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The hippocampus plays a prominent role in associative memory by supporting relational
binding and recollection processes. Structural atrophy in the hippocampus is likely
to induce associative memory deficits in older adults. Previous studies have primarily
focused on average age-related differences in hippocampal structure and memory
performance. To date, however, it remains unclear whether individual differences in
hippocampal morphometry underlie differential associative memory performance, and
whether there are sex differences in the structural correlates of associative memory in
healthy older adults. Here, we used voxel-based morphometry (VBM) to examine the
extent to which gray matter volume (GMV) of the hippocampus predicts associative
memory performance in cognitively normal older adults. Seventy-one participants
completed a cued recall paired-associative learning test (PALT), which consists of
novel associations and semantically related associations, and underwent magnetic
resonance imaging (MRI). We observed worse associative memory performance and
larger variability for novel associations than for semantically related associations. The
VBM results revealed that higher scores on associative memory for novel associations
were related to greater hippocampal GMV across all older adults. When considering
men and women separately, the correlation between hippocampal GMV and associative
memory performance for novel associations reached significance only in older women.
These findings suggest that hippocampal structural volumes may predict individual
differences in novel associative memory in older women but not men.
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INTRODUCTION

Episodic memory refers to the memory of personally experienced events that occurred at
a particular time and place (Tulving, 1985). Normal aging is associated with a decline in
episodic memory. The associative deficits hypothesis (ADH) attributes age-related episodic
memory decline to difficulties in creating and retrieving associations between single units of
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information in older adults (Naveh-Benjamin, 2000). As a typical
form of episodicmemory, associativememory involves the ability
to remember inter-item and item-context relationships. Many
previous studies have indicated a greater decline in associative
memory than item memory in normal aging. This is observed
with a wide range of subjects, such as word pairs, picture pairs
and face-name pairs (see Old and Naveh-Benjamin, 2008 for a
meta-analysis).

It is well established that the hippocampus, which is within the
medial temporal lobe (MTL), is especially important in binding
and recollecting novel item-item or item-context associations in
associative memory (Diana et al., 2007; Hannula and Ranganath,
2009; Blumenfeld et al., 2010; Ranganath, 2010; Westerberg
et al., 2012; Eichenbaum, 2017). Functional magnetic resonance
imaging (fMRI) studies have documented age-related decreases
in hippocampal activation during both relational memory
encoding and retrieval (Mitchell et al., 2000; Dennis et al.,
2008; Giovanello and Schacter, 2011; Daselaar et al., 2013; Addis
et al., 2014). In addition, substantial structural atrophy of the
hippocampus may be linked to relational memory impairment
in healthy older adults (Resnick et al., 2003; Raz et al., 2004b;
Tisserand et al., 2004; Raji et al., 2012; Ta et al., 2012; Fraser
et al., 2015). These findings suggest that structural changes in
the hippocampus may underlie age-related associative memory
deficits.

Previous studies examining the neural correlates of episodic
memory in older adults have typically focused on average
age-related effects. Recently, neural correlates of individual
differences in episodic memory in older adults have attracted
considerable attention in cognitive neuroscience studies on
aging (Kaup et al., 2011; Nyberg et al., 2012; Salthouse, 2017).
Importantly, there is greater individual variability in episodic
memory, especially in associative memory, in older adults
compared to younger adults (Wilson et al., 2002; Lindenberger
and Ghisletta, 2009; Bender et al., 2010; Kilb and Naveh-
Benjamin, 2011; Fandakova et al., 2012; Ghisletta et al., 2012;
Pudas et al., 2013). Specifically, associative memory decline was
observed in some older individuals, but not in others (Fandakova
et al., 2015). Given that the hippocampus supports episodic
memory by binding item-item or item-context associations, and
that greater inter-individual differences in episodic memory have
been observed in the elderly, it is plausible that the structure
of the hippocampus may be associated with associative memory
performance in older adults. However, structural MRI studies
of individual differences in associative memory have reported
inconsistent results in healthy older adults.

Ameta-analysis reported weak positive links between episodic
memory and hippocampal volume in older adults (Van Petten,
2004). Furthermore, Rajah et al. (2010) and Bauer et al.
(2015) did not find an association between associative memory
performance and hippocampal gray matter volume (GMV)
in older adults. Interestingly, Becker et al. (2015) found that
older adults with better associative memory have larger GMV
primarily in the bilateral prefrontal cortex (PFC) rather than
the hippocampus. Nevertheless, some structural studies have
found positive relationships between hippocampal volumes and
scores on associative memory tests in older adults. For example,

Shing et al. (2011) reported a positive correlation between
hippocampal subfield (CA3/4 and dentate gyrus) volume and
associative recognition memory performance. In addition,
Zamboni et al. (2013) found a link between hippocampal volume
and performance on a visuospatial associative memory task in
older adults.

