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Early auditory deprivation has serious neurodevelopmental and cognitive repercussions
largely derived from impoverished and delayed language acquisition. These conditions
may be associated with early changes in brain connectivity. Vibrotactile stimulation is
a sensory substitution method that allows perception and discrimination of sound, and
even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700
and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and
non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly
deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five
1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered
sound-wave stimuli. The training included discrimination of pure tone frequency and
duration, and more complex natural sounds. A significant P300 amplitude increase
and behavioral improvement was observed in both deaf and normal subjects, with no
between group differences. However, a P3 with larger scalp distribution over parietal
cortical areas and lateralized to the right was observed in the profoundly deaf. A graph
theory analysis showed that brief training significantly increased fronto-central brain
connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph
methods depicted the different functional brain dynamic in deaf and NH individuals,
underlying the temporary engagement of the cognitive resources demanded by the task.
Our findings showed that the index-fingertip somatosensory mechanoreceptors can
discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics
associated with the performance of vibrotactile language-related discrimination tasks
and the effect of lengthier training programs.

Keywords: brain development, event-related potentials, sensory systems, brain connectivity, deafness/hearing
loss, vibrotactile stimulation, learning and plasticity

INTRODUCTION

The rationale that auditory deprivation could benefit sensory modalities that remain intact
(Mayberry, 2002; Auer et al., 2007) underlies the exploration of vibrotactile stimulation as an
alternative sound perception method for the population with profound bilateral deafness by
enabling discrimination of sound and even spoken language. Several studies have explored speech
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perception via the somatosensory system employing vibrotactile
stimulation devices (Rothenberg and Molitor, 1979; Plant and
Risberg, 1983; Bernstein et al., 1998; Auer et al., 2007). The search
for alternate communication methods is necessary primarily
because early oral language acquisition is a challenge for
profoundly deaf individuals and has important implications for
neurodevelopment and, consequently, cognition (Youniss et al.,
1971; Peterson and Siegal, 1995; Mayberry, 2002; Marschark
and Hauser, 2008). Hence, implementing novel technologies
and training programs that facilitate vibrotactile perception and
discrimination of sounds within the language spectrum could
well have a positive impact on oral language development.

In recent decades, the effects of early auditory deprivation
on brain organization due to neuroplasticity in developmental
stages have been explored, primarily in the sensory cortices
(Huttenlocher, 2002) and language-related areas (Huttenlocher
and Dabholkar, 1997; Neville and Bavelier, 1998). The
recruitment of auditory cortices for processing sign language
(Chlubnová et al., 2005), visual tasks (Finney et al., 2003), and
vibrotactile stimulation (Levänen et al., 1998; Auer et al., 2007),
are cross-modal changes related to profound deafness (Merabet
and Pascual-Leone, 2010).

Advances in instrumentation technology for sensory
substitution have opened up new opportunities to develop
practical and inexpensive systems to compensate for sensory loss
(Bach-y-Rita and Kercel, 2003). Sensory substitution, studied
by Bach-y-Rita since 1969, had the primary goal of providing
users with environmental information through a human sensory
channel different from the one normally used. Many studies
have demonstrated that this phenomenon can occur across
sensory systems, such as touch-to-sight (Bach-y-Rita, 2004), and
that visual, auditory and modified tactile information can be
processed by skin mechanoreceptors to achieve tactile-vision
substitution and tactile-auditory substitution (Kaczmarek et al.,
1991). Early studies had used vibrotactile stimulation devices to
evaluate somatosensory perception of speech in profoundly deaf
and normal-hearing (NH) individuals (Risberg and Lubker, 1978;
Rothenberg and Molitor, 1979). They found that lip-reading and
the perception of prosodic elements of language were facilitated,
and that these abilities improved greatly with training. These
results were replicated by Reed (1996) in deaf-blind individuals
using the TADOMA method that also relies on vibrotactile
perception.

