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Objective: Exploring resting-state functional networks using functional magnetic

resonance imaging (fMRI) is a hot topic in the field of brain functions. Previous studies

suggested that the frequency dependence between blood oxygen level dependent

(BOLD) signals may convey meaningful information regarding interactions between brain

regions.

Methods: In this article, we introduced a novel frequency clustering analysis method

based on Hilbert-Huang Transform (HHT) and a label-replacement procedure. First, the

time series from multiple predefined regions of interest (ROIs) were extracted. Second,

each time series was decomposed into several intrinsic mode functions (IMFs) by using

HHT. Third, the improved k-means clustering method using a label-replacement method

was applied to the data of each subject to classify the ROIs into different classes.

Results: Two independent resting-state fMRI dataset of healthy subjects were analyzed

to test the efficacy of method. The results show almost identical clusters when applied

to different runs of a dataset or to different datasets, indicating a stable performance of

our framework.

Conclusions and Significance: Our framework provided a novel measure for

functional segregation of the brain according to time-frequency characteristics of resting

state BOLD activities.

Keywords: fMRI, HHT, frequency, clustering, IMF

INTRODUCTION

Exploring resting-state functional networks using functional magnetic resonance imaging (fMRI)
is a persistent topic in the research field of brain functions (Raichle et al., 2001; Damoiseaux
et al., 2006; De Luca et al., 2006). From a perspective of examining the features of the signal, the
conventional functional network analysis methods may fall into two categories: (1) the time-based
methods, such as temporal correlation (Fox et al., 2005; Fransson and Marrelec, 2008; Lowe, 2010;
Van Den Heuvel and Pol, 2010), regional homogeneity (ReHo) (Zang et al., 2004), independent
analysis method (ICA) (De Luca et al., 2006; Calhoun et al., 2009), and Bayesian network analysis
(Li et al., 2011; Wu et al., 2011), and (2) the frequency-based methods, such as low-frequency
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fluctuation (ALFF) analysis (Yang et al., 2007), coherence analysis
(Salvador et al., 2005), total interdependence analysis (Wen et al.,
2012), and phase relationship analysis (Sun et al., 2005).

The time-based methods are usually convenient and effective
in examining the point-to-point relationship between regional
blood oxygen level dependent (BOLD) signals. Recent studies
suggested that the frequency dependence between BOLD signals
may also convey meaningful information regarding interactions
between brain regions (Wen et al., 2012; Yu et al., 2013; Wei
et al., 2014). In a recent fMRI study (Song et al., 2014), a ReHo
based frequency clustering analysis framework was introduced
for resting-state fMRI analysis. The BOLD time series of each
voxel was decomposed into several frequency components using
empirical mode decomposition (EMD), and the ReHo values of
the components were used as features for clustering the voxels
based on similar frequency-specific ReHo signature. The forging
studies indicated that analyzing time-frequency characteristics is
equally important for comprehensively exploring how different
brain systems/sub-systems coordinate.

One challenge of further extracting the time-frequency
characteristic in frequency clustering analysis is time-frequency
representation of fMRI signals. In many previous studies, the
time-frequency characteristics of fMRI time series were usually
measured using short-time Fourier transform (Mezer et al.,
2009) or wavelet transform (Bullmore et al., 2001; Shimizu
et al., 2004) which always assume the linearity or stationarity
of input signals (Huang and Shen, 2005). However, BOLD
time series may not conform to these assumptions (Lange
and Zeger, 1997). Furthermore, constrained by the Uncertainty
Principle (Robertson, 1929), most of the traditional time-
frequency methods are limited in providing both high temporal
resolution and high frequency resolution at the same time.

HHT is a novel time-frequency method suitable for both
non-linear and non-stationary signals. Its application to
electrophysiological studies has demonstrated its efficay in
providing fine expressions of instantaneous frequency (Huang
and Shen, 2005; Peng et al., 2005; Donnelly, 2006; Huang and
Wu, 2008; Huang et al., 2008). For example, HHT has been
successfully applied in EEG-based seizure classification (Oweis
and Abdulhay, 2011), detection of spindles in sleep EEGs (Yang
et al., 2006), and ECG de-noising (Tang et al., 2007). However, its
application in fMRI studies is rare.

