in the model
can come from the intervention of the cognitive module
(Vandenbossche et al., 2012). This is also evident from
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Figure 13Awhere the Utility for the cognitive network during
motor arrests in PD freezers is very low compared to the
non-freezers suggesting higher involvement of cognition in an
event of freezing.

2. The Utility associated with a cue in the Cognitive Module
provides a measure of cue saliency in the model. This measure
then affects reaction times (MFSL) elicited by PD freezers,
which is increased under situations of high conflict [RED
(red)]. The factors contributing to a very low Utility for a cue
is predicted to cause a freezing event with a high probability.
In general PD subjects present a cognitive control deficit
especially while monitoring conflict in the task (Bonnin et al.,
2010). Studies show there are certain situations that can be
resource demanding, either attentional resources (Brown and
Marsden, 1988; Woodward et al., 2002) or neuromodulator
resources which can lead to a breakdown in the processing
ability of the subjects.

3. Similarly, in the case of Motor Module, the doorways induce
more freezing behavior in PD freezers in comparison with
controls and non-freezers. Doorways by themselves have been
a factor for eliciting changes in gait activity in PD freezers
especially parameters like stride/step length that tends to be
lower in the freezer group.

4. Motor arrests seem to be higher in PD freezers compared
to non-freezers and increase significantly under conditions
of high loads (trials with complex cues). Additionally the
behavioral data from both the experiments are captured by the
same set of parameters.

Utility Codes Conflict
We use a Utility-based decision making model to analyze the
effects of cognitive load on gait. The sole output of the proposed
Utility-based decision making system is step latency. Step latency
is selected to maximize Utility and minimize Risk. The Utility-
based decision making approach has been previously shown to
explain PD motor impairment in precision grip and freezing of
gait (Gupta et al., 2013; Muralidharan et al., 2013). As seen from
Equation (7), Utility in the model is a weighted combination
of Value and Risk functions. Value (Q∗) is the expectation of
rewards associated with the state (word/view), and Risk captures
the uncertainty associated with the state and rewards. Risk in
the Cognitive Module is modeled to measure the uncertainty
associated with the state, indirectly from the probability of
selecting an action (pw and ps) obtained from the Value function
(Qcog). Here, the state uncertainty comes due to the Stroop task
where the mapping of the color and word to the actions walk and
stop can be conflicting for several input stimuli. In the Motor
Module the Risk function captures the action uncertainty as a
function of the view vector (φ). The action uncertainty is often
a result of the tradeoff between accuracy and speed, in this case
manifest as high step latency close to the doorway. So the reason
for the higher Utility estimated in the model for healthy controls
could be that their Value computation is higher, or contribution
of Risk to Utility computation could be lower. Risk computed
here is very specific to patient groups as well as sensory states
(word vs. view). This is seen in the Figure 9Bwhere Risk function
represents the environmental context in the healthy controls

effectively, but becomes sub-optimal when simulated under PD
condition with clamped dopamine signal. Also note that this Risk
function can replicate experimental data only when scaled by
the optimal α values (Table 2). Hence the effective Risk function
is the product of the risk sensitivity (αmot/αcog) and the Risk
measure itself.

In the case of Cognitive Module, uncertainty is especially
high for complex cues. In Figure 8B, the congruent cues seem
to have high Risk and specifically RED (red) has the highest.
The association of the RED (red) to the action walk as set in
the described experimental task contradicts the implicit heuristic
of associating the color red to the action “stop.” In the model
simulations with the incongruent cues, BLUE (red) and RED
(blue) seem to have a low measure of Risk (Figure 8C). The
experimental setup associates the incongruent cues to action stop.
The facilitation of the red word and color to the action stop
when presented as a part of an incongruent cue, leads to a low
Risk. In the case of blue, we propose that its neutrality may not
contradict the mapping to the associated action as strong as red,
and hence develops a low Risk measure. Thus, Utility forms a
strong indicator of conflict and its proper estimation is necessary
for optimal behavior.

