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Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is an
emerging technique that allows for learning voluntary control over brain activity. Such
brain training has been shown to cause specific behavioral or cognitive enhancements,
and even therapeutic effects in neurological and psychiatric patient populations.
However, for clinical applications it is important to know if learned self-regulation can
be maintained over longer periods of time and whether it transfers to situations without
neurofeedback. Here, we present preliminary results from five healthy participants who
successfully learned to control their visual cortex activity and who we re-scanned
6 and 14 months after the initial neurofeedback training to perform learned self-
regulation. We found that participants achieved levels of self-regulation that were similar
to those achieved at the end of the successful initial training, and this without further
neurofeedback information. Our results demonstrate that learned self-regulation can
be maintained over longer periods of time and causes lasting transfer effects. They
thus support the notion that neurofeedback is a promising therapeutic approach whose
effects can last far beyond the actual training period.

Keywords: neurofeedback, real-time functional magnetic resonance imaging (fMRI), self-regulation, brain
training, maintenance, visual attention, visual imagery

INTRODUCTION

Real-time fMRI neurofeedback is an emerging technique that allows to learn voluntary control over
spatially localized brain activity (Weiskopf et al., 2004; deCharms, 2007; Sulzer et al., 2013). It can
be used to study causal brain-function relationships by investigating how learned self-regulation
of brain activity affects perception or behavior. For example, several studies have shown that self-
regulation leads to behavioral effects that are specific to the functional role of the targeted cortical
area (e.g., Weiskopf et al., 2003, 2004; deCharms et al., 2005; Bray et al., 2007; Caria et al., 2007; Rota
et al., 2009; Shibata et al., 2011; Scharnowski et al., 2012). Real-time fMRI neurofeedback also holds
great promises for clinical applications. For example, recent studies demonstrated therapeutic
effects of neurofeedback training in chronic pain patients (deCharms et al., 2005), Parkinson’s
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disease (Subramanian et al., 2011), tinnitus (Haller et al., 2010),
and depression (Linden et al., 2012).

However, in order for neurofeedback to be effective as a
tool for cognitive enhancements or clinical applications, it
needs to be shown that learned self-regulation transfers to
situations where neurofeedback is not available anymore, and
that learned self-regulation is maintained beyond the initial
training period. Previous real-time fMRI neurofeedback studies
already demonstrated that once learned, self-regulation can also
be performed in transfer runs without feedback information,
but this only for transfer runs immediately following the
neurofeedback training (deCharms et al., 2004, 2005; Hamilton
et al., 2011; Lee et al., 2012; Scharnowski et al., 2012; Sitaram
et al., 2012; Ruiz et al., 2013). Unfortunately, published evidence
of lasting neurofeedback training effects is very sparse. In healthy
participants, two studies have shown that neurofeedback training
induces plastic brain changes that last for at least 1 day after
the training (Shibata et al., 2011; Harmelech et al., 2013).
Another study found that neurofeedback-induced changes in
resting state fMRI persisted for at least 2 months (Megumi
et al., 2015). While this is by far the longest time period after
training that has been investigated so far, the resting state effects
demonstrate plastic changes, but they are not associated with
applying learned self-regulation by the participants. In patients,
only one study showed lasting changes due to neurofeedback
training (Scheinost et al., 2013). Scheinost et al. (2013) found that
patients with obsessive-compulsive disorder who successfully
learnt to increase activity in the orbitofrontal cortex showed
persistent changes in resting state connectivity and a significant
reduction in contamination anxiety several days following the
neurofeedback training. Even in the field of EEG neurofeedback,
which has been used in research and in clinics for several
decades and therefore has a much longer tradition than real-
time fMRI-based neurofeedback, follow-up data has rarely been
collected. The few studies which measured the effects of EEG
neurofeedback over a period of up to 12 months to determine
if self-regulation and its behavioral consequences are maintained,
indicate that it remains stable (Tansey, 1993; Kotchoubey et al.,
2001; Vernon et al., 2004; Leins et al., 2007; Kouijzer et al.,
2008).