Other challenges in time-frequency analysis based frequency
clustering analysis voxel-wised analysis at different frequency
bands may demand great amount of calculation. Furthermore,
in the stage of clustering analysis, the labels of the clusters change
randomly across analyses (Mezer et al., 2009), causing difficulty
in cross-condition/datasets comparisons.

In this article, we introduced a novel frequency clustering
analysis method based on HHT and an improved k-mean
clustering method using label-replacement procedure. In our
framework, first, the time series from multiple predefined
regions of interest (ROIs) [i.e., 90 ROIs defined by the
Automated Anatomical Labeling (AAL) template Tzourio-
Mazoyer et al., 2002] were extracted. Second, each time
series was decomposed into several intrinsic mode functions
(IMFs) of which the instantaneous frequency characteristics
were subsequently calculated using HHT. Third, the improved

k-means clustering method using a label-replacement method
was applied to the data of each subject to classify the ROIs into
different classes. To test the efficacy of our frequency clustering
analysis method, two independent resting-state fMRI data sets of
healthy subjects (198 subjects in Dataset I; 88 subjects in Dataset
II) were analyzed. The results demonstrated that for different
dataset, our method generated stable clusters of the brain regions
according to time-frequency characteristics of their resting state
BOLD activities.

MATERIALS AND METHODS

fMRI Data Acquisition
In this study, we used a resting-state fMRI dataset (Dataset I)
provided by the open source website of “1,000 Functional
Connectomes’ Project” (http://www.nitrc.org/projects/fcon_
1000/). The dataset included functional and structural MR
images recorded from 198 healthy subjects (18–26 years
old, 122 females) by Yu-Feng Zang (Song et al., 2014). No
subject had a history of neurological, psychiatric or medical
conditions. Written informed consents were given to all subjects
in accordance with Institutional Review Board guidelines and in
compliance with the Declaration of Helsinki.

The scanning was performed using a 3.0-Tesla scanner
(Siemens TRIO TIM, Munich, Germany). The subjects were
instructed to rest with their eyes closed, keep their heads still, and
not to fall asleep. A gradient echo T2∗-weighted EPI sequence
was used for acquiring resting state functional images with the
following parameters: TR = 2,000 ms; TE = 30 ms; 33 slices;
matrix size= 64× 64; FOV= 240× 240 mm2 acquisition voxel
size= 3.75× 3.75× 3.50 mm3; 225 volumes.

In order to verify the stability of the results, an independent
resting-state data set (Dataset II) was also analyzed. Dataset
II was collected from 88 healthy young right-handed college
students (19–26 years old, 44 females) performing eyes-closed
resting state task. The scanning was performed using a 3.0-Tesla
Siemens whole-body MRI system in Brain Imaging Center of
Beijing Normal University. All subjects were given the written
informed consents before scanning. No subject had a history
of neurological, psychiatric, or medical conditions. The scan
was performed during a resting-state condition. The detailed
parameters used were as follows: TR = 2,000 ms; TE = 30
ms; 33 slices; matrix size = 64 × 64; FOV = 240 × 240 mm2

acquisition voxel size = 3.13 × 3.13 × 3.60 mm3; 145 volumes.
The experiment was approved by the Institutional Review Board
of the Beijing Normal University.