Vibrotactile stimulation produces a characteristic cortical
response that is distinguishable and, therefore, easily evaluated.
Using magnetoencephalography (MEG), Caetano and Jousmäki
(2006) demonstrated the convergence of vibrotactile input on
the superior temporal cortex of normal-hearing adults, as
had been reported previously in a congenitally deaf adult
(Levänen et al., 1998). Recently, a vibrotactile-related endogenous
neural response was mapped for purposes of surgical resection
(Wahnoun et al., 2015). Hegner et al. (2010) found that different
neuronal mechanisms underlie tactile and vibrotactile cortical
processing, in which cortical representations vary depending on
the nature of the stimuli. Their results also suggest that the
right hemisphere is more dominant in pattern than frequency
vibrotactile discrimination, which could be attributed to the

differences between spatial (pattern) and temporal (frequency)
processing discrimination. Furthermore, Ammirante et al. (2013)
found that deaf individuals can discriminate between same-sex
talkers based on vibrotactile stimulation alone. Their findings
suggest that the discrimination of complex vibrotactile stimuli
involves cortical integration of spectral information filtered
through frequency-tuned skin mechanoreceptors.

The study of electrical brain activity depicts the characteristics
of neural changes across time, along with the connectivity
that supports those changes. In this context, the aim of
the present study was to explore underlying learning-related
electrophysiological changes in subjects with profound deafness
and normal-hearing controls after a short training period in
vibrotactile sound discrimination by applying two EEG analysis
techniques: event-related potentials (ERPs) and graph theory
tools.

Event-related brain potentials have been utilized to study
time-locked cerebral processes while performing behavioral
tasks that involve attention and working memory resources.
Specifically, the P300 component has been extensively studied
as an index of updating memory representations (Donchin and
Coles, 1988; Polich, 2007) and general cognitive performance
used to monitor illness evolution in clinical models (Sumiyoshi
et al., 2006; Madan et al., 2007; Kalita et al., 2009; see Duncan
et al., 2009 for a review; Lori et al., 2011). In the 1980s, Neville
and colleagues published the first electrophysiological studies
of the cortical distribution of visual-evoked potentials in deaf
individuals, proving that primary sensory cortices can assume
other functions in the absence of input in one sensory modality,
and that cortical representation and connectivity are determined
by the input received during early developmental stages (Neville
et al., 1983; Neville and Lawson, 1987). Similar cross-modal
plasticity has been observed in early-blind individuals in which
the visual cortices are sensitive to attentional changes in
the auditory environment (Kujala et al., 2005). However, few
studies have approached the evaluation of ERP responses while
perceiving vibrotactile stimulation.

Graph theory-based analysis has been widely used to
study models of neural networks, anatomical and functional
connectivity based on fMRI (Salvador et al., 2005; Achard
et al., 2006; Astolfi et al., 2007), MEG (Stam, 2004; Van Wijk
et al., 2010), and EEG (Sporns et al., 2000; Astolfi et al., 2006;
Espinoza-Valdez et al., 2016). Bernhardt et al. (2015) define graph
theory as a mathematical framework to quantify topological
properties of complex interconnected systems. This has been
applied to study the topological properties of networks –i.e., sets
of nodes on which edges are defined– derived from brain imaging
and electrophysiological data. A ‘graph’ refers to an abstract
representation of a network, in which nodes represent brain
regions and edges represent connections. Several graph measures
make it possible to characterize graph topologies in terms of
efficiency transfer and the balance between “segregation” and
“integration” (see Bullmore and Sporns, 2012, for an extensive
review).

Graph theory-based analysis provides a method for
quantifying brain networks using a reduced number of
meaningful biological measures that are easily determined.
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Thus, it is argued that graph metrics characterize brain networks
(Fraga González et al., 2016). In the context of ERPs, calculating
partial directed coherence (PDC) based on such time-variant
multivariate autoregressive models and measures as centrality
or modularity have emerged as useful tools for assessing
connectivity between different brain locations (Schelter et al.,
2006; Keller et al., 2014; Rodrigues and Baccalá, 2015). Recently,
graph theory-based methods have been used to explore the
cortical reorganization of functional networks in prelingual deaf
adolescents (Li et al., 2016). Indeed, ERPs and graph analyses are
complementary, not mutually exclusive techniques (eg., Mutlu
et al., 2012) that can contribute to a better understanding of how
profoundly deaf individuals learn to discriminate sound using a
novel sensory pathway.