However, because EEG- and fMRI-based neurofeedback
differ significantly with respect to the target areas and the
physiological basis of the feedback signals, the findings obtained
with EEG might not be transferable. We therefore re-scanned five
participants 6 and 14 months after they successfully learned self-
regulation of differential visual cortex activity, i.e., participants
had learned to control the interhemispheric balance between
their left and right visual cortex activity (Robineau et al., 2014).
For the 6-month follow-up, participants were provided with
the same neurofeedback information as for the initial training
(top up session). For the 14-month follow-up, participants did
not receive feedback information (transfer). We hypothesized
that learned self-regulation is an acquired skill which can
be maintained over longer periods of time. Specifically, we
hypothesized that participants can still successfully self-regulate
their visual cortex activity during the follow-up sessions, and
that performance during the follow-up sessions is similar to

that achieved at the end of the successful initial training
period.

MATERIALS AND METHODS

Details of the neurofeedback training study have been described
previously (Robineau et al., 2014). In brief, participants were
trained to control the differential feedback between a target
region of interest in early visual cortex (ROItarget), and its
homolog in the opposite hemisphere (ROIopposite) (Figure 1). The
ROIs were delineated in separate functional localizer scans and
represented specific locations in the left and right visual fields. For
the localizer, participants had to maintain fixation on a central
point while a flickering checkerboard wedge (100% contrast,
8 Hz contrast reversal, 30◦ eccentricity along the horizontal
meridian at a 45◦ angle) was presented on a gray background. The
checkerboard was presented for three blocks of 30 s alternating
in the left and in the right visual field, respectively, which
were interleaved with baseline blocks during which participants
fixated without any visual stimulation. Training participants to
control the differential feedback signal was undertaken in three
separate scanning sessions spread over the course of 3 days.
For neurofeedback training, the activity difference between the
two ROIs was fed back to the participant in the form of a
visual thermometer display on a projection screen in the scanner
bore. No other visual stimuli were presented. Neurofeedback
training runs were interleaved with transfer runs during which
participants performed learned self-regulation in the absence of
feedback. For clarity, the main experimental parameters will be
repeated here, but the methods section focuses on the follow-up
extension of our previous study.

MRI Data Acquisition
“All experiments were performed on a 3T MRI scanner
(Trio Tim, Siemens Medical Solutions, Erlangen, Germany) at
the Brain and Behavior Laboratory (University of Geneva).
Functional images were obtained with a single-shot gradient-
echo T2∗-weighted EPI sequence (30 slices, matrix size 64 × 64,
voxel size= 4 mm× 4 mm× 4 mm, slice gap= 0.8 mm, flip angle
α= 88◦, bandwidth 1.56 kHz/pixel, TR= 2000 ms, TE= 30 ms),
using a 12-channel phased array coil. The first three EPI volumes
were automatically discarded to avoid T1 saturation effects. A T1-
weighted structural image was acquired at the beginning of each
scanning session (3D MPRAGE, 256 × 246 × 192 voxels, voxel
size = 0.9 mm isotropic, flip angle α = 9◦, TR = 1900 ms,
TI= 900 ms, TE= 2.32 ms)” (Robineau et al., 2014).

Visual stimuli and instructions were displayed on a
rectangular projection screen at the rear of the scanner
bore, viewed through a mirror positioned on top of the head-
coil. Stimulus display and response collection were controlled
by MATLAB (MathWorks Inc., Natick, MA, USA) using the
COGENT toolbox (developed by the Cogent 2000 team at the
Wellcome Trust Centre for Neuroimaging and the UCL Institute
of Cognitive Neuroscience, and Cogent Graphics developed
by John Romaya at the Wellcome Department of Imaging
Neuroscience).
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FIGURE 1 | Overview of the experimental Procedure. In the first scanning session, the ROIs in the left and right visual cortex were defined with functional
localizer runs. In three subsequent neurofeedback training sessions (on three different days spread across 3 weeks), participants then learned self-regulation of their
visual cortex activity. Per training session, participants performed four training runs (of 2.8 min each) interleaved with two transfer runs (same as training runs but
without feedback), i.e., the sequence of runs in each session was: training–training–transfer–training–training–transfer. Each training/transfer run was composed of
four 20 s resting blocks (in gray) interleaved with three 30 s regulation blocks (in white). Six months after neurofeedback training participants performed another three
training runs (first follow-up), and 14 months after the initial training participants performed three transfer runs without neurofeedback (second follow-up).

