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Mesencephalic astrocyte-derived neurotrophic factor (MANF), otherwise named

Arginine-Rich, Mutated in Early-stage Tumors (ARMET), is a secretory endoplasmic

reticulum stress (ERS) protein that is widely expressed in mammalian tissues. To date,

little is known about the distribution and expression of MANF in the retina and optic nerve

(ON). Therefore, we studied the expression and distribution of MANF in the ON and retina

by real-time PCR, immunofluorescence staining and western blotting. Results from rat

and mouse were highly consistent in the retina. MANF was detected in both tissues in rat,

wherein it was principally localized to the ganglion cell layer (GCL), followed by the inner

nuclear layer (INL). The MANF protein levels in the rat retina were 3.33-fold higher than in

the rat ON. Additionally, MANF was robustly expressed by retinal ganglion cells (RGCs)

in the human retina. In human ON, MANF was partially co-localized with glial fibrillary

acidic protein (GFAP), suggesting that it was not restricted to astrocytes. In vitro studies

confirmed that MANF could be robustly expressed in RGCs and was found principally

within the cytoplasm. Hypoxia can stimulate up-regulation by of MANF expression over

time, suggesting that MANFmay play a vital role in the functional regulation of RGCs both

in health and disease. We believe that the present study improves our understanding of

the distribution and expression of MANF in the retina and ON and could help in further

analysis of its interact and correlate with the relevant ophthalmic diseases.

Keywords: mesencephalic astrocyte-derived neurotrophic factor, retinal ganglion cells, retina, optic nerve,
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INTRODUCTION

Mesencephalic astrocyte-derived neurotrophic factor (MANF), also known as Arginine-Rich,
Mutated in Early-stage Tumors (ARMET), is a secreted endoplasmic reticulum stress (ERS)
protein (Apostolou et al., 2008). It was first isolated from a rat mesencephalic type-1 astrocyte
cell line. MANF together with its homologous protein, cerebral dopamine neurotrophic factor
(CDNF), forms a novel family of conserved secreted neurotrophic factors that are structurally
and functionally different from classical neurotrophic factors’ families (Lindholm and Saarma,
2010; Glembotski et al., 2012). Structural analysis indicated that MANF possesses a secretion signal
without a pro-sequence, indicating that it can be activated without being enzymatically processed.
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MANF can be induced by ischemic, hypoxic, or epileptic
damages in rodent secretory cells and tissues, including
pancreatic β cells, brain and heart tissue (Lindholm et al., 2008;
Tadimalla et al., 2008). Addition of recombinant MANF or
overexpression of MANF can not only increase cell viability and
affect cell size and morphology but can also inhibit ERS-induced
cell death and cell proliferation in non-neuronal cells (Apostolou
et al., 2008). Moreover, MANF can be selectively neuroprotective
roles to dopaminergic neurons vs. GABAergic or serotonergic
neurons both in vitro and in vivo (Petrova et al., 2003; Lindholm
et al., 2007), suggesting that it could be used for the remedy of
neurodegenerative disorders. Recent studies found that MANF is
also involved in the regulation of inflammatory response (Zhao
et al., 2013; Chen et al., 2015). However, whether it also plays an
important role in ocular tissue is yet unknown.

To study its function in the eye, it is important to first
clarify its expression and distribution. In rodents, MANF and
CDNF are expressed widely in various types of neuronal and
non-neuronal tissues (Lindholm et al., 2007, 2008)— common
characteristic for all neurotrophic factors (Sariola, 2001). Besides,
MANF expression has already been studied in zebrafish, where
it is expressed widely in the nervous system as well as in adult
organs during both development and in adulthood (Chen et al.,
2012). The widespread expression of MANF together with its
regulation by cellular insults and evolutionary conserved nature
implies that it likely has important roles in many tissue types,
including the eyes, and could hence present a potentially novel
therapeutic modality for the treatment of hypoxic-ischemic or
neurodegenerative diseases of the retina. Thus far, however,
to our best knowledge, there are no reports regarding the
distribution and expression of MANF in the eye. Therefore, we
applied a combination of real-time PCR, immunofluorescence
staining and western blotting to determine the expression and
distribution of MANF in the retina and optic nerve (ON).