Several studies using fMRI have revealed an overlap between
attention and working memory networks over visual, parietal and
frontal areas (Gazzaley et al., 2007; Mayer et al., 2007; Gazzaley
and Nobre, 2012), findings which support the view that these
cognitive functions share neural resources and are governed
by the fronto-parietal attention network (Corbetta et al., 2002;
Zanto et al., 2011). In fact, these fronto-parietal regions have
been identified as containing a task-positive network (Fox et al.,
2005) or “fronto-parietal control system” (Vincent et al., 2008)
that, in terms of connectivity, has been described as a “flexible
hub” that adjusts its connectivity patterns to task requirements
(Cole et al., 2013). Interestingly, Jackson et al. (2016) have
found that the fronto-parietal cortex adjusts its representation of
visual objects, suggesting that this effect is not stimulus-modality
specific.

In summary, a powerful, early link between human speech
and cognition guides infant development and casts a wide
facilitative net for the fundamental cognitive capacities that
underlie other core learning processes (Vouloumanos and
Waxman, 2014; Ferguson and Lew-Williams, 2016; Ferguson
and Waxman, 2016). There is broad evidence in the literature
to support the notion that neurodevelopmental deficits
in profound deafness affect cognitive flexibility (Courtin,
1997; Kushalnagar et al., 2010). Moreover, dynamic changes
in fronto-parietal connectivity have been associated with
cognitive flexibility. Nevertheless, information on how
underlying neural processes adjust when deaf individuals
are trained to vibrotactile discriminate sounds is still
scanty.

Our experiment aimed to explore, comparatively,
how training in vibrotactile sound discrimination affects
electrophysiological processing and functional connectivity
in profoundly deaf and NH individuals. Due to their early
sensory deprivation and impoverished language acquisition,
deaf individuals might obtain fewer benefits from a short
training period. Thus, we hypothesized that they will have
higher amplitudes in the P300 component –before and after
training– compared to NH controls, with less frontal and parietal
functional disengagement, as quantified by connectivity metrics.
To our knowledge, the present study is the first to use graph
theory-based analysis to explore changes in brain connectivity
due to training in vibrotactile discrimination of sound within the
language frequency spectrum.

MATERIALS AND METHODS

Subjects
Fourteen right-handed subjects with prelingual profound
bilateral deafness (seven males; mean: 21.96, SD = 6.63 years),
and 14 age-and-sex-matched normal-hearing controls (mean:
21.93, SD = 5.02 years) volunteered to participate. Most control
subjects were family members with similar demographic
characteristics. Clinical interviews determined that no
participants had personal or family histories of psychiatric,
neurological or neurodegenerative illness. All participants also
had normal neurological examinations and normal baseline
EEGs. All deaf participants were Mexican Sign Language (MSL)
users. Thirteen had received proper sign language instruction
late in childhood (after age seven), most upon entering primary
school. Only one participant was born to deaf parents and had
learned MSL at home as his maternal language.

The study was reviewed and approved by the Ethics
Committee at the Neuroscience Institute (Universidad de
Guadalajara). A professional interpreter translated all forms,
questionnaires and instructions into MSL, and all volunteer
participants or the parents of under-aged subjects gave their
informed written consent.

Audiological Testing
Using a Maico MA-41 Portable Audiometer with audio over-
ear headphones and bone-conduction headphones, hearing
threshold measurements were taken at six octaves: 250, 500, 1000,
2000, 4000, and 8000 Hz. Pure-tone air and bone conduction
audiometries were performed to confirm profound bilateral
sensorineural hearing loss with a pure-tone average (PTA) greater
than 90 decibels (dB) in the deaf participants, and normal-
hearing levels in the controls.

Design and Procedure
We studied cerebral electric activity in 14 profoundly deaf and
14 NH participants using a classic oddball paradigm. Since the
design was longitudinal, the experimental task was performed
twice by the same individuals. An initial baseline EEG recording
was made, followed by a second one after five vibrotactile
sound discrimination sessions (1-h duration, 2–3 times a week).
The sessions focused on training vibrotactile discrimination
of frequency and duration properties of sound, and involved
exercises with three pure-tone sequences of varying levels of
difficulty, as well as the discrimination of a total of 12 complex
sounds, such as natural animal and object sounds. See Data
Sheet 1 for detailed training program description.