Taken together, previous structural studies investigating
associative memory in healthy older adults have reached less
consistent conclusions. Some methodological issues may be
helpful in explaining why current research has yielded discrepant
findings. For example, it has been argued that the cued recall
task greatly depends on the hippocampus, and is more likely
to recruit the hippocampus than the associative recognition
task during associative retrieval (Caplan and Madan, 2016).
Consequently, it is more likely to find positive correlations
between hippocampal volume and scores on associative memory
when a cued recall task is used. In addition, sex might be
another important factor to consider. Structural MRI studies
have reported sexual dimorphism in the effects of age on brain
morphology, and accelerated brain aging in men compared to
womenwas commonly observed (Cowell et al., 1994; Coffey et al.,
1998; Resnick et al., 2000; Xu et al., 2000; Good et al., 2001).
In particular, previous studies have revealed sex differences
in age-related decline in the hippocampus morphology. For
example, Raz et al. (2004a) reported a steeper age-related
decline in the GMV of the hippocampus in men compared
to women. Pruessner et al. (2001) and Li et al. (2014) found
that age-related atrophy in the hippocampus was only observed
in men. Behaviorally, older women generally perform better
than older men on associative memory function (Lamar et al.,
2003; Gerstorf et al., 2006; Herlitz and Rehnman, 2008). Thus,
it is plausible that sex may be a potential factor resulting
in the mixed findings regarding the brain structure correlates
of associative memory. Unfortunately, sex differences in the
hippocampal structural correlates of individual differences in
associative memory have been rarely studied. To date, the
only supporting evidence comes from the study of Ystad
et al. (2009), which revealed that the left hippocampal volume
significantly predicted the free recall scores on verbal learning
test for older women but not for men. Given that both free
recall and associative memory rely primarily on the recollection
process supported by the hippocampus (Yonelinas, 2002), it
is plausible to assume that sex differences also exist in the
hippocampal structural correlates of associative memory in older
adults.

Understanding sex differences in brain structure-behavior
associations in normal aging has important implications for
appreciating brain-based disorders risk (e.g., mild cognitive
impairment, MCI or Alzheimer’s disease, AD), and for early
treatment and prevention of these disorders (Mazure and
Swendsen, 2016). In the present study, we aimed to use
structural MRI to further investigate the sex differences in brain
structural basis underlying individual differences in associative
memory in normal older adults. We measured participants’
associative memory using the paired-associative learning test
(PALT). The PALT is a standardized neuropsychological
assessment specifically designed to evaluate associative memory
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in Chinese (Xu and Wu, 1986; Huo et al., 2014), and
has been widely used in previous studies due to its high
validity and reliability (Wang et al., 2013; Zheng et al.,
2015). The test is designed as a study-test paradigm in which
the participants study six novel and six semantically related
word pairs and are asked to perform a cued recall test. The
study-test procedure repeats three times with different word
pair orders each time. Subsequently, the associative memory
scores on novel associations and semantically related associations
were calculated, respectively. Voxel-based morphometry (VBM)
analysis was used to investigate whether local GMV of the
hippocampus was associated with scores on the PALT. VBM is
a semi-automated whole brain technique for quantifying brain
morphological changes (Ashburner and Friston, 2000), and has
been widely used to examine the structural brain correlates of
cognitive function.

It has been suggested that the cued recall task during
associative retrieval is more likely to recruit the hippocampus
(Caplan and Madan, 2016), and memory for novel associations
between items greatly depends on the hippocampus (Norman
and O’Reilly, 2003; Diana et al., 2007; Mitchell and Johnson,
2009; Ranganath, 2010; Eichenbaum, 2017). In addition,
age-related decline in the GMV of the hippocampus is
relatively modest in older women (Pruessner et al., 2001;
Raz et al., 2004a; Li et al., 2014). Relatively preserved GMV
in the hippocampus may facilitate associative memory in
women but would not influence performance in men who
demonstrate a steeper age-related decline in the volume
of the hippocampus. As a result, we speculated that there
would be sex differences in the correlations between the
hippocampal GMV and PALT scores for novel associations,
and the GMV of the hippocampus may predict individual
differences in associative memory for novel associations in
older women but not men. Finally, in order to validate
the specificity of the relationship between the GMV of the
hippocampus and associative memory, we also performed
correlation analyses between the GMV of the clusters obtained
in the hippocampal GMV-PALT correlation analyses and
scores on neuropsychological tests assessing other cognitive
functions (i.e., working memory, semantic memory and
executive function).