Model Predictions
Role of the Cognitive Module in Motor Arrests
It is evident from Figure 13 that there is an increase in the
contribution of the Cognitive Module to action selection in
comparison to the Motor Module. The model predicts that PD
freezers tend to rely more on the cognitive areas to perform
the task. It is known that there is a shift toward more cortical
resources during the situations that give rise to a freeze episode.
Brain imaging studies have shown the recruitment of the
posterior parietal cortex, dlPFC, and vlPFC (dorsolateral and
ventrolateral prefrontal cortex), the anterior insula and the dorsal
cingulate while performing the virtual reality task (Shine et al.,
2013b). The role of anterior cingulate in resolving conflict has
been well studied and especially thought to mediate process
selection in the Stroop task (Pardo et al., 1990). Interestingly
the anterior insular cortex has been investigated as a potential
source for conscious error monitoring (Preuschoff et al., 2008;
Ullsperger et al., 2010). This brain region was found to be
implicated in generating autonomic responses in relation to
balancing effortful tasks. Since the Utility in our model helps
resolve the level of conflict in the task, we presume that these
areas must be overcompensating for estimating the correct
responses and thus preventing the subjects, especially the PD
freezers, from proper gait execution.

A close analysis of the pattern of dopamine loss in PD
patients indicates a relatively higher dopamine loss in putamen
which controls the motor loop, compared to the caudate which
controls the cognitive loop (Kish et al., 1988). This distinction
is reflected in model parameters δ∗mot and δ∗cog , which denote
maximum permissible dopamine levels in motor and cognitive
loops respectively. Note that δmot values are smaller compared
to the δcog values in both the PD non-freezers and freezers
(Table 2). This pattern of loss could be exaggerated in PD freezers
especially in the motor areas, leading to increased postural
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defects, increased incidence of falling and gait variability (Bloem
et al., 2004; Jacobs et al., 2009). Medication seems to be another
factor whose effect on freezing behavior seems to be difficult to
comprehend. There have been instances in PD freezers where
dopamine medications have alleviated the symptoms, though in
some cases it had no effect, and in others the symptoms worsened
like in ON state freezing (Nonnekes et al., 2015). This is an
important aspect of freezing pathology that has to be understood
in order to improve therapeutic strategies. The model predicts
that there could be conditions where medications could be more
effective than in other cases (Figure 13C). It is possible from the
two cases seen in the figure (Case 1: αmot =0.1; αcog =7 and Case
2: αmot =7; αcog =7) that we can categorize the patients based
on theses parameters, i.e., dopamine responsive regime (Case
1) and dopamine insensitive regime (Case 2). These parameters
reflecting the risk sensitivity of the patients need to be deeply
investigated for their neurobiological correlates. The significance
of Risk Sensitivity parameters in the model is elucidated further
below.

Risk Sensitivity Parameters (αmot and α
cog)

The parameters αmot and αcog which correspond to risk
sensitivity in each module seem to bring about the behavioral
differences between controls, non-freezers and freezers. These
Risk measures capture the variability in rewards (high when
associating a cognitive or motor cue with a corresponding
response) sampled through time due to the agent’s response-
execution strategy. On analyzing the cognitive and motor loops,
the following trends for α emerge. The healthy controls are more
risk averse than PD patients with respect to the Motor Module
(Table 2). Contrastingly, the PD patients are highly risk aversive
with respect to the Cognitive Module.

Our earliermodeling studies onmotor functions of PD (Gupta
et al., 2013; Muralidharan et al., 2013) show a lower magnitude
of the risk sensitivity parameter in PD patients. Modeling efforts
suggest that risk sensitivity correlates with the levels of serotonin
in themotor areas (Balasubramani et al., 2014, 2015). Incidentally
the concentration of serotonin and its derivatives in PD have
been shown to be lower in the cerebro-spinal fluid, with a
strong correlation with freezing of gait (Tohgi et al., 1993). But,
we need to tease apart risk sensitivity measures for the motor
and cognitive loops individually. We see reduced risk sensitivity
measure in the motor loop, accounting for the reduced risk
aversive and increased risk seeking nature of the PD patients.
In contrast, we see increased risk aversiveness in the Cognitive
Module. If the previous hypothesis of reduced serotonin levels to
reduced risk aversiveness in the motor areas is generalized, the
cognitive areas should also have reduced serotonin levels. But as
our model predicts increased risk aversiveness in cognition, the
following are some possibilities of their pathophysiology.