Image Preprocessing
In current research, the images were analyzed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm). For each subject, the original
first five functional volumes were removed to avoid the possible
disturbance caused by non-equilibrium effects of magnetization.
The remaining functional images (220 in Dataset I; 140 in
Dataset II) were corrected for slice timing, motion corrected,
and spatially normalized into a Montreal Neurological Institute
(MNI) space using the standard EPI template (Evans et al., 1993).
The normalized image had 61 slices, a matrix size of 61× 73, and
a voxel size of 3 mm× 3 mm× 3 mm. No translation or rotation
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movement in any data set exceeded ±2 mm or ±2 degree. The
data had originally been “cleaned” through the use of confound
regressors derived from CSF and white matter masks, as well as
head motion parameters. The linear trend was regressed out for
each voxel’s time course to remove signal drifts caused by scanner
instability or other factors. The time course of each voxel was
normalized by subtracting the temporal mean and dividing by
the temporal standard deviation. After preprocessing, for each
subject and for each of the 90 regions of interest (ROIs) defined
using the AAL template (Tzourio-Mazoyer et al., 2002), an ROI
time course was extracted by averaging the time courses of all
voxels in the ROI.

Using Hilbert-Huang Transform (HHT) to
Acquire Instantaneous Frequency and
Hilbert Weighted Frequency (HWF)
The forgoing ROI time courses were fed into HHT to acquire
instantaneous frequency and HWF feature. The HHT consists
of three main processes. First, major IMFs are extracted from
the input signal based on empirical mode decomposition (EMD).
Second, Hilbert transform is applied to each IMF to obtain the
analytic transform of the original signal. Last, the instantaneous
frequency is calculated according to the analytical transform of
each IMF (Huang and Shen, 2005; Huang and Pan, 2006; Ding
et al., 2007) and the Hilbert weighted frequency (Xie and Wang,
2006) of each IMF is calculated according to the instantaneous
frequency of the IMF. The detailed descriptions of each step are
as follows:

(1) Empirical mode decomposition

The EMDmethod (Huang and Shen, 2005) decomposes an input
signal into a finite set of intrinsic oscillatory components, namely,
the IMFs. Mathematically, for fMRI time series, EMD generates
a set of IMFs and a monotonic residue signal r(t):

x(t) =

N
∑

i= 1

IMFi(t) + r(t), (1)

where N is the number of the IMFs.
Each IMF must satisfy two conditions:

(i) Along the time course of the IMF, the number of the local
extrema and the number of zero crossings are either equal or
differ by one;

(ii) The sum of the envelope defined by the local maxima and
the envelope defined by the local minima is constantly zero.

To extract IMFs using EMD, an iterative method known as the
sifting algorithm is used as follows:

Step 1: Find the local extrema of the input signal;
Step 2: Use interpolation to generate the lower envelope elow(t)

and the upper envelope eup(t) of the current signal
according to the local minima and local maxima
respectively;

Step 3: Calculate the local mean time course emean(t):

emean (t) =
eup(t) + elower(t)

2
, (2)

Step 4: Obtain the “oscillatory-mode” r(t) = x(t)− emean(t);
Step 5: If r(t) satisfies the stopping criteria (the two conditions

of IMF), IMFi = r(t) becomes an IMF, otherwise set
x(t) = r(t) and repeat the process from Step 1.

To obtain remaining IMFs, the same procedure is applied
iteratively to the residual r(t) = x(t) − IMFi(t) until r(t) is
monotonic.

(2) Extracting instantaneous frequency using Hilbert transform.

Hilbert transform was used to extract the instantaneous
frequency of each IMF. For signal x(t), its Hilbert transform y(t)
is defined as:

y(t) =
P

π

+∞
∫

−∞

x(τ )

t − τ
dτ , (3)

where P is the Cauchy principal value (Surhone et al., 2013).
Hilbert transform is capable of describe the local properties of
x(t) (Peng et al., 2005). The analytic transform of z(t) x(t) is
defined as:

z(t) = x(t) + iy(t) = a(t)eiϕ(t), (4)

a(t) =

√

[x2(t) + y2(t)], (5)

ϕ (t) = arctan

(

y(t)

x(t)

)

, (6)

where a(t) is the instantaneous amplitude, and ϕ (t) is the
instantaneous phase. The instantaneous frequencyω(t) is defined
as the time derivative of ϕ (t):

ω(t) =
dϕ(t)

dt
. (7)

(3) Hilbert weighted frequency (HWF) based on instantaneous
frequency

The Hilbert weighted frequency (Xie and Wang, 2006) of each
IMF is also calculated based on the instantaneous amplitude and
phase to reflect the mean oscillation frequency of the IMF. The
HWF(j) of the jth IMF is defined as:

HWF(j) =

m
∑

i=1
ωj(i)a

2
j (i)

m
∑

i=1
a2j (i)

, (8)

where ωj(i) is the instantaneous frequency, aj(t) is the
instantaneous amplitude, andm is the number of time point.