Participants were comfortably seated in a quiet, well-lit room.
The vibrotactile oddball paradigm consisted of a train of 150
randomly presented stimuli, with a duration of 200 ms (ISI:
1500 ms) and a 20:80 rare stimulus frequency. The stimuli
consisted of 700 and 900 Hz pure-tones; infrequent target
and frequent standard conditions were counterbalanced across
subjects. Participants were instructed to look at a cross-shaped
fixation point on the center of a 19-inch SVGA monitor (refresh
rate: 100 Hz) to minimize ocular artifacts, and to respond by
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pressing the left control key with their left index finger upon
target stimulus detection. Sound-wave stimuli were delivered by a
portable stimulator system (adapted model of the SEVITAC-D R©)
worn on the right index finger and connected directly to the
computer’s audio output (volume level set at 80 dB SPL). Stimuli
presentation was controlled by MINDTRACER-2.0 software
(Neuronic, S.A.). The portable stimulator system has a sound
range frequency of 0–10 kHz and consists of a tiny flexible plastic
membrane with a 78.5-mm2 surface area that vibrates on the tip
of the index finger in response to sound pressure waves via analog
transmission.

During task execution, the NH participants wore earplugs and
circumaural hearing protection, and were exposed to background
white-noise (70 dB SPL). Also, they placed their right hand inside
a sound-attenuated box to ensure the stimuli were not auditorily
perceptible and were only processed via somatosensory pathways.

ERP Acquisition
Recording
EEG activity was recorded from the Fp1, Fp2, F3, F4, F7, F8, C3,
C4, P3, P4, O1, O2, T3, T4, T5, T6, Fz, Cz and Pz scalp electrode
sites, following the 10–20 system and using a commercial electro
cap. EOGs were recorded from the outer canthus and infraocular
orbital ridge of the right eye. All recording sites were referred to
linked mastoids. Inter-electrode impedances were below 5 k� at
30 Hz. EEG and EOG signals were amplified at a band pass of
0.05–30 Hz (3-dB cutoff points of 6 dB/octave roll-off curves)
with a sampling period of 5 ms on the MEDICID-04 system
(Neuronic S.A.). Single trial data were examined off-line for
averaging and analysis.

Behavioral Measures
Correct and incorrect responses were marked automatically
on the EEGs by the software; reaction times were recorded
simultaneously.

Signal Averaging
Stimulus onset was taken as the initial time instant (t0). ERP
time windows were obtained from 100 ms before the onset of the
stimuli to 1000 ms after it. Fifteen artifact-free trials (50% of the
infrequent trials) were averaged for each condition to obtain the
P300 components. A pre-stimulus period of 100 ms was used for
baseline correction. Epochs of data on all channels were excluded
from the averages when the voltage in a given recording epoch
exceeded 100 µV on any EEG or EOG channel. Each individual
ERP reached a standard deviation rate (SDR) below 1.1 and a
residual noise level (RNL) below 2. Epochs with artifacts were also
rejected by visual inspection performed by two group-blinded
experts.

Graph Analysis
Several estimators based on time and EEG frequencies have been
developed to evaluate brain connectivity. While the two classic
estimators of correlation and coherence generate information on
directionality, they do not provide data on causal relationships.
Therefore, PDC (πij, where i and j represent two electrodes
of the EEG array) was defined for the purpose of estimating

the direct flows between channels (Baccalá and Sameshima,
2001).

EEG epochs were pre-processed to reduce noise and artifacts
using blind source separation and wavelet de-noising procedures
before calculating PDC (Romo-Vázquez et al., 2012). To estimate
brain connectivity, PDC was computed from a 1.5-second time
window beginning with the appearance of an “infrequent stimuli”
selected halfway through EEG recording, simultaneously with
performance of the oddball paradigm. This procedure generated
a connectivity matrix containing directivity information (see
Data Sheet 2), which was binarized using the criterion πij = 1
if πij > πji and πij = 0, otherwise, where π represents the values
averaged in the frequency of PDC elements (π; Espinoza-Valdez
et al., 2016). However, while PDC does operate in the frequency
domain, its coefficients do not have direct correspondence to the
power spectrum.