MATERIALS AND METHODS

Participants
A total of 71 community-dwelling older adults (35 men
and 36 women) with normal cognition were recruited from
communities near the Institute of Psychology, Chinese Academy
of Sciences in Beijing. The inclusion criteria were as follows:
(1) age ≥ 60 years; (2) a score ≥ 21 on the Montreal Cognitive
Assessment—Beijing Version (MoCA1; Yu et al., 2012), (3) right-
handedness; (4) no neurological deficits or traumatic brain
injury; (5) no dementia or MCI; and (6) preserved activities of

1The MoCA is a cognitive screening tool for mild cognitive impairment
(MCI) andmild dementia, and can be used to assess global cognitive function.

TABLE 1 | Demographic characteristic and neuropsychological measures
of the participants (mean and standard deviations).

Characteristics All participants Men Women

Age (years) 70.46 (6.04) 71.28 (5.81) 69.67 (6.23)

Education (years) 13.87 (3.26) 14.28 (3.32) 13.47 (3.19)

MoCA 27.00 (2.00) 26.65 (2.11) 27.33 (1.85)

PALT_novel 5.45 (3.55) 4.83 (3.80) 6.05 (3.22)

PALT_related 6.86 (1.31) 6.64 (1.47) 7.07 (1.12)

Digit span forward 7.54 (1.50) 7.69 (1.62) 7.39 (1.39)

Digit span backward 5.02 (1.51) 5.00 (1.67) 5.03 (1.37)

Verbal fluency test 25.04 (6.06) 25.42 (5.33) 24.67 (6.73)

Trail making (seconds) 33.36 (21.71) 32.54 (20.24) 34.10 (23.32)

Note: Trail making scores were obtained using Trail making B minus Trail making A.

MoCA, montreal cognitive assessment. PALT, paired-associative learning test.

daily living (ADL; Lawton and Brody, 1969). The demographic
characteristics of the participants are presented in Table 1.

In addition, 54 of the participants (26 men: age,
71.69 ± 5.44 years; education, 15.23 ± 2.72 years; MoCA,
27.08 ± 2.15, and 28 women: age, 70.86 ± 6.54 years; education,
13.89 ± 3.20 years; MoCA, 27.46 ± 2.01) completed the digit
span forward (DSF) and digit span backward (DSB) tests
(Wechsler, 1981), verbal fluency test (VFT, Spreen and Strauss,
1998) and trail making tests A and B (TMT, Reitan, 1992).

The study protocol was approved by the Ethics Committee of
the Institute of Psychology, Chinese Academy of Sciences,
and written informed consent was obtained from all
participants.

Neuropsychological Measures
The PALT (Xu and Wu, 1986) was used to assess participants’
associative memory performance. For this test, the participants
first studied 12 word pairs consisting of nouns with six novel
associations (e.g., teacher-railway) and six semantically related
associations (e.g., sun-moon). During the study, all 12 word
pairs were read at a rate of 1 s per word pair, with intervals of
2 s between two pairs. After the study session, the participants
were asked to complete a cued recall task in which the first
word of the pair was provided and they had to recall the
other paired word within 5 s of hearing the first word. A
correctly recalled word was scored 0.5 for the semantically related
associations and 1 for the novel associations. The procedure
was repeated three times with different word pair orders each
time. The scores on novel associations (range: 0–18) and
semantically related associations (range: 0–9) were calculated,
respectively.

In addition, MoCA, DSF and DSB tests, category VFT and
TMT A and B were used to assess global cognition, working
memory, semantic memory and executive function, respectively.

MR Image Acquisition
A 3-Tesla Siemens Trio scanner (Erlangen, Germany) equipped
for echo planar imaging (EPI) at the BeijingMRI Center for Brain
Research was used for image acquisition. A high-resolution, 3-D
T1-weighted structural image was acquired for each participant,
using a magnetization-prepared rapid gradient echo (MPRAGE)
sequence: 176 slices, acquisition matrix = 256 × 256, voxel
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size = 1 × 1 × 1 mm3, TR = 1900 ms, TE = 2.2 ms and flip
angle = 9◦. T1-weighted structural MRI images were used for
VBM analysis.