The neurofeedback setup used Turbo-BrainVoyager 3.0 (Brain
Innovation, Maastricht, The Netherlands), and custom scripts
running on MATLAB. This allowed participants to be shown
visual representations of BOLD signal changes in specific brain
regions (in the form of a thermometer display projected into
the scanner) with a delay of less than 2 s from the acquisition
of the image. Head motion was corrected for in real-time using
Turbo-BrainVoyager 3.0.

Participants
In the initial study (Robineau et al., 2014), 14 participants took
part, of which eight successfully learned control of differential
visual cortex activity. We contacted all eight learners from
the initial study and asked them to take part in a follow-up
experiment. Only five were able to participate in the follow-
up (five females, ages between 25 and 40 years, four right
handed; see Table 1 for details); the others did not respond or
had moved away. All participants had normal or corrected-to
normal vision. This study was carried out in accordance with
the recommendations of the ethics committee of the University
Hospital Geneva with written informed consent from all subjects.
All subjects gave written informed consent in accordance
with the Declaration of Helsinki. The protocol was approved
by the ethics committee of the University Hospital Geneva.
Before the follow-up scans, they received written instructions
explaining that they will perform the same self-regulation
task, which they had previously learned. The instructions

included reminders about the neurofeedback thermometer
display, and the cognitive strategy that they developed during
the initial training period in order to successfully control the
feedback signal (i.e., covert shifts of attention and imagery of
moving visual stimuli). Furthermore, as for the initial training
experiment, they were instructed to fixate on the central
fixation point, to breathe steadily, and to remain as still as
possible.

Follow-up Scanning Protocol
Participants took part in two follow-up scans. The first follow-
up scan took place 3–7 months, and the second 9–14 months
after the initial neurofeedback training sessions. Each follow-up
scanning session started with a 5-min T1-weighted structural
scan of the whole brain. This anatomical image was used for
coregistration of the current head position with the T1-weighted
structural scan obtained during the initial neurofeedback training
using Turbo-BrainVoyager 3.0. The resulting coregistration
matrix was used to transform the position of the ROIs used
during the initial neurofeedback training into the correct location
with respect to the current head position of the current follow-
up session. This ensured that the same ROIs that were initially
trained were also targeted in the follow-up sessions, although they
took place months later. The visual ROIs had been determined
by functional localizers in a separate scanning session before the
initial neurofeedback training, (see, Robineau et al., 2014, for
details).

TABLE 1 | Details about the participants who took part in the follow-up sessions.

Participant Age Gender ROItarget

hemisphere
Size of ROItarget

(voxels)
Size of ROIopposite

(voxels)
First follow-up: top up

session (months from initial
training)

Second follow-up: transfer
session (months from initial

training)

1 27 Female Right 45 32 7 14

2 27 Female Left 37 30 – 14

3 40 Female Right 38 24 7 14

4 27 Female Right 15 22 6 13

5 25 Female Right 18 9 3 9
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After the structural scan, participants performed three
neurofeedback training runs during the first follow-up session.
As feedback signal, participants received the activity difference
between the visual ROIs (left-right or right–left, depending
on which configuration they were initially trained on). This
activity difference was presented via a thermometer display. One
participant did not perform the first follow-up scan (Table 1,
participant 2). During the second follow-up scan participants
performed three transfer runs. The transfer runs were identical to
the training runs except that no neurofeedback information was
provided to the participants, i.e., the thermometer reading was
not visible.

The training and transfer runs were “composed of four 20 s
baseline blocks interleaved with three up-regulation blocks of
30 s each (Figure 1). During the baseline blocks, the fixation
cross at the center of the screen was black, which instructed
the participant to mentally count backward from 100 in steps
of −3 in order to maintain a stable baseline activity. During
the up-regulation blocks, the fixation cross was white, which
instructed the participant to now regulate their brain activity and
increase the feedback signal. The background color of the screen
was set to gray. The thermometer display consisted of a thin
horizontal black line that moved up or down depending on the
level of the differential feedback signal between the two visual
ROIs (Figure 1). The differential feedback signal was presented
throughout the training run (i.e., also during baseline blocks) and
was updated every 2 s (i.e., once every TR). It was computed as
the difference between the percentages of signal changes of the
two visual ROIs (Eq. 1)” (Robineau et al., 2014):

f =100 ∗
(ROItarget (up)− ROItarget (base))