MATERIALS AND METHODS

Ethics Statement
All animal experiments conformed to the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research. Human
ocular tissue were obtained from recently deceased persons, with
no known systemic disease, form the Red Cross Eye Bank, Eye
and ENT Hospital of Fudan University following the guidelines
of the Shanghai Clinical Human Research Ethics Committee. All
processes adhered to principles of the Declaration of Helsinki,
and the experiment was approved by the Office of Research
Ethical Committee, Fudan University, and all endeavors were
done to minimize animals’ suffering.

Source and Processing of Rodent and
Human Tissues
Adult Sprague–Dawley rats (n = 10, weight, ∼250 g) and
C57BL/6 mice (n= 10, 4 months old) were raised under constant
12-h light/dark cycles and supplied with a standard rodent food
and water ad libitum. An overall number of 10 rats and 10 mice
were used in the study. Three human ocular tissues were used in
this study, they were from Chinese donors of 38, 17, and 41 years

old who had been screened to ensure there was no underlying
ocular disease.

All animals were killed by an overdose of 10% chloral hydrate.
The retinas and ONs were separated immediately and used
for western blotting. Globes and ONs that were subsequently
used for immunofluorescence staining were immersion-fixed in
4% paraformaldehyde overnight at 4◦C. Then, the eyes were
sequentially placed in 20 and 30% sucrose.

Purified Retinal Ganglion Cell (RGC)
Isolation, Culture, and Treatment
We followed our previously described two-step immunopanning
method to isolate purified RGCs (Gao et al., 2016). Briefly, 2-
day-old Sprague-Dawley rats were killed to obtain the retinas.
The retinas were removed and dissociated in 4.5 U/mL of papain
solution (Worthington, Lakewood, NJ). The cell suspensions
were then transferred to a petri dish coated with rabbit
anti-macrophage antibody (Cedarlane Laboratories, Ontario,
Canada) and mouse anti-Thy1.1 antibody (Abcam, Cambridge,
MA) successively. The adherent cells were collected and then
seeded into 24 and 6-well plates pretreated with poly-D lysine
(Sigma-Aldrich, St. Louis, MO) and mouse-laminin (Trevigen
Inc., Gaithersburg, MD). Plates were incubated in a humidified
incubator with 5% CO2 at 37

◦C. Immunocytochemical staining
of Thy1.1 was performed after the neonatal RGCs were cultured
for 3–4 days to determine the RGCs purity. Forty-eight hours
after seeding, the RGCs were incubated with 200µM cobalt
chloride (CoCl2) for 24 or 48 h (Balaiya et al., 2012; Du et al.,
2013; Kim et al., 2013; Supplementary Figure 1).

Nuclear-Cytoplasm Protein Separation and
Western Blot Analysis
Cytoplasm and nuclear proteins was separated using a nucleus-
cytoplasm seperation kit (Nanjing Jiancheng Bioengineering
Institute, Zhejiang, China) according to the manufacturer’s
instructions. Tissues and RGC cell proteins were extracted
using a lysis buffer (Cell Signaling Technology, Danvers,
MA, USA) supplemented with a protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA). Protein concentrations
were determined using the bicinchoninic acid assay (Sigma-
Aldrich, St. Louis, MO, USA). Each protein preparation (15–
20µg) was separated on 12% denaturing sodium dodecyl
sulfate-polyacrylamide gel electropheresis (SDS-PAGE), and the
separated proteins were electrotransferred to polyvinylidene
difluoride membranes (Millipore, Billerica, MA). After blocking
with 5% non-fat milk for 1 h, the membranes were incubated
overnight at 4◦C with primary antibodies against rabbit anti-
MANF (1:500 dilution, Abcam, Cambridge, MA), rabbit anti-
Brn 3a (1:800 dilution, Abcam, Cambridge, MA), mouse
anti-Thy1.1 (1:400 dilution, Abcam, Cambridge, MA), rabbit
anti-GAPDH (1:1000 dilution, Abcam, Cambridge, MA) and
mouse anti-β-actin (1:1000 dilution, Abcam, Cambridge, MA)
(for internal control). Secondary antibodies included HRP-
conjugated goat anti-rabbit antibody (Millipore, Massachusetts,
USA) and HRP-conjugated goat anti-mouse antibody (Millipore,
Massachusetts, USA). The blots were exposed to X-ray
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FIGURE 1 | Western blot and real-time PCR analysis of MANF expression in the retina and optic nerve (ON). (A) In tissue extracts from SD rats, a major

band of the expected molecular weight (25 kDa) is clearly seen. (B) In tissue extracts from C57BL/6 mice and human retinas, a major band of the expected molecular

weight is seen. (C) Quantification of the MANF protein levels: the levels were higher in the retina vs. the ON when normalized for GAPDH (mean ± SEM, n = 6).