DATA ANALYSIS

Image Processing
VBM was performed using the Statistical Parametric Mapping
program (SPM82, Wellcome Trust Center for Neuroimaging,
London, UK), and the toolbox for Data Processing and Analysis
of Brain Imaging (DPABI V2.13; Yan et al., 2016) in MATLAB
R2012b (Mathworks, Inc., Natick, MA, USA). Before processing,
all of the structural images were visually inspected for artifacts
and the origin of the images was manually set at the anterior
commissure for each participant. All 71 participants were
included in the VBM analysis.

The structural MR images were first normalized and
segmented into gray matter, white matter and cerebrospinal
fluid (Ashburner and Friston, 2005). Following segmentation,
the gray matter images were processed to create study-
specific gray matter population templates using the DARTEL
algorithm. After an initial affine registration of the gray
matter DARTEL template to the tissue probability map in the
Montreal Neurological Institute (MNI) space, we applied a
non-linear warping of the gray matter images to the DARTEL
gray matter template in the MNI space and resampled to
1.5 × 1.5 × 1.5 mm3. The gray matter values of each voxel were
modulated by multiplying the gray matter concentration map by
the nonlinear determinants derived during spatial normalization.
Finally, the modulated gray matter images were smoothed
using an 8-mm full-width-at-half-maximum isotropic Gaussian
kernel. The images were then used for the following statistical
analysis.

2http://www.fil.ion.ucl.ac.uk/spm
3http://rfmri.org/dpabi

Statistical Analyses
The processed gray matter images were entered into a regression
model using DPABI to measure correlations between regional
GMV and scores on neuropsychological measures.

A hypothesis-driven analysis in which the hippocampal GMV
was correlated with associative memory performance for all older
adults was performed first. Before the statistical analysis, the
Wake Forest University Pick Atlas (Maldjian et al., 2003) was
used to define a priori region of interest (ROI) including the
bilateral hippocampi according to the automated anatomical
labeling (AAL) atlas. Figure 1 shows the slice view of the
ROI applied to each of the participants. Correlation analyses
between the GMV and PALT scores on novel associations and
semantically related associations within the predefined ROI were
performed separately. A cluster-based multiple comparisons
correction of p < 0.005 (individual voxel p < 0.001) was
performed with Monte Carlo simulation in AlphaSim (Forman
et al., 1995; Huang et al., 2016; Zhou et al., 2016). Accordingly,
clusters were considered significant at a cluster size of> 91 voxels
(307 mm3) for correlation analyses within the ROI mask
(4473 voxels).

We also conducted additional GMV-PALT correlation
analyses using a whole-brain approach to validate the results
of the ROI analysis. The statistical threshold was set at
p < 0.05 using the AlphaSim correction (individual voxel
p < 0.001) and a minimum cluster size of 1015 voxels
(3425 mm3) within a whole brain gray matter mask (540,194
voxels).

All of the correlation analyses were first performed across all
older adults. To regress any confounding effects of age, gender,
education level and global cognitive performance (i.e., MoCA),
we entered these variables as covariates into the regression
model. We then conducted additional within sub-group GMV-
behavior correlation analyses separately for older men and
women with age, education level and MoCA as covariates.
Between-group comparisons were conducted with Fisher’s r to

FIGURE 1 | Bilateral hippocampal regions of interest (yellow) defined using the automated anatomical labeling (AAL) atlas.
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Z transformation to directly compare the sex differences in
GMV-behavior correlation.

Finally, in order to validate the specificity of the relationship
between the GMV of the clusters observed in the ROI analyses
and the performance on PALT, we performed correlation
analyses between the GMV of the clusters obtained in the
ROI correlation analyses and other neuropsychological measures
(i.e., DSF test, DSB test, category VFT and TMT) to validate the
specific role the hippocampus plays in associative memory in
older adults.

RESULTS

Behavioral Results
Table 1 displays the demographic characteristics and
neuropsychological measures of the participants. A paired
samples t-test for the associative learning test across all
participants revealed that older adults had worse performance
for the novel associations compared to the semantically related
associations (5.45 vs. 6.86; t = −3.84, p < 0.001). In addition,
generally reduced inter-individual variance was observed for
the semantically related associations compared to the novel
condition (SD: 1.31 vs. 3.55; Figure 2). An independent samples
t-test revealed no significant sex differences in demographic
characteristics or neuropsychological performance between
older men and women.

Correlation Analyses between ROI GMV
and PALT
All 71 participants (35 men and 36 women) were included in the
correlation analyses between ROI GMV and PALT.