ROItarget (base)
(1)

− 100 ∗
(ROIopposite (up)− ROIopposite (base))

ROIopposite (base)

where f is the current feedback signal, ROItarget (up) is the
average activity in the first ROI during up-regulation blocks,
ROItarget (base) is the average activity in the first ROI during
baseline-regulation blocks, and ROIcontralateral is the same for the
second ROI. For some participants, ROItarget was the left visual
ROI, for others it was the right visual ROI (randomly assigned).

To avoid brisk fluctuations of the thermometer display, we
applied temporal filtering by means of a sliding-window average
over the previous three time points.

To normalize the percentage signal change values to the
thermometer scale (which ranged from 25 steps below the
fixation point to 25 steps above the fixation point; 5 pixels per
step), the differential feedback signal values were scaled according
to Eq. 2:

tm =
pscm − limitlow

limitup − limitlow
∗ (Stepmax − Stepmin)+ Stepmin (2)

where m is the current time point, t is the temperature reading
of the thermometer, psc is the percentage of signal change,
limitlow/limitup are the mean of the five lowest/highest signal
change values that have been acquired cumulatively up until

the current time point, Stepmax is 25 and Stepmin is −25. The
maximum and the minimum level of differential activity were
indicated by thin black lines.

During the initial training study, we asked participants to
perform a visual detection task and a line bisection task. These
behavioral measures were not acquired in this follow-up study.

Data Analysis
Functional MRI Preprocessing
“Offline data analysis used SPM8 (Wellcome Trust Centre for
Neuroimaging, Queen Square, London, UK1) and BrainVoyager
QX 2.6 (Brain Innovation). The images were corrected for slice
time acquisition differences, realigned to the first scan of each
run, and smoothed with an isotropic Gaussian kernel with 8 mm
full-width-at-half-maximum (FWHM)” (Robineau et al., 2014).

Offline ROI Analysis
“The fMRI signal time-courses from the neurofeedback training
and transfer runs were extracted from each visual ROI, averaged
across voxels, demeaned, and detrended with linear and quadratic
terms. Next, we specified GLMs with regressors for the up-
regulation and the baseline conditions. The regressors were
modeled as boxcar functions convolved with the canonical
hemodynamic response function (HRF) in SPM8. The beta values
for each regressor were fitted for the differential feedback signal
for each run” (Robineau et al., 2014).

Statistical Analysis
Our statistical analyses were conducted to test whether (a) the
learning effect that we found in our initial study (Robineau
et al., 2014) was also evident in the subgroup of the five
participants that took part in the follow-up scans, and (b) they
maintained performance during the follow-up scans. For these
purposes, we performed an analysis of variance (ANOVA) based
on the performance differences between the sessions (difference
contrast) with the factor contrasts between sessions (three levels)
and subject (to account for inter-subject variability) for both
training/transfer data, respectively. Usually, absolute values of
regulation performance are used in neurofeedback studies to
assess learning across sessions. However, in the current study, we
hypothesized that performance during the follow-up sessions is
similar to that achieved during the initial training. To address
this question, we considered performance differences between
the sessions. To better estimate the mean performance and
variance of the initial training, this ANOVA included the data
of all learners for these time points (i.e., the estimates for
sessions 1–3 include the data of the participants from the
follow-up study and also the data from the three learners
who were not able to take part in the follow-up study). In
many longitudinal studies, observations are missing for some
individuals. In that case, longitudinal differences can be tested
using paired t-tests by keeping only individuals with complete
records. Assuming that the underlying variance of the random
error variable is homogeneous, this is not the optimal way
to exploit the complete information contained in the data.

1http://www.fil.ion.ucl.ac.uk/
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Rather than estimating the variance for the comparison using
only the data from the follow-up individuals, we can use the
entire data to estimate it. This can be achieved by using an
ANOVA and an assumption of homogeneity of the random
error. The result of this ANOVA is a more stable estimate of
the variance and an increase of the degrees of freedom in the
reference Student-t distribution. This is a standard statistical
procedure of borrowing strength across samples (Tukey, 1988;
Dey and Rao, 2005; Hoaglin et al., 2011). Additionally, we
performed a one-sample t-test to show that also for the subgroup
of participants that performed the follow-up scans, the beta
values are significantly positive in the last session of the initial
training period. These analyses were calculated separately for the
training and the transfer runs. All statistical tests were performed
with R2.