Since PDC is not sensitive to volume conduction and we
were interested in exploring not only causality relationships,
but also the amount of energy that flowed between the
channels, the cross-power spectrum density (CPSD) was also
computed for the window under study. The CPSD matrix was
averaged, thresholded and binarized. As these two matrixes were
multiplied –CPSD × PDC– the resulting matrix contains both
the power information from each channel and the notion of
causality.

This methodology was applied to each EEG recording in the
database, which contained 14 recordings from deaf participants
pre-training and 14 post-training, with those of their paired
control subjects (56 recordings in total). The matrixes obtained
were averaged and constitute the basis of the graphs. An 8 × 8
connectivity matrix was obtained that provides information
on the power of the connections between each scalp location
with respect to all the others, while ignoring whether the
other electrodes were placed on the same –or contralateral–
brain hemisphere. The rationale for considering the mean value
of connectivity between each electrode and all others across
hemispheres is to attempt to measure –via a specific coefficient–
the relative relevance of each location in specific regions of
interest (ROI). Higher values for these coefficients indicate
that one precise location is more important for whole brain
connectivity. An additional connectivity analysis was performed
to separately evaluate intra- and inter-hemispheric relationships,
omitting the midline scalp locations. The resulting matrix was
interpreted in graph form.

Data Analysis
Behavioral data (correct responses, incorrect responses,
and reaction times) were analyzed using repeated-measures
ANOVAs. The event-related brain potential measures
were assessed using Randomized-block ANOVAs [group
(2) × condition (2: pre-, post-training) × hemisphere (P3, P4)]
with maximum voltage across each time window. The amplitude
and latency of each ERP component was quantified at the highest
peak within an a priori time-window range selected between
270 and 650 ms. Greenhouse-Geisser corrections to the df were
applied as needed, with the corrected probabilities reported.

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2017 | Volume 11 | Article 28

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00028 February 2, 2017 Time: 16:19 # 5

González-Garrido et al. Deaf Tactile Training and EEG Connectivity

Statistical Analysis of Brain Connectivity
According to the topographic distribution of the fronto-parietal
network, graph analysis was performed in two different ROIs:
(a) fronto-central (Fz, Cz, F3, F4, F7, F8, C3 and C4 scalp
locations); and, (b) posterolateral areas (Pz, P3, P4, T3, T4, T5,
T6, O1 and O2). The connectivity coefficients for both ROIs
were obtained from the EEG epochs (1.5 s) that corresponded
to correct responses while detecting the infrequent stimuli.
These were analyzed with Welch t-tests for two samples
(Deaf, NH) in two conditions: pre- and post-training. This
analysis was chosen to more accurately represent the functional
dynamic of the cognitive processing period, corresponding
to the electrophysiological measures portrayed in the ERP
waveforms.

In order to evaluate intra-hemispheric connectivity,
specifically lateralization effects, two other ROIs were analyzed:
(a) left hemisphere (F3, F7, C3, P3, T3, T5 and O1 leads); and,
(b) right hemisphere (F4, F8, C4, P4, T4, T6 and O2 leads) by
obtaining coefficients from the same EEG time windows.

The mean value of connectivity was calculated for each
electrode with respect to all others in each ROI. This
connectivity value was estimated by averaging the connectivity
matrix across the columns while excluding the diagonal.
In this way, mean connectivity values of 8 × 14 and
9 × 14 were obtained for the fronto-central and posterolateral
analyses, respectively. In the intra-hemispheric analysis, mean
connectivity values of 7 × 14 were obtained for each
hemisphere.

RESULTS

The electrophysiological and behavioral data from two deaf
subjects and their matched controls had to be excluded from
the ERP analysis because the minimum number of artifact-free
windows for ERP averaging was not obtained.

Behavioral Measures
Significant changes were found in pre- and post-training
performance, but no such changes were demonstrated across
training conditions between groups. Both groups increased
the number of correct responses [F(1,22) = 6.604, p < 0.05,
η = 0.231; mean standard error (MSE) = 1.59] and decreased
the number of incorrect responses [F(1,22) = 22.232, p < 0.001,
η = 0.503; MSE = 1.48]. The latter were defined as
trials in which individuals failed to discriminate the target
from the standard stimuli by responding to the standard.
Discrimination task behavioral accuracy rates based on mean
correct responses for the profoundly deaf group were 48%
before training and 62% after, while those of the control
group were 42% before and 59% after. Therefore, after
completing only a short training period of five 1-h sessions,
all subjects had learned to identify the rare stimuli and were
less likely to make detection errors in the vibrotactile sound
discrimination oddball paradigm. There were no statistically
significant changes in reaction times due to training or between
groups.