Novel Associations
Correlation analysis revealed that the GMVs of both the left
hippocampus (peak MNI coordinate: −27, −36, −2; number of
voxels: 334; r = 0.516; Figure 3A), and the right hippocampus
(peak MNI coordinate4: 26, −10, −23; number of voxels: 425;
r = 0.456; Figure 3B) were positively related to PALT scores on
novel associations across all older adults. When considering men
and women separately, older women had a positive correlation
between the left hippocampal GMV (peak MNI coordinate:
−27, −40, 0; number of voxels: 309; r = 0.623; Figure 4) and
performance on PALT for novel associations. There were no
significant correlations in older men. We extracted the GMV
of peak coordinate in the left hippocampus and performed a
partial correlation analysis between GMV and PALT scores for
novel associations separately for older men and women with
age, education level and MoCA as covariates. A further analysis
directly comparing the correlations between the two groups
revealed greater correlation coefficient for older women than for
older men (Fisher’s r to Z = 1.765, p = 0.038, one-tail test).

4The peak MNI coordinate indicates the coordinate that has greatest
correlation with the associative memory performance.

FIGURE 2 | A scatter plot of the associative memory performance
across all older adults for each measure of the paired-associative
learning test (PALT).

Semantically Related Associations
There were no significant correlations between the ROI GMV
and PALT scores on semantically related associations regardless
of whether the analyses were performed across all older adults or
separately for men and women.

Whole-Brain Correlation Analyses between
GMV and PALT
All 71 participants (35 men and 36 women) were included in the
whole-brain correlation analyses between GMV and PALT.

Novel Associations
Whole-brain correlation analysis only revealed significant
positive correlations between the GMVs in anatomical
clusters that mainly included the left hippocampus and
parahippocampal gyrus (peak MNI coordinate: −27, −36, −2;
number of voxels: 1441; r = 0.516; Figure 5A), and the
right hippocampus and parahippocampal gyrus (peak MNI
coordinate: 17, 2, −20; number of voxels: 2033; r = 0.520;
Figure 5B) and PALT scores on novel associations across all
older adults. Considering men and women separately, older
women had a positive correlation between the GMV in an
anatomical cluster that mainly included the left hippocampus
and parahippocampal gyrus (peak MNI coordinate: −15,
−34, −11; number of voxels: 2393; r = 0.715; Figure 6) and
performance on PALT for novel associations. There were no
significant associations in older men. We extracted the GMV
of peak coordinate in the cluster that mainly include the left
hippocampus and parahippocampal gyrus and performed a
partial correlation analysis between GMV and PALT scores
for novel associations separately for older men and women
with age, education level and MoCA as covariates. Subsequent
analysis directly comparing the correlations between the
two groups revealed greater correlation coefficient for older
women than for older men (Fisher’s r to Z = 2.647, p = 0.004,
one-tail test).

Semantically Related Associations
Correlation analysis between whole-brain GMV and PALT
scores on semantically related associations revealed no
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FIGURE 3 | Region of interest (ROI) correlation analyses between gray matter volume (GMV) and scores on associative memory for novel
associations. The left panel shows that GMV of the left hippocampus (peak Montreal Neurological Institute (MNI) coordinate: −27, −36, −2; number of voxels: 334)
(A) and the right hippocampus (peak MNI coordinate: 26, −10, −23; number of voxels: 425) (B) are significantly correlated with scores on associative memory for
novel associations across all older adults. Bars at the top show the correlation values. The right panel shows the partial regression plots between the GMV of the
peak coordinate in the left hippocampus (A) and the right hippocampus (B) and scores on associative memory for novel associations after controlling age, gender,
education level and montreal cognitive assessment (MoCA).

FIGURE 4 | ROI correlation analyses between GMV and scores on associative memory for novel associations in older women. The left panel shows that
GMV of the left hippocampus (peak MNI coordinate: −27, −40, 0; number of voxels: 309) is significantly correlated with scores on associative memory for novel
associations in older women. Bars at the top show the correlation values. The right panel shows the partial regression plots between the GMV of peak coordinate in
the left hippocampus and scores on associative memory for novel associations in older men and women after controlling age, education level and MoCA.

significant associations, regardless of whether the analyses
were performed across all older adults or separately for
men and women.

