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A commentary on

Visual Feedback of Tongue Movement for Novel Speech Sound Learning

by Katz, W. F., and Mehta, S. (2015). Front. Hum. Neurosci. 9:612. doi: 10.3389/fnhum.2015.00612

Access to visual information during speech is useful for verbal communication because it
enhances auditory perception, especially in noise (Sumby and Pollack, 1954). Until recently, visual
feedback of the speaker’s face was possible only for the visible articulators (the lips), but new
computer-assisted pronunciation training (CAPT) systems have created a kind of “transparent”
oral cavity that permits us to look at our own tongue movements during articulation.

The use of CAPT systems is a clever way to integrate visual feedback with auditory feedback.
This has been exploited by Katz and Mehta (2015) (hereafter K & M) to strengthen learning of
novel speech sounds. Using this emerging methodology (Opti-Speech visual feedback system—
Katz et al., 2014), they trained five college-age subjects to learn a novel consonant in the /ACA/
context. Before training, the stimulus was produced by one of the investigators (SM) three times
together with an explanation on how to position the tongue inside the mouth while reproducing
the phoneme. The learned consonant was a sound not attested as a phoneme among the world’s
languages. The stimuli were elicited in blocks of 10 /ACA/ productions using a single-case ABA
design (pre-training, training, post-training), with visual feedback only in the training phase. In
their study, K &M presented the listeners with a visual representation of internal (hidden to vision)
articulators to enhance perception and eventually to finely tune articulatory tongue movements.
Five sensors were positioned on the tongue of the learners so as to provide them with online visual
feedback of the hidden articulators thus allowing tongue reading. Despite receiving detailed verbal
instructions, all subjects did poorly at baseline assessment; their accuracy improved during the
visual feedback training and gains were maintained in a follow-up examination (both p < 0.001
relative to baseline). The effect size of training for each subject was>90% (highly effective). Analysis
of acoustic and spectral parameters suggested increased production consistency after training.

Nevertheless, K & M’s findings should be interpreted with caution as the study had some
methodological drawbacks, which limit firm conclusions on the reported effectiveness of the
training procedure. These include the small sample size, the uncontrolled nature of the study,
the fact that not all participants completed the initial protocol, the use of a novel consonant (not
attested as a phoneme in any natural language), and the unreliable replicability of target phoneme
produced by the experimenter. These factors need to be controlled in future studies to ascertain
whether motor learning of tongue movements with the support of 3D information is useful to learn
speech sound in real life situations (L2 learning and speech-language rehabilitation). In any case,
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K &M’s study represents a step forward in the use of multimodal
information for second language learning in healthy subjects and
for treating abnormal speech in different conditions (stuttering,
apraxia of speech, foreign accent syndrome—FAS-).

K & M also outlined the pathways providing external visual
feedback and internal feedback using the neurocomputational
ACT model of speech production and perception (Kröger
and Kannampuzha, 2008). The key role of cortical areas
mediating body awareness (insula) and reward during behavioral
training (lateral premotor cortex) has also been discussed. In
a recent study using real-time functional magnetic resonance
imaging (rtfMRI) during visual neurofeedback, Ninaus et al.
(2013) found activation of bilateral anterior insular cortex
(AIC), anterior cingulate cortex (ACC), and supplementary
motor and dorsomedial and lateral prefrontal areas. Gaining
further knowledge on the multiple components of these
networks is particularly telling for intensive learning training
and for therapeutic purposes because using rtfMRI during
neurofeedback humans can learn to voluntarily self-regulate
brain activity in circumscribed cortical areas (Caria et al., 2007;
Rota et al., 2009). The AIC is one such key circumscribed area
susceptible to be voluntarily self-controlled (Ninaus et al., 2013).
By acting as a multimodal integration hub, the AIC is in an
ideal position for coordinating the activity of several networks
devoted to modulate multisensory information (visual, auditory-
motor, tactile, somatosensory, Ackermann and Riecker, 2010;
Moreno-Torres et al., 2013) involved in feedback of tongue
movements during the speech production. In addition, note
that healthy subjects activate both AIC during overt speech
(Ackermann and Riecker, 2010) and that the AIC together
with the left frontal operculum are co-activated during learning

FIGURE 1 | Resting [18F]-fluorodeoxyglucose positron emission tomography (18FDG-PET) before and after treatment in a 44-year-old woman with

chronic post-stroke foreign accent syndrome (FAS). Rates of metabolic activity in this single patient were compared with 18 healthy control subjects

(female/male: 11/7; mean age ± SD: 56.6 ± 5.7 years; age range: 47–60 years). The left panel shows T1-weighted coronal sections depicting significant

hypometabolism in the left deep frontal operculum and dorsal anterior insula (Talairach and Tournoux peak coordinates: x − 36 y 14 z 16) (blue arrow) with significantly

increased compensatory metabolic activity in the left ACC (Talairach and Tournoux peak coordinates: x −18 y 8 z 40) (red arrow) before treatment (Moreno-Torres

et al., 2013). Clusters in baseline 18FDG-PET were significantly larger with family-wise error correction (p < 0.05) in comparison to healthy controls. Deficient phonetic

error awareness and monitoring responsible from FAS in this patient were treated with audiovisual feedback training (visually-guided using Praat—(Boersma and

Weenink, 2010)—and adjusting patient’s emissions to F0 contours of sentence-models) alone and in combination with a cholinergic drug (donepezil, 5mg/day). An

almost complete return of accent to its premorbid characteristics was observed after combined treatment and these changes correlated with normalization of

metabolic activity in the left AIC and ACC (green arrow; right panel; Berthier et al., 2009). BA indicates Brodmann area.

foreign sounds (Ventura-Campos et al., 2013). The AIC also
contains the sensory-motor maps that code the subjective feeling
of our own movements (body awareness; Critchley et al., 2004;
Craig, 2009). Acting conjointly with the ACC, the AIC is
engaged in speech initiation (Goldberg, 1985), cognitive control,
goal-directed attention, and error detection (Nelson et al., 2010)
during the execution of effortful tasks (Engström et al., 2015).

Cue detection and attentional control involved in visual
feedback probably depend upon the activation of nicotinic
acetylcholine receptors (Demeter and Sarter, 2013) in the AIC
and ACC (Picard et al., 2013). In support of this view, learning
deficits induced by experimentally-induced insular lesions
are reverted by stimulation of cholinergic neurotransmission
(Russell et al., 1994). Future studies will examine the modulation
of neurochemistry with non-invasive brain stimulation (Fiori
et al., 2014), drugs (Berthier and Pulvermüller, 2011), or both
to ascertain whether the results of novel speech sound learning
reported by K & M using visual feedback of tongue movements
can be accelerated and maintained in the long-term. Preliminary
evidence of the beneficial effect of combining audio-visual
feedback training and cholinergic stimulation on reverting FAS
has been demonstrated in a single patient (Berthier et al., 2009;
Moreno-Torres et al., 2013). Importantly, the almost complete
return to native accent in this case of FAS was associated with
partial or total normalization of metabolic activity in several
regions of the speech production network, especially in the left
AIC and ACC (Figure 1).

In summary, the results of K & M open new important
avenues for future research on the role of visual feedback
in learning new phonemes. Further refinement of these
methodologies coupled with a better understanding of the
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neural and chemical mechanisms implicated in tuning tongue
movements with audio-visual feedback to learn new phonemes
represent a key area of enquire in the neuroscience of speech.
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