ERP Results
Figure 1 presents the effects of training on the mean
voltage amplitude for midline event-related brain potentials
while performing the experimental task in both groups. The
topographic maps show the P300 scalp distributions. According
to visual inspection, maximum peak latencies were estimated
in the grand-averaged waveforms for each group and condition
at the Pz electrode. Amplitude data from the parietal electrode
locations that showed the most robust changes (P3, P4) in
the P300 component were analyzed. The maximum P3 and P4
voltages were identified in each individual mean ERP in both
groups and conditions (pre-, post-training) to comparatively
evaluate the ERP waveforms while performing the vibrotactile
discrimination task.

The results of these analyses indicate a significant increase of
the P300 amplitude due to training [F(1,22) = 6.078, p < 0.05,
η = 0.216]. Though between-group differences did not reach
statistical significance, a clear tendency for the deaf group
to exhibit greater voltage amplitudes is visible in the grand-
average waveforms and on the topographical maps. Latency
analysis showed no significant effects for training or group
differences. However, parietal right hemisphere lateralization
during vibrotactile discrimination of sound was more significant
in the profoundly deaf group, as demonstrated by a significant
group× hemisphere interaction effect [F(1,22) = 4.622, p < 0.05,
η= 0.174].

Brain Connectivity Differences
Figure 2 shows the main changes in brain connectivity associated
with training in vibrotactile discrimination in two ROIs (fronto-
central and posterolateral areas). The control group shows a
significant decrease in connectivity in both ROIs after training
that predominantly affected fronto-central connections. Changes
in the deaf participants, in contrast, were more widespread and
less specific.

The analysis of the fronto-central region showed significant
differences in the mean connectivity values between groups both
prior to (t = −2.12; p < 0.05) and after training (t = −3.27;
p < 0.001). Analysis of the posterolateral region showed no
significant between-group differences in the pre-training period,
but evaluation of the post-training period did reveal differences
in connectivity between groups (t =−4.14; p < 0.0001). Figure 3
shows the analysis of connectivity values in the fronto-central
and posterolateral regions studied. This analysis suggests that,
in general, brain connectivity decreased in the NH group after
training, while an opposite trend is observed in the profoundly
deaf group, especially in the fronto-central regions. The increase
in brain connectivity in the deaf participants in these anterior
areas seems to account for the significant differences found
between the groups.

An interesting finding was that arbitrary connectivity units
estimated for intra-hemispheric relationships were substantially
greater than those estimated at inter-hemispheric connections.

Additionally, a tendency suggesting that training might induce
greater connectivity in the right hemisphere was observed in
the intra-hemispheric analysis, though it did not reach statistical
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FIGURE 1 | Midline and vicinity group grand-mean ERP waveforms for the differences between rare target (red) and frequent non-target (black)
conditions while performing a vibrotactile tone-frequency discrimination oddball task, before and after a short training period in vibrotactile
recognition. The normal-hearing group (n = 12) is represented at the top of the Figure, and deaf participants (n = 12) at the bottom. Topographic maps show the
voltage distribution at maximum peak latency. A pre-stimulus period of 100 ms was used for baseline correction. Stimulus onset corresponds to the initial time
instant in the Figure.

significance in the pre-training period (t = 0.62; p > 0.05) or
after training (t = 2.04; p > 0.05). As for the left hemisphere
connectivity analysis, values showed no significant differences
between groups either before (t = 1.89; p > 0.05) or after
training (t = 1.53; p > 0.05). Finally, Figure 4 illustrates the
main changes in brain connectivity associated with training in
vibrotactile discrimination in these two ROIs (left and right
hemispheres).