RESULTS

The subgroup of participants in the follow-up sessions
successfully learned to control the differential feedback
signal (Figure 2). The beta estimates increased significantly
between sessions 1 and 2, and between sessions 2 and 3 [training:
F(10,97) = 15.81, all ps < 0.01; transfer: F(10,52) = 12.88,
all ps < 0.01]. Also, the t-test showed significantly positive
beta values in the last session of the initial training (training:
t = 3.60, df = 31, p = < 0.01; transfer: t = 3.46, df = 15,
p ≤ 0.01), indicating a reliable modulation of brain activity
during regulation compared to baseline blocks. Importantly,

2https://cran.r-project.org

performance during the follow-up sessions did not differ from
performance in the last training/transfer session of the initial
training study [training sessions: F(10,97) = 15.81, p = 0.21;
transfer sessions: F(10,52)= 12.88, p= 0.29].

DISCUSSION

Our study showed for the first time that learned voluntary control
over brain activity can be maintained for a substantial period
of time. In follow-up sessions we found that participants were
able to perform self-regulation with neurofeedback just as well
as they did at the end of the initial training period which had
taken place 6 months earlier. Moreover, 14 months after the
initial training participants were still able to exert learned control,
and this during transfer runs without further neurofeedback
information. These preliminary results in a small sample indicate
that neurofeedback training effects last, and that participants can
use their learned skill far beyond the initial training.

Neurofeedback based on real-time fMRI neurofeedback is a
rapidly growing field because it allows for learning voluntary
control over localized brain activity. To date, several studies
show that neurofeedback training causes behavioral effects that
are specific to the functional role of the targeted cortical area
(Weiskopf et al., 2004; Bray et al., 2007; Caria et al., 2007;
Rota et al., 2009; Shibata et al., 2011; Scharnowski et al., 2012,
2015; Robineau et al., 2014; Koush et al., 2015; Scharnowski
and Weiskopf, 2015). Even more importantly, real-time fMRI
neurofeedback training has also been shown to have therapeutic
effects in chronic pain patients (deCharms et al., 2005; Guan et al.,
2015), Parkinson’s disease (Subramanian et al., 2011), tinnitus

FIGURE 2 | Maintenance of learned self-regulation. During the three initial neurofeedback training sessions which were spread across 3 weeks, participants
learned to self-regulate their visual cortex activity. During a follow-up session with neurofeedback after 6 months, participants controlled the feedback signal as well
as at the end of training. Even after 14 months, self-regulation was maintained, and this during transfer runs without neurofeedback. The rectangle represents the
first and third quartiles; the band inside the rectangle represents the median; the whiskers extend from the rectangle to the highest/lowest value that is within 1.5 ∗

the inner-quartile range; small/large colored points represent individual runs/sessions of each participant of the follow-up study, respectively; black dots indicate runs
of the learners who did not participate in the follow-up study (participants performed four training runs and two transfer runs per session during the original training,
and three training and three transfer runs in the follow-up scanning sessions).
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(Haller et al., 2010), depression (Linden et al., 2012; Young et al.,
2014), obsessive-compulsive disorder (Scheinost et al., 2013,
2014), spider phobia (Zilverstand et al., 2015), and addiction (Li
et al., 2013; Karch et al., 2015; Kirsch et al., 2015; Hartwell et al.,
2016). Especially for clinical applications of neurofeedback it is
crucial that the learning effects persist beyond the initial training
period and that voluntary control transfers to situations without
neurofeedback information.