**P < 0.01. (D) The expression levels of the MANF mRNAs relative to the housekeeping gene β-actin in the SD rat, C57BL/6 mouse, and human retina and in the SD

rat ON.

film (Hyperfilm ECL, Thermo Fisher Scientific, Rockford,
IL, USA) and analyzed using the Kodak Imaging System
(Kodak 440CF). The intensity of the band was quantified
by densitometry using ImageJ software (NIH, Bethesda, MD,
USA).

Immunofluorescence
Immunofluorescence was detected on frozen 8 µm retinal
sections and RGCs. Briefly, retinal and ON sections and the
RGCs were incubated with rabbit anti-MANF (1:200, Abcam,
Cambridge, MA) and mouse anti-glial fibrillary acidic protein
(GFAP, 1:1000)/neuronal class III β-tubulin (TUJ1, 1:500)/
Thy1.1 (1:500, Abcam, Cambridge, MA) at 4◦C overnight. Then,
they were incubated with fluorescein-conjugated goat anti rabbit
or mouse secondary antibody (1:400, Molecular Probes, USA) for
1 h at room temperature. In addition, slides were just incubated
with fluorescein-conjugated goat anti rabbit or mouse IgG
without primary antibodies to exclude non-specific binding. The
slides were visualized and photographed by confocal microscopy
(Leica SP8, Hamburg, Germany).

Quantitative Real-Time PCR Analysis
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and cDNA was generated using a
SuperScript First-Strand Synthesis kit (Takara, Tokyo, Japan)
according to the manufacturer’s instructions. The gene-
specific primers for β-actin and MANF were verified before
use. Real-time PCR (7500 Fast, Applied Biosystems) was
performed in duplicate with 10 ng of cDNA and 10 pmol of
each primer. The primer sequences used were as follows: rat
MANF (forward: 5′-CACTTTAGCGATTACAGGAAGG-
3′, reverse: 5′- GGGACAGATTGAAGGCTGA-3′); rat
β-actin (forward: 5′-CACCCGCGAGTACAACCTTC-3′,
reverse: 5′-CCCATACCCACCATCACACC-3′). The PCR
conditions were 10min at 95◦C followed by 40 cycles of
15 s at 95◦C, 60 s at 60◦C and 60 s at 72◦C. The specificity
of the detected signals was confirmed with a dissociation
curve that consisted of a single peak. Using the SYBR
green data, the relative RNA expression was normalized
to β-actin. All samples were run in triplicate in each
experiment. The data were analyzed using the 2−11CT

method.
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FIGURE 2 | Immunofluorescence of the MANF protein in SD rat retina (green for MANF; red for TUJ1 and GFAP). (A) is double labeled for MANF and TUJ1.

Images at the top left of the white box show high magnification of the cells indicated by white arrows. Fluorescence staining shows that MANF fluorescence intensity

in the cytoplasm is much stronger than in the nucleus. (B) is double labeled for MANF and GFAP. MANF staining is intensely distributed in the cell membrane and

cytoplasm in the GCL and with less intensity in the INL. Moderate MANF immunoreactivity is observed in the ONL. MANF is partially co-localized with the glial cell

marker GFAP in the GCL (indicated by arrows). The nuclei are labeled with DAPI (blue). Scale bar: 50µm. ONL: outer nuclear layer; INL: inner nuclear layer; GCL:

ganglion cell layer.

Statistical Analysis
Each experiment was performed at least 3 times; all data are
expressed as the mean ± standard deviation. The data were
analyzed using STATA 7.0 software. The Student’s t-test was used
for analysis ofmRNA andMANF protein expression between two
groups. P < 0.05 was considered statistically significant.

RESULTS

Retinal and RGC samples incubated with secondary antibodies
without primary antibody displayed little or no autofluorescence
(Supplementary Figure 2).

