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Mild cognitive impairment (MCI) represents a transitional stage from normal aging to
Alzheimer’s disease (AD) and corresponds to a higher risk of developing AD. Thus, it is
necessary to explore and predict the onset of AD in MCI stage. In this study, we propose
a combination of independent component analysis (ICA) and the multivariate Cox
proportional hazards regression model to investigate promising risk factors associated
with MCI conversion among 126 MCI converters and 108 MCI non-converters from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Using structural magnetic
resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-
PET) data, we extracted brain networks from AD and normal control groups via ICA
and then constructed Cox models that included network-based neuroimaging factors
for the MCI group. We carried out five separate Cox analyses and the two-modality
neuroimaging Cox model identified three significant network-based risk factors with
higher prediction performance (accuracy = 73.50%) than those in either single-modality
model (accuracy = 68.80%). Additionally, the results of the comprehensive Cox model,
including significant neuroimaging factors and clinical variables, demonstrated that MCI
individuals with reduced gray matter volume in a temporal lobe-related network of
structural MRI [hazard ratio (HR) = 8.29E-05 (95% confidence interval (CI), 5.10E-
07 ∼ 0.013)], low glucose metabolism in the posterior default mode network based
on FDG-PET [HR = 0.066 (95% CI, 4.63E-03 ∼ 0.928)], positive apolipoprotein E
ε4-status [HR = 1. 988 (95% CI, 1.531 ∼ 2.581)], increased Alzheimer’s Disease
Assessment Scale-Cognitive Subscale scores [HR = 1.100 (95% CI, 1.059 ∼ 1.144)]
and Sum of Boxes of Clinical Dementia Rating scores [HR = 1.622 (95% CI, 1.364
∼ 1.930)] were more likely to convert to AD within 36 months after baselines. These
significant risk factors in such comprehensive Cox model had the best prediction
ability (accuracy = 84.62%, sensitivity = 86.51%, specificity = 82.41%) compared to
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either neuroimaging factors or clinical variables alone. These results suggested that a
combination of ICA and Cox model analyses could be used successfully in survival
analysis and provide a network-based perspective of MCI progression or AD-related
studies.
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most severe
neurodegenerative diseases and is accompanied by structural
and functional changes in the brain (Brookmeyer et al., 2007;
Dartigues, 2009; Jack et al., 2010a; Reitz et al., 2011; Prince, 2015).
Mild cognitive impairment (MCI), which is a transitional stage
between normal aging and AD, is associated with a higher risk
of developing AD (Albert et al., 2011; Roberts and Knopman,
2013). Thus, it is necessary to explore and predict the onset of
AD at the MCI stage.

Many studies have documented that MCI patients exhibit
cognitive impairments and neurological changes (Karas et al.,
2004; Farias et al., 2006; Dickerson and Sperling, 2008; Schneider
et al., 2009; Morbelli et al., 2010; Wee et al., 2012). For example,
compared to the Clinical Dementia Rating (CDR) scores of
cognitively normal controls (NC), the CDR scores of MCI
individuals increased from 0 to 0.5 or even 1.0 (Cedarbaum
et al., 2013; Williams et al., 2013). In addition, brain gray
matter volume reduction, hypometabolism, and amyloid-beta
(Aβ) deposition are apparent in MCI individuals and have been
effectively detected by neuroimaging techniques (Jack et al., 1999,
2010b; Devanand et al., 2010; Sluimer et al., 2010). Thus, the use
of cognitive test scores and neuroimaging biomarkers to predict
MCI conversion has been brought to the forefront (Bischkopf
et al., 2002; Petersen, 2002; Grundman et al., 2004; Misra et al.,
2009; Jessen et al., 2014).

Survival analysis is a statistical method used to analyze
survival data in consideration of censored data and survival
time on event occurrence (Cox and Oakes, 1984; Cox, 1992).
The multivariate Cox proportional hazards regression model
is one of the most popular semiparametric models in survival
analysis. It is used to estimate the relationship between risk
factors and survival time or other censored outcomes, as part
of efforts to understand the risk factors that may have potential
roles in preventing or delaying the onset of disease (D’Amico
et al., 2000; Partridge et al., 2005; Li et al., 2013). Recently,
multivariate Cox models, including cognitive test scores or
neuroimaging biomarkers as covariates, have been increasingly
used for the early identification and prognosis of patients who
progress from MCI to AD (Desikan et al., 2010; Chen et al., 2011;
Li et al., 2013; Egli et al., 2014; Moradi et al., 2015; Zeifman
et al., 2015). Egli et al. (2014) investigated which cognitive

†Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

variables were best predictors for progression to AD from MCI
within 36-month observation period, and suggested that serial
position scores predicted MCI conversion with survival time
longer than 18 months. By building Cox models based on gray
matter density, Moradi et al. (2015) found the voxels that had
a higher accuracy for predicting MCI conversion were mainly
located in the hippocampus, the temporal and frontal lobes,
and the cerebellar areas. Chen et al. (2011) characterized AD
patients with a hypometabolic convergence index (HCI) from
fluorodeoxyglucose positron emission tomography (FDG-PET)
data, and the results of the Cox model demonstrated that MCI
patients with a higher HCI had a hazard ratio (HR) of 6.55
for conversion to probable AD within 18 months. Multimodal
neuroimaging studies took advantage of the complementary
information provided by different brain imaging modalities
used in AD identification or classification, as biomarkers from
different modalities reflect different aspects of brain changes (Li
et al., 2008; Yuan et al., 2009; Jack et al., 2010b; Wee et al.,
2012; Dickerson et al., 2013). Jack et al. (2010b) combined the
hippocampal volume of structural magnetic resonance imaging
(MRI) and Aβ load biomarker in a Cox model to evaluate the
ability of these two factors in predicting MCI progression over 3-
year follow-up and found that MCI individuals with higher Aβ

load level and smaller hippocampal volumes are more likely to
convert to AD.

Previous brain imaging studies constructed multivariate Cox
models to explore the best predictors based on the extracted
neuroimaging features from brain regions of interest (ROIs) (Jack
et al., 1999; Li et al., 2008; Yuan et al., 2009; Wee et al., 2012) or
the whole brain (voxel-level analysis) (Chen et al., 2011; Vemuri
et al., 2011; Zeifman et al., 2015). However, ROI analysis depends
mostly on a priori knowledge. Voxel-level analysis takes full
advantage of information across the whole brain, but modeling
based on each voxel usually brings in onerous computing
workload. Independent component analysis (ICA) is a powerful
multivariate method for use in blind source separation problems
to extract maximally independent components (ICs) or sources
from a mixed signal (Hyvärinen and Oja, 2000). It has been
suggested that neurological changes in different voxels or regions
of the human brain exhibited covariance, and it is also impractical
to include voxel-level information in Cox model analysis due
to the huge number of predictors. ICA is one approach that
integrates voxel-wise information into a few ICs, but also utilizes
the inter-regional covariance relationships among the whole
brain. By considering imaging data to be linear combinations of
statistically independent sources, ICA has been widely used to
investigate brain structural or functional networks in different
populations (Beckmann et al., 2005; Mantini et al., 2007; Segall
et al., 2012; Hafkemeijer et al., 2014). The voxels within such
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networks carry similar covariate information (Xu et al., 2009).
Therefore, a combination of ICA and the multivariate Cox
proportional hazards regression model could provide a network-
based perspective to analyze survival data of MCI individuals and
predict MCI conversion.

The present study aimed to investigate promising risk
factors and to analyze their effects on MCI conversion by
combining ICA and the multivariate Cox proportional hazards
regression model. We first applied ICA to extract brain networks
from structural MRI and FDG-PET images in AD and NC
groups, respectively. Then, the mask images of the brain
networks that exhibited significant between-group differences
were generated to extract and compute independent variates
of MCI baseline neuroimaging data. Finally, multivariate Cox
proportional hazards regression models consisting of different
types of covariates among MCI individuals were constructed.

MATERIALS AND METHODS

Alzheimer’s Disease Neuroimaging
Initiative
The data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database1. The ADNI
was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of the ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessments could be combined to measure the progression of
MCI and early AD. For up-to-date information, see www.adni-
info.org.

Participants
This study included two independent cohorts: group 1 (121 AD
patients and 120 NC subjects) and group 2 [126 MCI converters
(MCI-c) and 108 MCI non-converters (MCI-nc)] from the ADNI
database. All 475 subjects had both structural MRI and FDG-PET
data.

Group inclusion criteria were as follows. NC subjects had no
memory complaints, a CDR score of 0 and Mini-Mental State
Examination (MMSE) scores between 26 and 30. AD patients had

1adni.loni.usc.edu

memory complaints, CDR scores between 0.5 and 2.0, and MMSE
scores less than 26, and they met the criteria for probable AD
diagnosis according to the National Institute of Neurological and
Communicative Disorders and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA; McKhann
et al., 1984). MCI subjects had a CDR score of 0.5, MMSE scores
between 21 and 30, as well as memory complaints and abnormal
memory function according to the Logical Memory II subscale
(Delayed Paragraph Recall), but an absence of dementia. The
MCI patients who progressed to AD within 3 years upon follow-
up were classified into the MCI-c group; patients who maintained
a diagnosis of MCI or those who were censored during the same
time interval were classified into the MCI-nc group. The AD
group did not significantly differ from the NC group in gender
ratio (p = 0.14) or age (p = 0.68), but exhibited significantly
lower MMSE scores (p = 1.25E-42). In addition, there were no
significant differences between the MCI-c and MCI-nc groups
with respect to gender ratio (p = 0.66) or age (p = 0.20). Table 1
shows the detailed clinical and demographic information for AD,
NC, and MCI subjects. Supplementary Table S1 provides a list of
subjects’ ID.

