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Primary blepharospasm (BPS) is a focal dystonia characterized by involuntary blinking
and eyelid spasms. The pathophysiology of BPS remains unclear. Several neuroimaging
studies have suggested dysfunction of sensory processing and sensorimotor integration,
but the results have been inconsistent. This study aimed to determine whether patients
with BPS exhibit altered functional brain connectivity and to explore possible correlations
between these networks and clinical variables. Twenty-five patients with BPS and
25 healthy controls were enrolled. We found that the patient group exhibited decreased
connectivity within the sensory-motor network (SMN), which involved regions of the
bilateral primary sensorimotor cortex, supplementary motor area (SMA), right premotor
cortex, bilateral precuneus and left superior parietal cortex. Within the right fronto-
parietal network, decreased connections were observed in the middle frontal gyrus,
dorsal lateral prefrontal cortex and inferior frontal gyrus. Regarding the salience network
(SN), increased connectivity was observed in the left superior frontal gyrus and middle
frontal gyrus. These findings suggest the involvement of multiple neural networks in
primary BPS.

Keywords: blepharospasm, focal dystonia, resting-state fMRI, independent component analysis, sensorimotor
integration, right fronto-parietal network, salience network

INTRODUCTION

Primary blepharospasm (BPS) is a type of focal dystonia that is characterized by persistent or
intermittent excessive involuntary blinking and eyelid spasms and has a disabling effect on work
and everyday activities and may cause social embarrassment and catastrophic traffic accidents.
While the symptomatology of BPS is well defined, its pathophysiology remains unknown. Current
theories about the pathophysiology of dystonia are largely based on studies of focal hand dystonia
(FHD). Despite some clinical overlap and electrophysiological similarities, the pathophysiology of
BPS is likely to be different (Battistella et al., 2017).

Although BPS is classified as a movement disorder, various non-motor symptoms have been
reported, including sensory deficits (such as dry eyes, photophobia and eye pain), emotional deficits
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(such as depression and anxiety) and cognitive deficits (Hall
et al., 2006; Alemán et al., 2009; Emoto et al., 2010; Fontenelle
et al., 2011; Peckham et al., 2011; Hwang, 2012; Huang et al.,
2015). In a previous study, we found that 73% of the patients
had emotional incentives (such as high pressure at work, life
stress and death of relatives) before onset (Huang et al., 2015),
and 86% of them experienced ‘‘sensory tricks’’. Sensory tricks
are a characteristic sensory phenomenon of BPS, and this
term refers to the use of tactile stimuli to relax the involved
muscles. The mechanism of sensory tricks is speculated to
modulate abnormal sensory-motor processing. Recent magnetic
resonance imaging (MRI) and electroneurophysiology studies
have mapped selected components of neural networks in patients
with BPS, with the cumulative evidence suggesting that BPS
may represent a network disorder (Dresel et al., 2011; Suzuki
et al., 2011; Battistella et al., 2017). Task-related network changes
in BPS were related to the sensorimotor network (SMN),
including the primary and secondary somatosensory regions
(Dresel et al., 2011). A structural neuroimaging study has
reported the involvement of the bilateral sensorimotor cortex and
anterior cingulated cortex (Suzuki et al., 2011). Another study
examining resting state networks in patients with BPS suggested
decreased functional connection within the sensorimotor and
frontoparietal networks (Battistella et al., 2017).