In summary, both ROI and whole-brain correlation
analyses revealed that bilateral hippocampal volumes were
significantly associated with scores on the PALT for novel

associations across all older adults. No significant correlations
were found for the semantically related associations. When
considering men and women separately, only women
displayed highly significant and positive correlations
between left hippocampal GMV and PALT scores on novel
associations.
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FIGURE 5 | Whole-brain correlation analyses between GMV and scores on associative memory for novel associations. The left panel shows that GMV in
anatomical clusters that mainly include the left hippocampus and parahippocampal gyrus (peak MNI coordinate: −27, −36, −2; number of voxels: 1441) (A) and the
right hippocampus and parahippocampal gyrus (peak MNI coordinate: 17, 2, −20; number of voxels: 2033) (B) are significantly correlated with scores on associative
memory for novel associations in older adults. Bars at the top show the correlation values. The right panel shows the partial regression plots between the GMV of the
peak coordinate in anatomical clusters that mainly include the left hippocampus and parahippocampal gyrus (A) and the right hippocampus and parahippocampal
gyrus (B) and scores on associative memory for novel associations after controlling age, gender, education level and MoCA.

FIGURE 6 | Whole-brain correlation analyses between GMV and scores on associative memory for novel associations in older women. The left panel
shows that GMV in anatomical cluster that mainly include the left hippocampus and parahippocampal gyrus (peak MNI coordinate: −15, −34, −11; number of
voxels: 2393) is significantly correlated with scores on associative memory for novel associations in older women. The right panel shows the partial regression plots
between the GMV of the peak coordinate in the anatomical cluster that mainly include the left hippocampus and parahippocampal gyrus and scores on associative
memory for novel associations in men and women after controlling age, education level and MoCA.

Correlation Analyses between GMV and
Other Neuropsychological Measures
Fifty-four participants (26 men and 28 women) were
included in the correlation analyses between GMV and other
neuropsychological measures.

We extracted the GMV of peak coordinate of the clusters
observed in the ROI correlation analyses between GMV and
PALT for novel associations (i.e., left and right hippocampus),
and separately performed correlation analyses betweenGMVand
scores on DSF test, DSB test, category VFT and TMT across
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all older adults with age, gender, education level and MoCA
as covariates. The results revealed no significant correlations
between the GMV of the left hippocampus and performance on
DSF (r(48) = 0.071, p = 0.624), DSB (r(48) = 0.204, p = 0.155), VFT
(r(48) = −0.107, p = 0.460), or TMT (r(48) = −0.144, p = 0.317) at
a Bonferroni correction threshold of 0.0125 (0.05/4). In the same
conditions, there were also no significant correlations between
the GMV of the right hippocampus and performance on DSF
(r(48) = −0.155, p = 0.283), DSB (r(48) = 0.037, p = 0.801),
VFT (r(48) = −0.173, p = 0.230), or TMT (r(48) = −0.009,
p = 0.952).

We also extracted the GMV of peak coordinate of the
cluster observed in the ROI correlation analyses between GMV
and PALT for novel associations in older women. We then
separately performed correlation analyses between GMV and
scores on the above neuropsychological measures for older
women with age, education level and MoCA as covariates.
There were no significant correlations between the GMV of
the left hippocampus and performance on DSF (r(23) = −0.151,
p = 0.471), DSB (r(23) = 0.054, p = 0.797), VFT (r(23) = −0.220,
p = 0.291), or TMT (r(23) = −0.260, p = 0.209) at a Bonferroni
correction threshold of 0.0125 (0.05/4).

These analyses suggest that the hippocampus might be
functionally specific for associative memory.

DISCUSSION

Using VBM analysis, we investigated the structural brain
correlates of individual differences in associative memory in
healthy older adults. The results revealed that GMVs in bilateral
hippocampi were positively correlated with associative memory
performance for novel associations across all older adults.
However, when considering men and women separately, the
relationship between hippocampal volume and novel associative
memory performance reached significance only in older women.
These findings highlight the important role of the hippocampus
in remembering novel associative representations in older
women.

A number of studies provide evidence documenting
morphologic sex differences in adult brain structure (Cosgrove
et al., 2007; Sacher et al., 2013; Ruigrok et al., 2014; Gur and
Gur, 2017). It has been reported that women have a higher
percentage of gray matter (Gur et al., 1999; Leonard et al., 2008),
greater cortical thickness (Im et al., 2006; Luders et al., 2006;
Sowell et al., 2007) and higher corpus callosum morphology
(Mitchell et al., 2003) than men. In addition, accelerated
brain aging in men compared to women have been observed
(Cowell et al., 1994; Coffey et al., 1998; Resnick et al., 2000;
Xu et al., 2000; Good et al., 2001). In particular, structural
MRI studies in humans have revealed steeper age-related
decline in hippocampus morphology in men compared to
women (Pruessner et al., 2001; Raz et al., 2004a; Li et al.,
2014). Given that the hippocampus is especially critical for
novel associative memory encoding and retrieval (Diana et al.,
2007; Ranganath, 2010; Eichenbaum, 2017), we speculated
that the relatively preserved hippocampus GMV would play
a more important role in associative memory for novel

associations in older women compared with older men, and
thus structural volumes of the hippocampus are more likely
to be associated with individual differences in associative
memory for novel associations in older women but not men.
Our results confirmed this speculation by demonstrating that
structural volume of the hippocampus could account for inter-
individual variations in novel associative memory only in older
women.