Neuroimaging Data Acquisition
Structural MRI Data
Structural MRI images were acquired at multiple sites with
different acquisition parameters. The scanning parameters can
be found at http://adni.loni.usc.edu/methods/documents/mri-
protocols/. For each participant, a T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE) image was acquired
on 1.5 T or 3 T scanners. The structural MRI scans had
undergone certain intensity non-uniformity and gradient non-
linearity correction, such as gradwarp, B1 calibration and N3
correction. Details can be found at http://adni.loni.usc.edu/
methods/mri-analysis/mri-pre-processing/. For each subject, the
processed NIFTI images were downloaded.

FDG-PET Data
Subjects were asked to abstain from all food and fluids (except
water) from midnight the night before the scan until either
after the imaging was completed or for at least 2 h prior to
the FDG-PET imaging session. After mandatory confirmation
of compliance to the dietary requirements, the baseline blood
glucose level was measured. Then, subjects were injected with

TABLE 1 | The clinical and demographic characteristics of participants with AD, NC, MCI-c, and MCI-nc groups.

AD (n = 121) NC (n = 120) MCI-c (n = 126) MCI-nc (n = 108)

Age (years) 74.87 ± 8.07 75.26 ± 6.52 73.47 ± 7.23 73.33 ± 7.73

Gender (M/F) 70/51 58/62 77/49 69/39

Education (years) 15.72 ± 2.61 16.43 ± 2.74 16.09 ± 2.64 15.89 ± 2.63

MMSE score 21.71 ± 3.94 29.18 ± 0.98 26.88 ± 1.76 28.06 ± 1.75

APOE ε4 (NC/HT/HM) 41/80/0 79/33/8 37/65/24 67/35/6

ADAS-cog score 21.52 ± 7.96 5.76 ± 3.02 13.60 ± 4.64 8.03 ± 3.47

Conversion time (years) – – 1.48 ± 0.69 –

AD, Alzheimer’s disease; NC, normal control; MCI, mild cognitive impairment; MCI-c, MCI converter; MCI-nc, MCI non-converter; M/F, male/female; MMSE, Mini-Mental
State Examination; APOE, apolipoprotein E; NC, non-carrier; HT, heterozygote; HM, homozygote; ADAS-cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale.
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185 MBq (5 ± 0.5 mCi) of [18F]-FDG. Subsequently, subjects
were allowed to rest comfortably for approximately 20 min for
the incorporation of [18F]-FDG. Finally, a dynamic 3D scan with
six 5-min frames was acquired.

For FDG-PET data, all separate temporal frames were co-
registered to the first frame of the raw image file to lessen
the effects caused by patients’ head motion. Then, these co-
registered frames were averaged to create a single image. After
being co-registered and averaged, each FDG-PET image was
reoriented into a standard image grid and the size of voxels
became 1.5 mm cubic. Finally, an 8 mm full-width-at-half-
maximum (FWHM) Gaussian kernel was used to smooth the
above-mentioned images. Details about these four steps of
processed PET image data can be found at http://adni.loni.usc.
edu/methods/pet-analysis/pre-processing/. In this study, images
labeled with “Coreg, Avg, Std Img and Vox Siz, Uniform
Resolution” were downloaded.

Image Preprocessing
The spatial preprocessing of all brain images was implemented in
Statistical Parametric Mapping (SPM8)2.

The segmentation and normalization of structural MRI images
were performed using the Voxel-Based Morphometry (VBM)
Toolbox3. First, each structural MRI image was segmented based
on an adaptive maximum a posteriori (MAP) and a partial
volume estimation (PVE) approach (Rajapakse et al., 1997; Tohka
et al., 2004). Two de-noising methods were implemented during
segmentation, a spatially adaptive non-local means (SANLM)
de-noising filter and a classical Markov Random Field (MRF)
approach (Rajapakse et al., 1997; Manjón et al., 2010). Then,
gray matter images were normalized using a high-dimensional
protocol called Diffeomorphic Anatomical Registration using
Exponential Lie Algebra (DARTEL; Ashburner, 2007). During
normalization, the creation of the template and the registration of
the image were performed iteratively. Finally, gray matter images
were transformed to the Montreal Neurological Institute (MNI)
space and were spatially smoothed with a 3D Gaussian kernel
with 8-mm FWHM.

FDG-PET images were first coregistered to each individual’s
structural MRI image and were then normalized to the MNI
space with the corresponding normalization parameters derived
from the above DARTEL procedures. By normalizing to the
mean uptake of the global cerebrum, standard uptake value
ratio (SUVr) images were calculated (Jagust et al., 2010). These
SUVr images and smoothed gray matter images were used for
subsequent analysis.