Expression of MANF in the Rodent Retina
and ON
Western blotting was used to find out if MANF could
be expressed in the rodent retina and ON. Figures 1A,B

show that MANF was present in the both tested tissues of
both rats and mice: a single major protein band of the
expected 25-kDa molecular size was clearly seen on the
membrane. Densitometry indicated that the expression of
MANF in rat retina was significantly higher than in ON when
standardized with GAPDH (P < 0.01). The protein levels
of MANF were 3.33-fold higher in the rat retina than in
the ON (Figure 1C). The expression levels of MANF mRNAs
in the ON and retina relative to the housekeeping gene
actin are shown in Figure 1D. Indeed, MANF mRNAs are
expressed in relatively high amounts in both mouse and rat
retinas. The presence of both MANF protein and mRNA
suggest that MANF is expressed in the rodent retina and
ON.

Distribution of MANF in the Rodent Retina
To validate and extend the findings from the results of western
blots, we determined the expression pattern of MANF in the
rodent retina and ON by immunofluorescence staining. Similar
results were obtained with the rat and mouse retina. MANF is
predominantly localized to the ganglion cell layer (GCL), while
inner nuclear layer (INL) showed only mild staining. As TUJ1
is usually considered as a protein marker of RGCs that stain
neuronal axons (Morishita et al., 2014) and GFAP is present
only in astrocytes in the GCL, double immunofluorescence
staining was done for MANF with GFAP and TUJ1 for further
cellular localization. The results showed that the MANF-positive
band in the GCL was present in parts of both the two kind
of cells (Figure 1), with greater number of MANF and TUJ1-
positive cells in GCL confirmed through quantitative analysis
(P < 0.01, Figures 2, 3, 5A). This indicated that MANF was
expressed robustly by RGCs but only limitedly by astrocytes. At
higher magnification, it was seen that MANF was preferentially
concentrated in the cytoplasm of the soma, with weak labeling
in the nucleus (Figures 2, 3); however, no immunoreactivity was
visible in the outer nuclear layer (ONL).

Expression of MANF in Human Retina and
ON
Western blot analysis revealed that MANF was also present in
human retinas, as the anti-MANF antibody detected a single
major protein band of 25-kDa (Figure 1B). Quantitative real-
time PCR analysis showed that relatively high amounts of MANF
mRNAwere expressed in the retina. MANF immunofluorescence
staining of the optic nerve shows that MANF could be expressed
in the ON and was partially co-localized with GFAP, suggesting
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FIGURE 3 | Immunofluorescence of the MANF protein in the C57BL/6 mouse retina (green for MANF; red for TUJ1 and GFAP). (A) is double labeled for

MANF and TUJ1. Images at the bottom right of the white box show high magnification of the cells indicated by white arrows. Fluorescence staining shows that MANF

fluorescence intensity in cytoplasm is much stronger than in the nucleus. (B) is double labeled for MANF and GFAP. MANF staining is intensely distributed in the cell

membrane and cytoplasm in the GCL and with less intensity in the INL. Moderate MANF immunoreactivity is observed in the ONL. The nuclei are labeled with DAPI

(blue). Scale bar: 50µm. ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion cell layer.

FIGURE 4 | Immunofluorescence of the MANF protein in the human retina and ON. (A) is double labeled for MANF (green) and TUJ1 (red) in retina. MANF

staining is intensely distributed in the cell membrane and cytoplasm in the GCL. Moderate MANF immunoreactivity is observed in the INL and ONL. Images at the top

left of the white box show high magnification of the cells indicated by white arrows. Fluorescence staining shows that MANF fluorescence intensity in the cytoplasm is

much stronger than in the nucleus. Scale bar: 50µm. (B) is double labeled for MANF (red) and GFAP (green) in the ON. MANF is partially co-localized with GFAP. The

nuclei are labeled with DAPI (blue). Scale bar: 100µm. ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion cell layer.

that MANF could be expressed by other cell types except for
astrocytes (Figure 4B).

Distribution of MANF in the Human Retina
We performed retinal immunofluorescence staining, to better
understand the distribution of MANF protein in the retina.
Confocal analysis showed that MANF was widely distributed
in the GCL, where it was preferentially distributed around the
cytoplasm but poorly in nucleus (Figure 4A), suggesting that
MANF is largely localized in the cytoplasm. Next, we quantified
the number of MANF positive cells in the GCL, 87.5 ± 16.57%
of cells showed positive stained both by MANF and TUJ1

immunofluorescence relative to MANF single positive, 57.14 ±

12.98% of cells with MANF relative to all cells in the RGC layer
(Figure 5A). Moreover, only mild staining was observed in the
cell bodies of the INL and ONL. Taken together, our data suggest
that MANF is largely expressed in the cytoplasm of RGCs in the
human retina.