The correlation analyses revealed significant positive
associations between the GMV of the hippocampus and novel
associative memory in older women, indicating that larger
GMV of the hippocampus was associated with better novel
associative performance. Since the hippocampus is believed
to support associative memory by supporting the binding and
recollection of novel relational associations (Diana et al., 2007;
Ranganath, 2010; Eichenbaum, 2017), positive correlation for
older women suggests that greater GMV of the hippocampus
facilitates memory performance when binding and recollection
are required during associative memory encoding and retrieval.
The present findings are actually quite consistent with Ystad et al.
(2009)’s observations that the hippocampal volume significantly
predicted the free recall performance for older women but not
for men, given that both novel associative memory and free
recall rely primarily on the recollection process supported by
the hippocampus (Yonelinas, 2002). It is reasonable to expect
that the regional hippocampal GMV may be an indicator of
age-related changes in associative memory function, and may
even be a potential biomarker for the early detection of the
deterioration of associative memory in cognitively normal older
women.

The absence of significant associations in older men may
imply that older men are more impaired in binding and/or
recollection processes because of their steeper age-related
atrophy in the hippocampus (Pruessner et al., 2001; Raz
et al., 2004a; Li et al., 2014), and thus the extent of GMV
in hippocampus does not affect their associative memory
performance. Another potential reason why older men did not
show significant correlation may be that their novel associative
memory is related to strategic processes rather than the binding
or recollection process, given that both associative and strategic
components may contribute to associative memory performance
(Shing et al., 2010). If that were the case, we would speculate
that the GMV of PFC, due to its important role in elaborative
organization and strategic retrieval (Simons and Spiers, 2003;
Mitchell and Johnson, 2009), would have been related to
associative memory performance in older men. Unfortunately,
in the whole brain correlation analyses between GMV and
PALT, no significant correlations with PALT scores on novel
associations in the PFC were found in older men, which did
not support this assumption. In addition, although many have
suggested the hormonal and genetic influences on sex differences
in brain and behavior (Lentini et al., 2013; Kight and McCarthy,
2017), the neurobiological basis for the sex differences in the
relationships between hippocampal structure and associative
memory remains unknown.

Contradictorily, some previous investigations of the brain
structure correlates of episodic memory did not identify positive
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relationships between the hippocampal volumes and associative
memory for novel associations in older adults (Rajah et al.,
2010; Bauer et al., 2015; Becker et al., 2015). The inconsistent
findings may be associated with methodological differences
between studies, such as variations in test formats, volumetric
procedures, and analytical strategies (Kaup et al., 2011; Ezzati
et al., 2016). For example, in the present study, we used a
cued-recall paired-associative learning task, which was more
likely to recruit the hippocampus than an associative recognition
task used in Becker et al. (2015), to measure older individuals’
associative memory performance (Caplan andMadan, 2016).We
speculate that the cued-recall PALT is a more hippocampus-
dependent task, and is more likely to drive the present significant
correlations between hippocampal volumes and scores on the
PALT. In addition, we defined the ROI of hippocampus based
on automated procedures, while Rajah et al. (2010) defined the
ROI by manually tracing the brain region. Most importantly,
previous studies exploring the structural neural correlates of
associative memory usually performed the correlation analyses
across the whole group of participants (e.g., Rajah et al.,
2010; Bauer et al., 2015; Becker et al., 2015), whereas we paid
more attention to sex differences in the correlation patterns
between GMV and associative memory performance. These
may have contributed to the inconsistent findings of previous
studies.