Our study significantly extends previous investigations which
showed that neurofeedback training effects are still present
1 day (Shibata et al., 2011; Harmelech et al., 2013), several days
(Scheinost et al., 2013), or 2 months after the training (Megumi
et al., 2015). Firstly, we demonstrate that learned self-regulation
is maintained for at least 14 months, which is by far the longest
time period that has been investigated so far (Shibata et al., 2011;
Harmelech et al., 2013; Scheinost et al., 2013; Megumi et al.,
2015). One of the factors that probably contributed to such long
lasting effects is that – like Scheinost et al. (2013) and Megumi
et al. (2015) – we trained participants over several days, which
gave them the chance to consolidate their learning overnight.
Sleep has been shown to be beneficial for memory encoding and
learning, which may have enhanced the persistence of learned
self-regulation (Walker and Stickgold, 2004; Abel et al., 2013).
Our results are in line with previous findings from the field
of EEG-based neurofeedback, where follow-up studies revealed
that learned self-regulation and its behavioral consequences are
maintained for at least 12 months (Tansey, 1993; Kotchoubey
et al., 2001; Vernon et al., 2004; Leins et al., 2007; Kouijzer et al.,
2008).

Secondly, we show that self-regulation can be applied months
after the initial training without neurofeedback information. That
learned control over brain activity transfers to situations where
neurofeedback is no longer available is another key requirement
for clinical uses of neurofeedback (Stoeckel et al., 2014). Transfer
effects have been previously demonstrated immediately following
neurofeedback training (deCharms et al., 2004, 2005; Hamilton
et al., 2011; Lee et al., 2012; Scharnowski et al., 2012; Sitaram
et al., 2012; Ruiz et al., 2013), but here we extend these findings
by demonstrating that transfer effects last for several months.
To promote transfer, we interleaved the neurofeedback training
with transfer runs without neurofeedback (Robineau et al.,
2014), which might have contributed to the persisting transfer
performance. Finally, the lasting changes that we found relate
to self-regulation skills that can be applied voluntarily by the
trained participants rather than to concomitant training effects
such as the previously reported persistent resting state changes
(Scheinost et al., 2013; Megumi et al., 2015).

LIMITATIONS

The main limitation of this study is the small sample size of
only four participants in the first follow-up session and five
participants in the second follow-up session. Thus, our results
should be considered as a preliminary demonstration of lasting
effects that require further verification in larger samples. The
second limitation is that we did not include a control group

without neurofeedback that attempts self-regulation based only
on cognitive task instructions. Without such a control group, we
cannot completely exclude the possibility that mere practice led
to the improvement across sessions during the initial training
and transfer runs, and that these practice effects could have then
carried over to the follow-up study. However, in the original
training study, the non-learners also practiced self-regulation for
as long as did the learners, but they did not show improvements.
Moreover, other real-time fMRI neurofeedback studies that
included control groups who received either sham feedback
or no feedback have firmly established that neurofeedback is
necessary for learning to self-regulate brain activity [e.g., for the
anterior cingulate cortex (Hamilton et al., 2011), for the inferior
frontal gyrus (Rota et al., 2009), and most importantly for the
visual cortex (Shibata et al., 2011; Scharnowski et al., 2012)].
Finally, in this follow-up study, we did not ask participants
to perform the visual detection and line bisection tasks that
they performed during the original training. Hence, long-lasting
behavioral consequences of neurofeedback training need to be
addressed in future follow-up studies.

CONCLUSION

Taken together, we show in a small sample of healthy participants
that learned self-regulation of differential visual cortex activity
can be maintained over long periods of time and transfers
to situations without neurofeedback. These findings are likely
not specific for learned control over visual cortex activity,
but probably also apply to other neurofeedback target regions.
The visual cortex is an area that has been shown to be
less responsive to neurofeedback training (Harmelech et al.,
2015), which is also reflected by the relatively large number of
participants who failed to learn to control visual cortex activity
(Scharnowski et al., 2012; Robineau et al., 2014). Moreover,
compared to standard ROI-based feedback, the differential
feedback signal that was used in the present study likely is
more difficult to control because uncorrelated Gaussian noise
of the signals from the two ROIs is additive and may thus
reduce the signal-to-noise ratio (SNR). Hence, our results
imply that neurofeedback training with real-time fMRI causes
plastic brain changes rather than just short-lived state changes.
Although the neural mechanisms underlying these lasting
changes are still unknown (Sitaram et al., 2016), evidence
for such lasting changes as well as for transfer to situations
without neurofeedback support the potential of neurofeedback
as a promising novel experimental therapy for neurological and
psychiatric conditions.
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