In vitro Validation and Changes of MANF
Expression in RGCs with Hypoxia
Considering that primary culture of RGCs is a crucial
and fundamental tool to study retinal physiological and
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FIGURE 5 | (A) Quantification of MANF and TUJ1/GFAP-positive cells. The

Y-axis is the ratio of cells positive to MANF/DAPI, MANF+TUJ1/MANF, and

MANF+GFAP/MANF. The quantitative values are expressed as mean ±

standard deviation. **P < 0.01, t-test; MANF+TUJ1/MANF group compared

with the MANF+GFAP/MANF group. (B) Western blot analysis of MANF

expression in nuclear and cytoplasmic fraction of RGCs. Antibodies against

Brn3a and Thy1 were separately used in order to check nuclear and

cytoplasmic fraction enrichment. N: nuclear; C: cytoplasm.

FIGURE 6 | Immunofluorescence of the MANF protein (red) in rat RGC

cultures. RGCs were identified with Thy1.1 (green). The nuclei are labeled

with DAPI (blue). Scale bar: 200µm.

pathophysiological mechanisms, and to further confirm the
expression of MANF in RGCs, we purified and cultured RGCs
for in vitro validation. The RGCs purity was about 85% after
3 days of culture (Figure 6) (Gao et al., 2016). To determine if
RGCs express MANF, immunocytochemistry and western blot
analyses were performed, and the results confirmed that MANF
was robustly expressed in RGC (Figures 6, 7A). Further analysis
of nuclear and cytoplasmic extracts revealed that MANF was
detected primarily in the cytoplasmic extracts, with a substantial
proportion in the nuclear fractions (Figure 5B, Brn 3a is a
nuclear specific marker and Thy1 is a cytoplasmic specific
marker Hu et al., 2010; Nadal-Nicolás et al., 2012). This is
well consistent with the results of immunofluorescence labeling

in retinal slices. We finally identified whether pathological
conditions could affect the expression of MANF, RGCs were
stimulated with 200mM CoCl2 for 24 and 48 h. Western
blot analysis and quantitative real-time PCR analysis both
showed significant upregulation of MANF in the RGCs,
wherein the mRNA levels were significantly elevated, 1.7-fold
of the control level at 24 h and 2.8-fold at 48 h (P < 0.01,
Figures 7B,C).

DISCUSSION

Numerous ophthamic diseases, such as diabetic retinopathy
(Ikesugi et al., 2006; Li et al., 2009), glaucoma (Zode et al.,
2015), retinal detachment (Liu et al., 2010; Zhu et al., 2013),
and age-related macular degeneration (Li et al., 2008; Libby
and Gould, 2010), are associated with neuronal apoptosis and
ERS. Reducing ERS could be an underlying therapeutic strategy,
where ERS manipulation could slow the progress of retinal
degeneration and promote the survival of retinal neurons (Doh
et al., 2010; Li et al., 2012, 2014). Studies have shown that
MANF is a secretory protein and that ERS could induce its
expression and secretion (Mizobuchi et al., 2007; Apostolou
et al., 2008). It can be differently regulated by epileptic and
ischemic insults in the rodent brain and heart (Apostolou et al.,
2008; Lindholm et al., 2008; Tadimalla et al., 2008). Besides,
large studies indicate that MANF can not only protect cultured
nigral dopaminergic neurons and suppress cell proliferation and
ERS-induced cell death, but also can affect cell morphology
and size in non-neuronal cells (Petrova et al., 2004; Lindholm
et al., 2007; Airavaara et al., 2009; Palgi et al., 2009; Voutilainen
et al., 2009; Yu et al., 2010; Commissiong, 2012; Shen et al.,
2012; Zhao et al., 2013; Yang et al., 2014; Cordero-Llana et al.,
2015; Liu et al., 2015). Moreover, recently reported on science
displayed that intravitreal injection recombinant MANF could
promote alternative activation of innate immune cells, enhance
neuroprotection and tissue repair, and improve the success
of photoreceptor replacement therapies in the retina (Neves
et al., 2016). These results implying that MANF may have a
close relationship with the physical and pathological regulation
of the retina. Further in-depth analysis of the expression and
distribution of MANF in the retina and ON will provide
more information and a basis for further studies about the
effect of MANF in tissues and MANF could thus serve as a
treatment modality for ophthalmic diseases in the immediate
future.