Identify the Brain Networks Using k-means
Clustering Analysis Based on HWF
Characteristics
In order to identify the brain regions sharing common
instantaneous frequency characteristics, we employed k-means
clustering analysis to the two resting-state datasets respectively.
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In each analysis, the 90 ROIs were classified into different clusters
based on the HWF feature vectors each of which comprised the
first five HWFs. For each feature vector, each HWF form all
subjects was concatenated to yield a group feature vector for
the following analysis. The clustering analysis was performed for
different k from 1 to 90. The squared Euclidean distance index
(Mezer et al., 2009) for different k values was plotted as a function
to determine the appropriate k.

Label-Replacement Method to Improve
k-means Clustering Analysis
In conventional k-means clustering analysis, the labels of each
cluster are unordered due to random initialization of the
algorithm which hinders the compare between conditions and
datasets. The first impede caused by the randomization is that
the label of a cluster, of which the spatial structure changes little,
may change dramatically from run to run even for the same
condition in the same dataset. For example, some brain regions
are classified into a cluster labeled as “1” in one run, and into the
same cluster but labeled as “2” in another run. In this study, we
proposed a method for sorting the label of clusters. The method
composed of two steps: (1) label-sorting and (2) label-matching.
In label-sorting, a hash table (Maurer and Lewis, 1975) was used
to improve the computing efficiency. The detailed process was as
follows:

Step 1: Obtain an unordered label table (ULT(i)) according to
the raw results of k-means clustering.

Step 2: A hash table (Hash(i)) is constructed to record the labels
in turn.

Step 3: If the label is not found in Hash(i); add the label to
Hash(i) and record the order by Lab If the label already
exists in Hash(i); replace the label of ULT(i) by Lab;
update Lab and return to Step2.

A sorted label table (SLT(n)) is constructed by the follow process
(shown in Figure 1):

In this part, the hash table is used to record a new label of
each ULT(n). In each repetition, the algorithm searches the hash
table to decide whether the unordered label needs to be replaced.
After label-sorting, the ULT(i) was sorted in the order of brain
regions (AAL).

The second impede caused by the randomization is that label
may change across different conditions/datasets. That is, for
the same cluster, its label within one condition/dataset could
be different from that in another condition/dataset, making it
hard to compare between different groups or between different
conditions. This could be even worse when the cluster changes
slightly across conditions/dataset. Therefore, we developed
a label-matching method besides the forgoing label sorting
method. The basic idea is that use the label setting of one of
the condition/dataset as a reference, then go through the target
clusters of another condition/dataset, when a target cluster share
a similar spatial pattern with a reference cluster, the label of this
reference cluster is assigned to the target cluster.

The detail of matching the target and the reference cluster is
as below (shown in Figure 2).

FIGURE 1 | The process of label-sorting algorithm.

RESULTS

For each dataset, BOLD time series from the 90 ROIs defined
by AAL template were extracted. First, EMD was applied
to decompose the BOLD time series into different frequency
components. The EMD outcome of both datasets showed that the
BOLD signals could be decomposed into five major IMFs (please
see examples in Figure 3).

In order to determine the number of IMFs which were self-
adaptive decomposed from fMRI signal, the EMD of each vowel
in each subjects were calculated.

According to the results (Figure 3), most of the voxels have
at least 5 IMFs. Therefore, in our study, the first 5 IMFs were
selected for the following analysis (an example of EMD was
shown in Figure 4, left panel).