DISCUSSION

As was expected, both the NH and deaf groups showed similar
behavioral performance after a short training period. This is
not surprising due to the unimpaired somatosensory capacity
of deaf individuals, and the simplicity of the task, despite the
novelty of the specific vibrotactile discrimination demands. The
widespread activity observed in the auditory cortical regions of
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FIGURE 2 | Sequence of graphs representing brain organization in pre- and post-training conditions in both groups (normal-hearing, profoundly
deaf). Two brain neural arrangements were studied as main regions of interest: fronto-central and posterolateral areas. The graph structure is defined by the
probability of connections between brain regions where the thickness of the lines represents the level of connectivity (CPSD × PDC).

the deaf individuals while processing vibrotactile stimuli supports
this notion (Auer et al., 2007).

The oddball experimental design used made it possible to
interpret the ERP results using the classic P3 framework. Our
results indicate a significant increase of the P300 amplitude
due to training, even though the between-group amplitude
effects did not reach statistical significance, likely due to
individual variability. Waveform tendencies show that the voltage
magnitude of the P300-like component was slightly higher in
the group with profound deafness, even before the training
sessions, but increased greatly after training. In both pre-
and post-training conditions, the P3 component is seen to

be topographically more extended in the deaf group than
in NH.

In the oddball paradigm, the P300 component has been
interpreted as the result of an orienting response with attention
allocation triggered by novel or unusual stimuli that give rise
to an “updating” process of stimulus representation (see Polich,
2007 for an extensive review). It has been shown that the
amplitude of this ERP component is sensitive to numerous
variables and conditions, particularly the amount of attention
resources demanded during task performance (Isreal et al., 1980;
Kramer et al., 1985), memory engagement (Hartikainen and
Knight, 2003; Azizian and Polich, 2007), stimulus modality
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FIGURE 3 | Mean differences in brain connectivity while processing target stimuli between deaf and NH participants, before and after a short training
period in vibrotactile recognition.

(Singhal and Fowler, 2005), rare-frequency ratio, task difficulty,
mental workload, processing capacity, and such motivational
aspects as task relevance and stimulus meaning (Polich and Kok,
1995; Kok, 1997, 2001; Baykara et al., 2016). In this regard,
we believe that motivation and relevance were two important
variables that influenced neural processing in the deaf group
in our study, since learning to discriminate sound through an
alternative sensory pathway could have practical applications in
their daily lives, whereas in the NH controls this is not the case.

The effects of practice and repetition are key aspects of
learning and automatization (Shiffrin and Schneider, 1977;
Shiffrin and Schneider, 1984). Braun et al. (2002) proved that
repetitive exposure to relevant tactile stimulation on hands

and fingers modifies somatosensory neurons, such that the
results of behavioral training persist beyond the training period.
Electrophysiological changes related to different kinds of training
have been described in several studies. Kramer et al. (1986)
reported significant component amplitude decreases after several
training sessions on a visual search task. However, contradictory
findings regarding changes in amplitude have also been
discussed in terms of amplitude increases due to training. For
example, some studies demonstrated that pre-attentive cortical-
evoked potentials reflect training-induced changes; specifically,
significant voltage increases in N1 and P2 (Tremblay et al., 2001;
Tremblay and Kraus, 2002). These findings are more in line
with our results, which are related to a P300 amplitude increase
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FIGURE 4 | Sequence of graphs representing brain organization in pre- and post-training conditions in both groups (normal-hearing, profoundly
deaf). Two brain neural arrangements were studied as main regions of interest: the left and right hemispheres. The graph structure is defined by the probability of
connections between brain regions where the thickness of the lines represents the level of connectivity (CPSD × PDC).

observed after five sessions of vibrotactile discrimination training
in both groups.

The graph analysis showed that training-related differences
in brain connectivity between the groups were mainly restricted
to the frontal neural networks. In an fMRI experiment, Yang
et al. (2014) showed that tactile priming engages repetition
suppression mechanisms during tactile angle matching, and this
process decreased the activation of the fronto-parietal circuit.

The present results confirm our hypothesis that
electrophysiological brain dynamic organization differs between
profoundly deaf and normal-hearing young adults. Moreover,
results from the brief training in vibrotactile discrimination of
sound strongly suggest not only the probable recruitment of
the primary auditory cortex, as several studies have proposed

(Levänen et al., 1998; Auer et al., 2007; Karns et al., 2012), but
also a distinct functional brain activation engagement to meet
task demands. In this context, previous results have indicated
that greater activation of the prefrontal regions and reduced
activation of the left parietal cortex might be interpreted as
reflecting relatively greater demands on memory and attention
resources (Rivera et al., 2005). Therefore, the increase in
connectivity observed in the deaf group might reflect the need
for greater functional adjustment as a result of training.