ICA Analysis
The ICA was implemented using the Fusion ICA toolbox (FIT)4.
For the AD and NC groups, gray matter images and SUVr
images were analyzed separately. Using the Infomax algorithm,
the initial structural MRI data matrix (subjects by voxels) of AD
and NC groups was decomposed into a mixing coefficient matrix

2http://www.fil.ion.ucl.ac.uk/spm/
3http://dbm.neuro.uni-jena.de/vbm8
4http://mialab.mrn.org/software/fit/index.html

(subjects by sources) and a source matrix (sources by voxels).
The optimal numbers of ICs (the source matrix’s row) were
estimated based on the Minimum Description Length (MDL)
criteria. A two sample t-test was performed on each column of
the mixing coefficient matrix (ICA weights of each IC), which
represented the degree to which one subject contributed to
the corresponding source network, to evaluate the difference
between AD and NC groups for each IC. Only ICs whose
ICA weights showed significant between-group differences after
Bonferroni correction were converted to Z-score maps and
then transferred into 3D brain maps. Subsequently, binarization
templates of structural MRI brain networks were generated with
the threshold of Z ≥ 3.0. For MCI subjects, we calculated the
average gray matter volume based on the voxels within each
binarization network template in the individual’s structural MRI
image as the structural MRI neuroimaging factors in the Cox
model. The neuroimaging factors of FDG-PET SUVr images
were generated using the same method as the structural MRI
images.

Cox Model Analysis
For each MCI individual, time “0” was defined as the date of
the baseline assessment. The initial event was considered the
diagnosis of MCI, and the endpoint event was considered the
conversion to AD. Survival time was evaluated by the month.
For MCI-c subjects, it was defined as the time from the baseline
scan to the diagnosis of AD. For MCI-nc subjects who were
censored at the last follow-up, survival time was 36 months in
this study. The covariates in the Cox models mainly consisted
of brain neuroimaging factors extracted from structural MRI
and FDG-PET data and clinical variables, such as the genetic
status [apolipoprotein E (APOE) ε4-status], age at baseline scan
(years), gender, education (years), MMSE scores, Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-cog) scores
and Sum of Boxes of CDR (CDR-SB) scores. The HR from the
Cox model analysis indicated the change in the risk of progressing
to AD caused by the per 1 unit change in the corresponding
covariate. An HR smaller than 1 or a β value (the regression
coefficient) less than 0 indicated that a smaller value of the
covariate was associated with a shorter time or greater risk to MCI
progression.

We carried out five separate Cox analyses. Initially, two single-
modality Cox models were constructed for structural MRI and
FDG-PET imaging data. Then, the neuroimaging factors that
significantly predicted the conversion of MCI in the single-
modality analysis were entered into the two-modality Cox model
analysis. In addition, we built a Cox model consisting of clinical
variables. Finally, we entered both of these significantly predictive
neuroimaging factors and clinical variables into a comprehensive
Cox model to evaluate the effects of the comprehensive predictors
on MCI conversion to AD.

Finally, the area under the curve (AUC), sensitivity, specificity
and accuracy were calculated via the receiver operating
characteristic (ROC) curve analysis to assess the prediction
abilities of these significant factors in the Cox models. In the
ROC curve analysis, the logistic regression analysis was used to
combine those significant risk factors from the Cox model and
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generate a predicted value as a new index. The AUC closer to 1
indicated that the index had higher diagnostic value.

RESULTS

The number of estimated ICs was 49 for structural MRI data and
33 for FDG-PET data in the AD and NC groups, respectively.
After Bonferroni correction, 21 and 13 ICs showed significant
between-group differences.

Results of the single-modality Cox model showed that
the average gray matter volume and the SUVr of several
brain networks, such as IC_06 (HR = 2.40E-07) and IC_47
(HR = 2.56E-06) of structural MRI, and IC_27 (HR = 5.26E-
04), IC_28 (HR = 1.39E-03) of FDG-PET (Tables 2 and 3),
had significant effects on progression from MCI to AD. The
prediction accuracy of risk factors from the structural MRI
was accuracy = 68.80%, AUC = 0.748, sensitivity = 64.29%,
specificity = 74.07%, and accuracy = 68.80%, AUC = 0.736,
sensitivity = 57.14%, and specificity = 82.41% for FDG-PET
(Table 4).

The results of the two-modality Cox model showed that
IC_06 (HR = 2.12E-04) for structural MRI, IC_27 (HR = 1.36E-
03) and IC_28 (HR = 6.47E-03) for FDG-PET were associated
with MCI conversion (Table 2). The prediction accuracy was
accuracy = 73.50%, AUC = 0.808, sensitivity = 76.19%, and
specificity= 70.37% (Table 4).

Regarding the Cox model that included all clinical variables
as covariates, ADAS-cog scores (HR = 1.139), CDR-SB
scores (HR = 1.538) and APOE ε4-status (HR = 1.882)
were significant for the progression from MCI to AD
(Table 2). The prediction accuracy was accuracy = 81.62%,

AUC = 0.888, sensitivity = 77.78%, and specificity = 86.11%
(Table 4).