Second, the instantaneous frequency of each major IMF
was calculated using Hilbert transform and its corresponding
power spectrum was calculated. The results demonstrate that
the instantaneous frequency of the IMFs varies across frequency
bands centered by different dominant frequency from low
(around 0.01 Hz) to high (around 0.12 Hz) (please see the
example in Figure 4).

Third, the HWF of each major IMF was calculated. The
histograms of HWF distributions in the whole brain across
all subjects showed that the major IMFs occupy certain
frequency bands: IMF1, 0–0.01Hz; IMF2, 0.005–0.015Hz; IMF3
0.01–0.03Hz; IMF4, 0.03–0.07 Hz; and IMF5, 0.08–0.18Hz
(Figure 5).
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FIGURE 2 | The process of label-matching algorithm.

FIGURE 3 | Histogram of the number of IMF.

The first five HWF of each ROI were selected as the features
for k-means clustering analysis. For selecting the appropriate
parameter (k), k-means clustering analysis was repeated for
different k from 1 to 90 (shown in Figure 6). Then the clusters
were evaluated using a squared Euclidean distance index (Mezer
et al., 2009) and the appropriate parameter, k = 20, was selected
for each subject.

A comparison of the stability of before and after label-sorting
method was shown in Figure 7. After label-sorting, the results of
cluster were sorted in the order of brain regions.

The results of the two datasets show almost identical clusters
of the ROIs and a comparison of the results of before and after
label-replacement (shown in Figure 8).

DISCUSSION

In this study, we presented a new frame work for brain region
clustering based on HHT method and an improved k-mean
clustering method adopting cluster label sorting, and applied the
frame work to analyzing two independent resting-state fMRI data
sets of healthy subjects (198 subjects in Dataset I; 88 subjects in
Dataset II). The results showed that our method is efficacy in
functional segregation based on time-frequency characteristics of
resting state BOLD activities.

Applying Hilbert-Huang Transform to
BOLD Signal Analysis
In our study, HHT was introduced to frequency clustering
analysis of resting-state fMRI. The advantage of using HHT is
mainly based on two features of the fMRI data. First, previous
studies have shown that the fMRI data may not strictly conform
to the assumptions of linearity and stationarity (Lange and
Zeger, 1997). Compared with traditional time-frequency analysis
method such as wavelet transform, short-time Fourier transform,
HHT can be directly applied to the non-linear or non-stationary
signals. Second, the fMRI signals mainly record the slow BOLD
change in low sampling intervals around 1–3 s. Traditional time-
frequency methods constrained by the Uncertainty Principle
(Robertson, 1929) are limited in providing both high temporal
resolution and high frequency resolution at the same time. While
many previous studies have shown that HHT does not suffer
from the trade-off between frequency resolution and temporal
resolution (Peng et al., 2005; Donnelly, 2006; Huang and Wu,
2008) and thus may be a suitable candidate for time-frequency
representation of the fMRI signals. Our results show that HHT
can represent the fMRI signals in both high temporal resolution
and high frequency resolution.

Number of IMFs in Empirical Mode
Decomposition
EMD method, as an important part of HHT, is a local, fully
data driven and self-adaptive analysis approach. The results
of EMD show that different brain voxel/regions may contain
multiple IMFs, the number of IMF voxels may affect the efficacy
of clustering in the features space. On one hand, too small
number of IMFs may quicken the processing but provides
inadequate information to describe the functional significance
of the clusters. On the other hand, too larger number of IMFs
may impede the clustering progress. In our method, the number
of IMFs was determined by picking up the number that present
in most of the brain voxels (Figure 3). The HWF of each
IMF was determined using instantaneous amplitude and phase
information to reflect the mean oscillation frequency of the
IMF. Previous research has shown that HWF has clear physical
meaning and has low variability in terms of robustness (Xie
and Wang, 2006). Therefore, the HWF of the first five IMFs
were calculated to construct the feature vector. And then, the
histogram of HWF was also calculated (shown in Figure 5) to
show the mean frequency distribution of the five IMFs. Each
of the five histograms is a statistic of the whole-brain voxels.
Since the frequency content of different voxels at different sites
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FIGURE 4 | The example of IMFs (blue), instantaneous frequency (green) and corresponding power spectrum (red).