Regarding the theoretical view which assumes that incoming
stimuli elicit top-down attention switching, while bottom-up
memory-drive processes settle on the final outcome (Escera
et al., 1998; Goldstein et al., 2002), our results probably depict
that profoundly deaf individuals need additional attentional
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resources to maintain memory items due to task demands. In
terms of cognitive resources, the training-induced topographical
changes in P300 suggest that NH participants seem to use the
available resources more efficiently. This notion coincides with
previous reports on visual perceptual skills, which suggest that
deaf individuals may allocate their visual resources over a wider
range than NH individuals (Sladen et al., 2005). However, they
have difficulty in controlling the reallocated visual attention
resources (Dye and Hauser, 2014) and they also have a reduced
multisensory interaction (Hauthal et al., 2015).

Furthermore, the intra-hemispheric tendency observed in
this study showed higher P300 right hemisphere amplitudes
in the deaf group. In this context, the lateralization to the
right of P300 in those participants might be interpreted as part
of a supplementary activation of spatial precision processing
mechanisms in personal space, directly linked to the right
posterior parietal cortex (Longo et al., 2012), as has been related
reiteratively to spatial re-orienting (Roy et al., 2015). The right
intra-hemispheric connectivity determined in association with
training might underlie the lateralized changes observed in the
ERP waveforms. The notion of functional topographic differences
between groups might be supported as well by the finding that
the right hemisphere has been seen to be more dominant in
spatial (tactile pattern) than temporal (vibrotactile frequency)
processing in NH individuals (Hegner et al., 2010), though we
observed a strong right lateralization in vibrotactile frequency
processing in our deaf participants.

The connectivity units estimated for intra-hemispheric
relationships were greater than those obtained at inter-
hemispheric connections. This could be interpreted as reflecting
the effect of attentional modulation on both the primary and
secondary somatosensory cortices (Goltz et al., 2013) and,
possibly, the construction of mental representations of the target
stimuli in order to solve the task; a process in which the right
somatosensory cortex seems to play an important role (Schmidt
et al., 2014).

Up to now, biased connectivity and shape sensitivity seem
to explain plasticity in sensory deprivations (see Heimler et al.,
2015, for a comprehensive review). In light of our results, neural
relationships following auditory sensory deprivation should be
taken into account when studying the potential cross-modal
activation of the primary auditory cortex. These relationships
might include the activation of novel complex neural ensembles,
as was demonstrated recently in animal models (Chabot et al.,
2015).

The findings from the present experiment suggest that
new emergent attention demands might trigger a task-driven
connectivity arrangement in which neural networks comprising
frontal, somatosensory and parietal areas could participate. The
recent report on the dynamic association between intersensory
attention and temporal predictability –as occurred by design
in our work– in relation to the shaping of oscillatory power
and brain connectivity to facilitate stimulus-processing (Keil
et al., 2016) seems to support our explanation. However, we
must consider that the broad age range in our sample produced
within-group, age-related electrophysiological differences.
Indeed, neurodevelopmental ERPs and differences in brain
connectivity elicited by early auditory deprivation are interesting

phenomena that require future exploration, specifically in
younger profoundly deaf populations.

In summary, ERP tools and graph analysis successfully
illustrated the differences in the electrophysiological responses –
pre- vs. post-training– in vibrotactile discrimination in deaf
and NH individuals, and highlighted the neural plasticity
capacity in the profoundly deaf. They also revealed the
need to recruit additional attention and memory resources.
The diffuse resource distribution and regional connectivity
observed in the profoundly deaf, before and after training,
may also represent a window of opportunity for this way of
processing sound via index-fingertip somatosensory stimulation.
Vibrotactile sensory feedback in speech production therapy has
significant clinical implications for early language development
in this population. In future studies, a lengthier training
period of vibrotactile sound discrimination, perhaps involving
language stimuli, could benefit intermodal brain organization
and generate more widespread connectivity. Finally, additional
studies are required to clarify the brain connectivity dynamic
variation associated with the performance of vibrotactile
language-related discrimination tasks with higher cognitive
demands.
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