In the present study, we observed that MANF could be
expressed both in the retina and ON in rodents and humans,
although with a smaller amount expressed in the rat ON. This is
consistent with previous reports that MANF is highly expressed
in neuronal tissues (Voutilainen et al., 2009; Chen et al., 2012).
We did not carry out a detailed comparison of the expression
of MANF in the human retina and ON owing to a lack of
sufficient samples suitable for western blotting. However, we
found that the level of MANF distribution in the retina is
seemingly different between human and rodent. In rodents,
MANF was distributed in cells within the GCL and INL and
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FIGURE 7 | Western blot analysis and real-time PCR analysis of MANF expression in cultured rat RGCs. (A) Western blot, a major band of the expected

molecular weight (25 kDa) is clearly visible. (B) Western blot analysis of MANF in RGCs incubated with 200 mM cobalt chloride (CoCl2) for 24 and 48 h. (C) Changes

of MANF mRNA levels relative to the housekeeping gene β-actin (determined by real-time PCR) in RGCs incubated with 200mM cobalt chloride (CoCl2) for 24 and

48 h (represented as the mean ± SEM, n = 6). *P < 0.05, **P < 0.01. NC: normal control; C-24 h/C-48 h: incubated with CoCl2 for 24/48 h.

was mainly expressed in the GCL, preferentially in the cytoplasm
of RGCs. However, in the human retina, MANF was mainly
distributed in the GCL, with only mild staining seen in the
INL and ONL. There are two possible explanations for this
discrepancy in MANF expression between rodents and humans:
either MANF expression is indeed mainly distributed in the GCL
in human retinas, or the antibody used had greater affinity for
rodent MANF than human MANF. In support of the second
hypothesis, our real-time PCR andwestern blot data revealed that
MANFmRNA and protein levels were lower in the human retina
than in the rodent retina. With respect to the former hypothesis,
MANF expression is more intense in the human retina than in
the rodent retina, and hence, we are more inclined to accept
the previous assumption. However, the results consistently show
that MANF expression is highly conserved among mammals by
the protein level seen in RGCs, suggesting that MANF may play
a pivotal role in the functional regulation of RGCs in health
and disease. To further identify the role of MANF in RGCs, we
purified and cultured RGCs for in vitro validation. The results
not only further confirmed the expression of MANF in RGCs
but also showed that hypoxia could induce changes in MANF
expression. These results conclusively indicate that MANF very
likely plays a crucial role in hypoxia signaling in RGCs or in other
retinal neuropathies. However, future work should investigate
if manipulation of MANF could affect RGC viability in disease
models as further studies are required to uncover the underlying
mechanisms.

The highlight of this study is that the expression and
distribution of MANF was verified by human retina and ON
based on animal experiments, which is of great significance
for advanced exploration of human diseases. However, as it
is difficult to obtain whole human eyes for research, we
only studied three normal eyes form Chinese donors of 38,
17, and 41 years old. Therefore, whether the distribution or
expression of MANF would change with aging and various
retinal abnormalities is still uncertain. Besides, the ON of
the eyes we obtained were very short, therefore, protein and
cDNA extracted from it was insufficient for western blotting
or other analysis, and we only performed immunofluorescence

staining. Further in-depth analysis is essential for better
understanding.

To our best knowledge, this is the first report to verify the
expression and distribution of MANF in the retina and ON
in both human and rodent retinas. In combination with our
recent study ofMANF, these results are encouraging to undertake
further studies regarding the regulation of ocular tissue in
development, health, and disease and the MANF receptor and its
signaling mechanisms so that MANF could serve as a potential
treatment modality in the near future.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2016.00686/full#supplementary-material

Supplementary Figure S1 | Changes in VEGF release (determined by

ELISA) in RGC-5 cells treated with Cocl2 of different concentrations for

24h. **P < 0.01 vs. the untreated control (Du et al., 2013). Changes in VEGF

release (determined by ELISA) in RGC-5 cells treated with Cocl2 of different

concentrations for 24 h. **P < 0.01 vs. the untreated control (Du et al., 2013).

Supplementary Figure S2 | Negative controls. Retinal and RGC samples

incubated with secondary antibodies without primary antibody displayed little or

no autofluorescence.
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