When both the significant risk factors of the two-
modality model and the clinical variables were entered into
a comprehensive Cox model, IC_06 for structural MRI
[HR = 8.29E-05 (95% confidence interval (CI), 5.10E-07 ∼
0.013)] and IC_27 for FDG-PET [HR = 0.066 (95% CI, 4.63E-03
∼ 0.928)], ADAS-cog scores [HR = 1.100 (95% CI, 1.059 ∼
1.144)], CDR-SB scores [HR = 1.622 (95% CI, 1.364 ∼ 1.930)]
and positive APOE ε4-status [HR = 1. 988 (95% CI, 1.531 ∼
2.581)] were the most predictive of MCI conversion (Table 2).
Figure 1 shows the maps of these two brain networks (IC_06 of
structural MRI and IC_27 of FDG-PET). The prediction accuracy
was accuracy = 84.62%, AUC = 0.920, sensitivity = 86.51%, and
specificity = 82.41% (Table 4). Figure 2 shows the ROC curves
of the significant variates in each Cox model. IC_06 for structural
MRI predominantly contained the bilateral middle and inferior
temporal gyrus and the left middle occipital gyrus. Structural
MRI IC_47 primarily included the bilateral hippocampus and
parahippocampal gyrus. For FDG-PET, IC_27 consisted of the
bilateral precuneus and the middle and posterior cingulate gyri.
IC_28 encompassed the bilateral inferior temporal gyrus and
fusiform gyrus. The main brain clusters in each network are
described in Table 3.

DISCUSSION

In this study, we first identified the ICs from AD and NC
groups via ICA and extracted the neuroimaging factors from
individuals with MCI. Then, multivariate Cox proportional
hazard regression models were performed to evaluate the

TABLE 2 | The results of the Cox model analysis.

Covariates of the Cox model β SE p-value HR (95% CI)

Single-modal neuroimaging factors

Structural MRI IC_06 −15.245 5.470 5.32E-03 2.40E-07 (5.29E-12, 0.011)

IC_47 −12.874 4.194 2.14E-03 2.56E-06 (6.90E-10, 0.095)

FDG-PET IC_27 −7.550 1.535 8.72E-07 5.26E-04 (2.60E-05, 0.011)

IC_28 −6.580 1.766 1.95E-04 1.39E-03 (4.35E-05, 0.044)

Two-modality neuroimaging factors

Structural MRI IC_06 −8.459 2.093 5.33E-05 2.12E-04 (3.50E-06, 0.013)

FDG-PET IC_27 −6.600 1.266 1.88E-07 1.36E-03 (1.14E-04, 0.016)

IC_28 −5.000 1.528 1.07E-03 6.74E-03 (3.37E-04, 0.135)

Clinical variables

ADAS-cog 0.130 0.019 2.14E-11 1.139 (1.097, 1.184)

CDR-SB 0.431 0.082 1.64E-07 1.538 (1.309, 1.808)

APOE ε4 0.633 0.135 2.81E-06 1.882 (1.445, 2.453)

Neuroimaging factors and clinical variables

ADAS-cog 0.096 0.020 1.23E-06 1.100 (1.059, 1.144)

CDR-SB 0.484 0.089 4.82E-08 1.622 (1.364, 1.930)

APOE ε4 0.687 0.133 2.48E-07 1.988 (1.531, 2.581)

Structural MRI IC_06 −9.398 2.598 2.98E-04 8.29E-05 (5.10E-07, 0.013)

FDG-PET IC_27 −2.724 1.352 0.044 0.066 (4.63E-03, 0.928)

IC, independent component; β, the regression coefficient; SE, standard error; HR, hazard ratio; CI, confidence interval.
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influence of predictors of interest on the time to onset of AD
dementia among MCI individuals. We found that reduced gray
matter volume in structural MRI images, low glucose metabolism
according to FDG-PET, increased ADAS-cog scores and CDR-SB
scores, and a positive APOE ε4-status had significant effects on
the progression of MCI to AD.

Significant Effect of Single-Modality
Analysis
Based on the single-modality data, the mean gray matter volumes
of IC_06 (HR= 2.40E-07, p= 5.32E-03) and IC_47 (HR= 2.56E-
06, p = 2.14E-03) based on structural MRI were significant risk
factors for MCI conversion. An HR smaller than 1 means that

TABLE 3 | Brain regions within brain networks with significant prediction
value in single-modality Cox models.

Brain regions Peak coordinates Z Cluster size

MNI (X, Y, Z) (mm3)

Structural MRI: IC_06

L middle temporal gyrus −57 −56 −5 18.81 17071

R middle temporal gyrus 60 −41 −14 9.87 2865

L inferior temporal gyrus −57 −56 −6 18.31 10641

R inferior temporal gyrus 60 −44 −12 10.39 3318

L middle occipital gyrus −53 −68 −2 9.94 9362

Structural MRI: IC_47

L hippocampus −23 −9 −21 16.19 5943

R hippocampus 24 −6 −23 20.15 5943

L parahippocampal gyrus −21 −8 −26 14.18 6267

R parahippocampal gyrus 24 −6 −24 19.48 6689

FDG-PET: IC_27

L precuneus −3 −66 32 10.44 12508

R precuneus 2 −65 35 10.31 12855

L middle cingulate gyrus 0 −48 35 8.73 3810

R middle cingulate gyrus 2 −54 32 10.11 3976

L posterior cingulate gyrus 0 −54 30 10.27 2936

R posterior cingulate gyrus 2 −54 30 10.25 1593

FDG-PET: IC_28

L inferior temporal gyrus −45 −3 −42 6.76 9966

R inferior temporal gyrus 45 −15 −36 7.15 11421

L fusiform gyrus −30 −12 −36 7.05 4833

R fusiform gyrus 44 −17 −36 6.88 5241

L, left; R, right; coordinates in MNI space.