In whole brain correlation analyses, the GMV of the
parahippocampal gyrus also had significant correlations with
the PALT scores for novel associations only in older women,
indicating that larger GMV of the parahippocampal gyrus was
associated with better novel associative performance in older
women but not men. Neuroimaging studies have demonstrated
that the parahippocampal gyrus within the MTL plays a
critical role in encoding and recollecting detailed contextual
information (Kirwan and Stark, 2004; Diana et al., 2007, 2009;
Ranganath, 2010). In addition, the parahippocampal gyrus is
also a region within the MTL that is vulnerable to aging
effects (Resnick et al., 2003; Tisserand et al., 2004; Raz et al.,
2005; Raji et al., 2012). Unfortunately, less attention has been
paid to sexual dimorphism in age-related structural atrophy in
the parahippocampal gyrus. Nevertheless, the present findings
of sex differences in associations between the GMV of the
parahippocampal gyrus and novel associative memory may
suggest that greater GMV of the parahippocampal gyrus may
facilitate memory performance by supporting the encoding and
retrieval of contextual information in older women but men.
Our findings provide new evidence for the importance of the
parahippocampal gyrus in associative memory and suggest that
the volumes of the parahippocampal gyrus may be relevant to
the individual differences in associative memory in healthy older
women.

Interestingly, both ROI and whole-brain correlation analyses
revealed that there were no significant correlations between
the hippocampal, and parahippocampal GMV and the
PALT scores on semantically related associations in older
adults. First, it is well established that both the hippocampus
and parahippocampus play critical roles in remembering
novel relational associations rather than related associations

(Diana et al., 2007; Ranganath, 2010; Eichenbaum, 2017).
Second, in line with previous studies indicating that older
adults perform better when the episodic components used
are already associated in memory (Naveh-Benjamin, 2000;
Naveh-Benjamin et al., 2003), our behavioral results indicated
better performance on semantically related associations in older
adults. Critically, older adults also had smaller inter-individual
variability for semantically related associations compared to
novel associations. Finally, as can be seen from the Figure 2,
the data suggests that there was a ceiling effect in memory
performance on semantically related condition due to its
low-difficulty level. These observations may explain why the
correlations between hippocampal volume and scores on the
PALT were not statistically significant for semantically related
associations.

It is well known that the PFC is important for associative
memory, as it implements executive control processes, such
as elaborative and organized operations (Simons and Spiers,
2003; Mitchell and Johnson, 2009). It has been shown that
there are great age-related gray matter reductions in the PFC
(Raz et al., 2005; Fjell et al., 2009; Di et al., 2014), particularly
in the inferior frontal subregions (Resnick et al., 2003). This
atrophy may result in age-related memory deficits by affecting
the use of self-initiated elaborative memory strategies in older
adults (Craik and Rose, 2012; Kirchhoff et al., 2014). In a
previous structural study of associative memory, Becker et al.
(2015) found that older adults with larger GMVs in the
bilateral PFC had better associative memory. This underscores
the contribution of GMV of the PFC to individual differences
in associative memory in older adults. Interestingly, in the
present study, no clusters other than the hippocampus and
parahippocampus had significant correlations with PALT scores
in older women in whole brain correlation analyses. Again,
methodological differences (e.g., test formats or analytical
strategies) between studies may give rise to different patterns
across studies.

Some limitations should be noted. First, a relatively small
sample of older adults was included in the present study.
The sex differences found in the correlation analyses within
subgroups and the validation analyses of functional specificity
of the hippocampus for associative memory should be treated
with caution. A larger sample size should be used to assess the
structural correlates of inter-individual differences in associative
memory in older adults in future studies. Second, we only
recruited cognitively healthy older adults (age ≥ 60 years) in
the present study. It should be noted that aging is a process
that represents any changes (including physical, psychological
and social change) in a human being over time (Bowen and
Atwood, 2004). It is necessary to explore the aging effects on
hippocampal structural correlates of associative memory across
longer adulthood in future studies. In addition, longitudinal
studies are required to examine the developmental trajectory of
the relationship between hippocampal structure and associative
memory. Finally, it has been suggested that hippocampal volume
is especially sensitive to pathology-related atrophy and individual
variation in patients with MCI or those with AD (Hua et al.,
2008). Positive correlations between hippocampal volume and
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memory performance are especially apparent in samples of
these patients (Van Petten, 2004). Including individuals with
MCI and AD, may to some extent, provide clinical clues
regarding the changing trajectory of associative memory during
aging.

CONCLUSION

We observed that GMVs in the hippocampus may predict
associative memory ability in cognitively normal older women
but men. This provides new evidence for sexual dimorphism
in the importance of the hippocampus in associative memory.
Hippocampal volumemay be an indicator of associative memory
processing in aging, or a potential biomarker for the early
detection of associative memory deterioration, especially in older
women. Examining sex differences in future studies of the
cognitive neuroscience of aging may help us to understand the
aging brain better.
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