It could be that there are differential changes in serotonin
levels in the cognitive and motor areas, the former containing
higher serotonin levels associated with risk aversive behavior,
and the latter containing reduced serotonin levels. There have
been reports showing differential loss of the expression of
certain serotonin markers in the caudate and the putamen
in PD (Kish et al., 2008). The caudate could be considered

to be part of the cognitive loop due to its projections from
frontal areas and putamen part of the motor loop as it receives
projections from the motor cortex (Parent and Hazrati, 1995).
Hence increased risk aversiveness reported in the study for
the cognitive loop relates to increased risk sensitivity measure
in these areas. This might give rise to an altered paradigm
of decision making in the cognitive loop where subjects take
more Risk into account upon the introduction of other tasks
while walking and maintaining posture. On the other hand this
could also force subjects to adopt a posture–second strategy
where the importance given to postural maintenance is less
compared to cognitive ability suggesting increased risk-seeking
behavior in PD patients in the motor side (Bloem et al., 2006).
Therefore, besides dopamine, this model suggests the need to
conduct experiments to measure serotonin levels within the
Cognitive and Motor Modules, and how they relate to the risk
sensitivity. Many studies relate different kinds of uncertainty to
the effects of neuromodulators such as acetylcholine (Ach) to
the expected uncertainty, norepinephrine (NE) to the unexpected
uncertainty both in the cortex and basal ganglia (Yu and
Dayan, 2005), serotonin to modulate expected uncertainty in
the BG (Balasubramani et al., 2014, 2015). It is plausible that
these neuromodulators have differential action on PD gait and
therefore merit a close and comprehensive study.

Model Limitations and Future Directions
Although the model replicates the behavior of controls and PD
subjects under this paradigm, several additional neural level
details as listed below can be potentially included. The model
does not have an explicit representation of the cortex as it
only includes the representation of cortical inputs for both the
networks in the form of a word vector for the cognitive loop
and the view vector for the motor loop. The Cognitive Module
might involve the dorsolateral prefrontal cortex (DLPFC), the
posterior parietal cortex and the caudate of the BG, while the
Motor Module might include the motor cortex (M1), premotor
area (PMA), and the putamen of the BG (Shine et al., 2013b).
The sub-cortex receiving inputs from the cortex controls the
gait centers in the brainstem through the output nucleus globus
pallidus interna (GPi). GPi in turn controls the downstream brain
stem regions (Mesencephalic locomotor regions) responsible for
rhythm generation and maintenance of gait (Shine et al., 2013b).
The model compares results based on the behavior to the VR
tasks which only simulate the effect of locomotion. Although
there seems to be a good correlation between the VR tasks
and the timed up and go tasks in PD freezers (Shine et al.,
2013a), especially the duration of motor arrests, it is necessary
to quantify the model for actual walking tasks. Furthermore,
in modeling perspective we could introduce a downstream gait
model to understand changes in the dynamics of locomotion in
PD patients.

Furthermore, the basal ganglia module in our model is an
abstract version that could be developed to amore detailed neural
network model (Balasubramani et al., 2015) elaborating the role
of the different nuclei in eliciting freezing behavior. Additionally
the interaction between the different cortical loops in our model
occurs only at the level of the output of the basal ganglia (at the

Frontiers in Human Neuroscience | www.frontiersin.org 16 January 2017 | Volume 10 | Article 649

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Muralidharan et al. Modeling Cognitive-Motor interactions in PD FOG

GPi/thalamic level), though interactions at cortex, striatum have
also been reported to encompass cortico-striatal convergence
(Guthrie et al., 2013). A network model including these areas
would provide a better understanding of PD gait. It may also
suggest neural targets for drug delivery in a patient-specific
manner.
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