FIGURE 1 | Maps of brain networks with significant risk in a
comprehensive Cox model, (A) for IC_06 of structural MRI and (B) for
IC_27 of FDG-PET.

reduced gray matter volume in these two ICs gave rise to a
higher risk of progression to AD. Primarily contained within
the bilateral middle and inferior temporal gyrus, IC_06 was
recognized as a temporal lobe-related network. Structural MRI
IC_47 was considered a hippocampus-related network linked
to memory (Wagner et al., 1998; Celone et al., 2006). The
results of the FDG-PET Cox model analysis showed that the
glucose metabolism in IC_27 (HR = 5.26E-04, p = 8.72E-07)
and IC_28 (HR = 1.39E-03, p = 1.95E-04) were significantly
related to MCI-to-AD conversion. IC_27 and IC_28 were
considered to be the posterior default mode network (DMN)
and a temporal lobe-related network, respectively. The HR value
suggested that lower glucose metabolism significantly affected
MCI conversion. As shown in Table 2, the HRs of ICs differed
from each other, which suggested that the neurological changes
in different brain networks represented different degrees of risk
for MCI progression. The main brain structural regions within
significant predictive networks identified in the current study
are consistent with reports in the literature (Jack et al., 2000;
Desikan et al., 2010; Devanand et al., 2012; Prestia et al., 2013;
Zeifman et al., 2015). For example, Jack et al. (2000) found
that the annual rates of hippocampal volume loss in MCI
decliners group was significantly greater than in stable MCI

TABLE 4 | The prediction accuracy of the significant covariates.

Covariates of the Cox model Accuracy (%) Sensitivity (%) Specificity (%) AUC

Neuroimaging factors

Structural MRI 68.80 64.29 74.07 0.748

FDG-PET 68.80 57.14 82.41 0.736

Structural MRI and FDG-PET 73.50 76.19 70.37 0.808

Clinical variables 81.62 77.78 86.11 0.888

Neuroimaging factors and clinical variables 84.62 86.51 82.41 0.920

AUC, area under the curve.

Frontiers in Human Neuroscience | www.frontiersin.org 6 February 2017 | Volume 11 | Article 33

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00033 February 6, 2017 Time: 15:34 # 7

Liu et al. ICA-Based Cox Model Predict MCI-to-AD

FIGURE 2 | ROC curves of the significant covariates in each Cox
model.

group which indicated that hippocampal atrophy was correlated
with AD-related changes in clinical status. Zeifman et al. (2015)
analyzed MRI scans of 58 incident MCI patients, 151 AD
patients, and 292 cognitively normal participants and fitted per-
voxel Cox proportional hazard models to examine the effects of
gray matter volume on the time to develop MCI or AD from
normal cognition. They found that voxels located within three
brain regions were significantly associated with time to AD:
the mesial temporal lobe, including the anterior hippocampus
extending into the amygdala, and the posterior cingulate gyrus.
In addition, voxels in the anterior hippocampus/amygdala were
also associated with progression from NC to MCI (Zeifman et al.,
2015).

Several studies have documented that gray matter atrophy
or hypometabolism were associated with an increased risk of
progression to AD (Yetkin et al., 2006; Tapiola et al., 2008;
Devanand et al., 2012; Koch et al., 2012; Prestia et al., 2013;
Zeifman et al., 2015). Based on the brain structural MRI
data, Devanand et al. (2012) considered the signed euclidean
distances at each voxel into linear regression models for baseline
analysis and constructed Cox models in the MCI sample (31
converters to AD, 99 non-converters). In that study, atrophy
of hippocampus for MCI-c was more considerable than MCI-
nc and atrophy of the parahippocampal gyrus was also risk
factors with relative moderate robustness for MCI conversion
(Devanand et al., 2012). Our findings of single modality
Cox models suggested that the hippocampus-related network
containing both hippocampus and parahippocampal gyrus was
also a risk factor and it indicated that a brain network respective
could be considered one of the possible attempts to investigate
the risk factors about MCI progression. Prestia et al. (2013)
adopted the multivariate general linear model and compared the
sensitivity and specificity of AD-related biomarkers including