FIGURE 5 | The histograms of HWF.

of the brain (and subjects) are roughly similar, the same IMF
(IMF(j), j = 1, 2, 3, 4, 5) from any voxel will roughly fall into
the same frequency band. These results suggest that EMD works
well in adaptively decomposing the fMRI signals into different
IMFs that fall into distinctive frequency bands and is a promising
method for non-stationary and non-linear neurological signal
processing.

Label-Sorting for k-means Clustering
In previous frequency clustering analysis, k-means clustering
method has been applied to resting-state fMRI network analysis
(Song et al., 2014) and generates meaningful results. However,
in the previous work, the labels of the clusters were randomly
assigned and changed from analysis to analysis, making it hard
to compare between conditions/datasets. Our study presents
a label-sorting method which uses Hash table to obtain an
ordered and stable clustering result across different runs of
analysis within a condition/dataset, and further a cluster-label
matching method to deal with cluster matching and label

FIGURE 6 | Selection of cluster number (k).

assignment across conditions/datasets. The verification results
showed almost identical clusters no matter when the method
was applied to different runs of a dataset or to different datasets,
indicating a stable performance of our framework (Figures 7, 8).
It is worth noting that when condition or dataset changes,
the spatial representation of an underlying brain cluster may
also change in some extends according to the real scenario.
A careful visual inspection for potential unmatched cluster and
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FIGURE 7 | A comparison of the stability of before and after

label-sorting method in each run.

FIGURE 8 | The k-means frequency clustering analysis of two

independent fMRI data sets and a comparison of clusters of before

and after label-replacement.

label caused by dramatic brain change between conditions or
subject groups is recommended besides our frame work. The
change itself, if significant, could deliver meaningful clinical,
neurological and psychophysiological information.

Selecting the Regions of Interest
It is worth noting that using AAL template or for ROI selection
is not part of the major line but an alternative module of our
frame work. In the current study we used the classical AAL
template for ROI selection to demonstrate the performance of
our method. However, AAL template is defined anatomically.
The current work only clustered the known anatomical structures
function similarly on frequency domain. Indeed, the AAL ROI
template can be replaced by other ROIs or voxels according
to the interest of the researchers. The ROIs can be a set of

task-activated sites with their intrinsic relationship to be clarified,
or a set of anatomically defined structures. The analysis can
also be performed in a whole-brain or partial-brain voxel-wise
fashion.

Limitation of the Current Work
In the current work, the data driven process introduce five
IMFs referring to different frequency bands. The IMF 5 was
corresponding to a frequency band of 0.08∼0.18 Hz which
had been excluded in most of the previous resting state
functional connectivity analysis. It is a nontrivial question that
what information the higher frequency bands of BOLD change
provide. Although, faster neural electrophysiological activities
have been found in higher order regions such as the frontal lobe
and were proposed to carry important cognitive meanings (Lang
et al., 1986), the neurocognitive meaning of the higher frequency
components of BOLD which were usually considered as noise in
many previous functional connectivity studies is under debate
(Michels et al., 2010; Boubela et al., 2013). Understanding the
neurocognitivemeanings of the clustering results requires further
careful works in the future.

CONCLUSION

In this study, a novel frequency clustering analysis method based
on HHT and a label-replacement procedure was introduced.
First, the ROI time series were extracted. Second, each time
series was decomposed into several intrinsic mode functions
(IMFs) by using HHT. Third, the improved k-means clustering
method using a label-replacement method was applied to the
data of each subject to classify the ROIs into different classes.
Two independent resting-state fMRI dataset of healthy subjects
were analyzed to test the efficacy of method. The results showed
that for different dataset, our method can stably cluster the brain
regions according to the time-frequency characteristics of their
resting state BOLD activities.
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