the hippocampal volume, cerebrospinal fluid (CSF) biomarkers,
and three FDG-PET indices of hypometabolism, the PMOD
Alzheimer’s discrimination analysis tool (PALZ), the HCI,
the hippocampal volume and the meta-ROI average based
on prodromal AD and stable MCI patients from ADNI
and Translational Outpatient Memory Clinic database. The
diagnostic accuracy of three FDG-PET indices was 52, 61, and
52%, respectively, and 56% for the automatically computed high
hippocampal volume, 63% for the semi-automatically computed
high hippocampal volume in prodromal AD and stable MCI
patients from ADNI (Prestia et al., 2013). Although our study
incorporated different models and populations compared with
Prestia et al. (2013), our findings also suggested that biomarkers
of FDG-PET or structural MRI could be used in predicting MCI
conversion. In our single-modality Cox model analysis, FDG-
PET showed a similar predictive power as structural MRI, which
was in line with the results of the meta-analysis and meta-
regression performed by Yuan et al. (2009) which evaluated
the ability of FDG-PET, single-photon emission computed
tomography (SPECT), and structural MRI imaging to predict
MCI conversion and found that FDG-PET performs slightly
better.

Significant Effect of Two-Modality
Analysis
When the significant neuroimaging factors in the single-modality
analysis were entered into the two-modality Cox model, only
structural MRI IC_06, FDG-PET IC_27 and IC_28 were still
significant. By employing factor analyses and Cox proportional
hazards models based on the baseline MRI scans, Desikan et al.
(2010) identified the predictive power of a set of neuroanatomic
regions from two ADNI samples, a training cohort (60 MCI-c
and 102 MCI-nc) and a validation cohort (58 MCI-c and 104
MCI-nc). The prediction accuracy of MRI-derived factors for
the training cohort was AUC = 0.82, sensitivity = 74%, and
specificity = 84%; the prediction accuracy for the validation
cohort was AUC= 0.84, sensitivity= 87%, and specificity= 66%.
When MRI, CSF, and FDG-ROI predictive measures were
all included in a Cox model, the prediction accuracy was
AUC = 0.83, sensitivity = 90%, and specificity = 69% (Desikan
et al., 2010). Our findings from the two-modality Cox model
(accuracy = 73.50%, AUC = 0.808, sensitivity = 76.19%, and
specificity = 70.37%) were comparable to those of Desikan et al.
(2010). Our two-modality Cox model had a higher accuracy
than the single-modality model (Table 4), which indicated that
two-modality neuroimaging factors were more precise than
single-modality factors for estimating the risk associated with
MCI progression. The two-modality Cox model incorporated
complementary information between different brain imaging
data. As brain neurological changes of MCI can be detected
by neuroimaging techniques effectively, such as the gray matter
atrophy by structural MRI and hypometabolism by FDG-PET.
It was consistent with other studies, the multimodal Cox model
exhibited superior performance compared to the single modality
model (Jack et al., 2010b; Chen et al., 2011; Dickerson et al., 2013).
Jack et al. (2010b) also performed Cox proportional hazards
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models to estimate the effects of the Aβ load and hippocampal
volume on MCI progression. Their results indicated that both Aβ

load [HR = 2.6 (95% CI, 1.5 ∼ 4.5)] and hippocampal volume
[HR = 2.6 (95% CI, 1.8∼3.8)] were highly associated with MCI
conversion and had the comparable discriminative power when
were combined (Jack et al., 2010b).

Significant Effect of Clinical Variables
Analysis
The third Cox model was constructed to include only clinical
variables. The results showed that MCI individuals with higher
ADAS-cog scores, CDR-SB scores and a positive APOE ε4-
status had a higher HR of converting to AD, while age at the
time of the baseline scan (years), gender, level of education
(years), and MMSE scores were not significant risk factors. A few
studies related to MCI conversion have addressed the effects of
cognitive variables (Corder et al., 1993; Cedarbaum et al., 2013;
Li et al., 2013; Williams et al., 2013; Egli et al., 2014). Egli et al.
(2014) constructed Cox models to analyze nine measurements
that assessed learning, memory, language, and executive function
in 75 MCI individuals. To avoid introducing multicollinearity,
correlative variables were entered into separate Cox regression
model analyses. The authors then investigated which cognitive
variables could predict conversion time longer than 18 months
during the 3-year follow-up and found that the serial position
scores and Short Delay Free Recall were the best prediction
indices (Egli et al., 2014). To explore the utility of CDR-SB as an
outcome measure for AD, Cedarbaum et al. (2013) analyzed the
internal consistency, structural validity, and other psychometric
properties of CDR-SB scores about 382 subjects from ADNI and
demonstrated that the CDR-SB scores could be used to assess
cognitive and functional conditions in AD patients. We also
illustrated that CDR-SB score was a significant risk factor in
MCI-to-AD progression from another aspect. Moreover, many
studies have suggested that the APOE ε4 gene is a potent genetic
risk factor for sporadic and late onset familial AD (Trachtenberg
et al., 2012; Murphy et al., 2013; Risacher et al., 2015). Murphy
et al. (2013) fitted a linear mixed effects model to analyze brain
imaging data and the APOE ε4 status of 194 NC subjects, 212
early MCI subjects, 132 late MCI subjects, and 64 AD subjects and
their results showed a significantly observable effect of APOE ε4
(Cohen’s d= 0.96) on Aβ plaque density which rose dramatically
in AD comparing to NC (Murphy et al., 2013). In our study, MCI
individual who had a positive APOE ε4 status at baseline suffered
a higher risk in converting to AD within 3 years, and it added to
the growing evidence that the APOE ε4 allele is a reliable genetic
risk factor for AD progression.

Significant Effect of Comprehensive
Analysis
Finally, by combining significant neuroimaging factors and
clinical variables such as ADAS-cog scores, CDR-SB scores and
APOE genotype, the comprehensive Cox model provided a more
sufficient investigation of MCI progression, revealing that MCI
individuals with reduced gray matter volume in a temporal lobe-
related network (IC_06) based on structural MRI, low glucose

metabolism in the posterior DMN (IC_27) based on FDG-PET,
positive APOE ε4-status, increased ADAS-cog scores and CDR-
SB scores were more likely to convert to AD within 36 months
after baseline than others, as shown in Table 2.

As the ROC results indicated, a combination of neuroimaging
factors and clinical variables led to a higher AUC than either
neuroimaging factors or clinical variables alone that could
be more precise for estimating the risk associated with MCI
progression. In other words, the inclusion of multiple types
of risk factors would increase the predictive power of the
Cox model. While the prediction accuracy was only improved
moderately comparing to that using clinical variables alone.
Our results seemed to be indicative of relative low sensitivity
of applying spatial covarying features, a topic definitely worth
further investigation especially with the use of the ICA method.

Methodological Considerations
Although previous studies have examined multiple biomarkers
as predictors for MCI stage, our study provided a perspective by
considering brain networks extracted by ICA as predictors
and has incorporated neuroimaging factors, genetics,
sociodemographic and cognitive variables into the Cox
model analysis to assess the progression of MCI. Prior
ROI-based analyses have emphasized specific brain regions
such as the hippocampus of structural MRI, which exhibited
histopathological changes at early stages of AD (Jack et al., 1999;
Li et al., 2008; Shi et al., 2009). These analyses relied on a priori
knowledge without considering the co-variation of neurological
changes in different regions of the human brain. In contrast to
the ROI analysis method, which could be viewed as hypothesis
driven, ICA is a more objective data-driven approach that does
not require the need for any prior information. Moreover, the
outcome of the exploratory ICA procedure can be used as a
model for independent new data with corresponding hypothesis
to be tested. With independence among the ICs, the subsequent
inclusion of them in Cox models could avoid the disturbance of
multicollinearity, which is sometimes otherwise present among
the predictors. Additionally, it is difficult to implement whole
brain or voxel-level analyses because of the enormous number of
univariate models constructed per voxel, the scattered clusters
of significant voxels, and the ill-posed problems of multivariate
methods [the number of samples n is smaller than the number
of variables (voxels) p] with lower reliability (Good et al., 2001;
Betting et al., 2006; Agosta et al., 2007; Vemuri et al., 2011;
Zeifman et al., 2015). However, ICA-based Cox model analyses
take the covariance information of voxels into consideration and
reduce the number of computations.

Limitations
A limitation of the present study is the relatively short follow-up
period of the MCI participants. MCI individuals were followed
for 3 years, as in most previous studies on MCI subjects. Another
limitation of the current study is the lack of other imaging
data modalities, such as Aβ PET and functional MRI (fMRI).
A proportion of MCI samples did not have baseline data of
other modalities available in this study. Future studies based on
more imaging modalities are needed to assess the risk effects
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of different combinations of biomarkers on MCI progression
to AD. Considering multi-modal data from a larger number of
MCI-c subjects who were visited up for a longer period of time
might contribute to better performance. In addition, we used ICA
in this study for the data of each imaging modality separately
to extract the modality specific network. Thus, the ICA itself
did not integrate the multi-modal data. Rather, the outcome of
the separate ICAs served as joint input to the subsequent Cox
procedure. In doing so, the fusion of multi-modality images in
feature extraction was not at this stage. As an extension of ICA,
Joint ICA can fuse two-modality neuroimaging data and obtain
joint ICs (joint sources) sharing the same mixing coefficients
(Calhoun et al., 2006). From this perspective, implementing Joint
ICA to extract substantially optimized ICs is more likely to
further improve the statistical power and deserve a more careful
investigation in MCI progression.

CONCLUSION

In summary, our results suggested that a combination of ICA
and Cox model analyses could be successfully used in survival
data analysis to predict MCI progression. Furthermore, our
findings indicated that neuroimaging factors, together with
clinical variables, can effectively predict the time to progression
from MCI to AD. This work offered a network-based perspective
in AD-related survival analysis and might be useful in future
research.
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