In recent years, functional magnetic resonance imaging
(fMRI) has been accepted as an effective tool to investigate
changes in brain function in BPS. Resting-state networks, which
are based on measuring intrinsic low frequency physiological
fluctuations of the blood oxygen level-dependent (BOLD) signal,
reflect the organization of both structural and task-related
functional brain networks (Biswal et al., 1995; Damoiseaux and
Greicius, 2009; Smith et al., 2009). In contrast to task-related
fMRI, for resting-state fMRI, BOLD signals are collected
during resting wakefulness without any task-related confounder.
Because the explanation of functional changes in BPS may
sometimes be ambiguous due to the combination of motor
and sensory components, examination of the resting-state
functional networks is believed to provide a more uniform
and coherent understanding of network alterations. Several
resting-state fMRI studies have been conducted on patients
with BPS, but the results have differed (Schmidt et al., 2003;
Yang et al., 2013; Zhou et al., 2013). Furthermore, these studies
only focused on focal brain regions and thus could not reveal
abnormal connectivity within whole functional networks of
the brain. To clarify changes in functional connectivity, one
can apply network analysis based on independent component
analysis (ICA) on BOLD time series obtained with resting
state fMRI. ICA extracts spatiotemporal patterns of underlying
signal components, assuming the components are statistically
independent (Beckmann et al., 2005). It has been shown that
several important resting state networks, such as the SMN,
default mode network (DMN) and executive control network
(ECN), can be obtained with high reliability across individuals
and groups (Beckmann et al., 2005; Damoiseaux et al., 2006;
Smith et al., 2009). In this study, we used ICA to investigate
the alterations in functional connectivity in patients with BPS.
Based on previous studies (Dresel et al., 2011; Huang et al., 2015;

Battistella et al., 2017), we hypothesized that functional brain
networks in BPS undergo widespread re-organization.

SUBJECTS AND METHODS

Patients and Controls
A total of 50 participants were recruited for this study, including
25 patients with BPS and 25 age- and gender-matched healthy
controls (HCs), from the Neurology Department of the First
Affiliated Hospital of Dalian Medical University. All subjects
were right-handed according to the Edinburgh Inventory. The
diagnoses of BPS were established based on published criteria by
a neurologist with long-term experience in movement disorders
(Hallett et al., 2008). Known causes of secondary dystonia were
excluded based on medical and drug histories, neurological
examination, laboratory investigation and conventional MRI.
All patients were free of other neurological abnormalities and
family history of movement disorders. The severity of BPS
in all patients was assessed according to the Jankovic Rating
Scale (JRS) immediately before MRI. Disease durations were
calculated from the time of symptom onset to the scan date in
months. None of the patients used any medications for 24 h
prior to MRI. This study was carried out in accordance with
the recommendations of Declaration of Helsinki, First Affiliated
Hospital of Dalian Medical University with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the First Affiliated Hospital of Dalian
Medical University. None of the patients had received botulinum
neurotoxin (BoNT) treatment within 3 months prior to the first
MRI scan. Four of the patients got a second MRI scan at about
50 days after BoNT treatment, when the spasm was suppressed
(total JRS score ≤ 1).

MRI Acquisition Protocol
All images were acquired with a GE Signa HDxt America
3.0 T scanner using a 32-channel head coil. Earplugs were used,
and movement was minimized by stabilizing the head with
cushions. High-resolution T1-weighted images were acquired via
a volumetric three-dimensional spoiled gradient recall sequence
(TR = 3.7 ms, TE = 1 ms, slice thickness = 6.0 mm). Functional
images (gradient-echo EPI, TR = 3000 ms, TE = 30 ms,
flip angle = 90◦, FOV: 64 × 64 mm, 32 axial slices, slice
thickness = 4 mm, gap = 0 mm, 105 scans, 5 dummy scans, total
acquisition time: 5 min 15 s) were acquired with the participants’
eyes closed. The participants were instructed to ‘‘relax with eyes
closed and not think about anything in particular’’. Adherence to
this instruction was confirmed in a post-scanning debriefing.

MRI Analysis
All fMRI data preprocessing and statistical analyses were
performed with the Data Processing Assistant for Resting-
State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010)1 which
is based on Statistical Parametric Mapping (SPM8)2 on the

1http://www.restfmri.net
2http://www.fil.ion.ucl.ac.uk/spm
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Matlab platform. The first five volumes of the functional images
were removed for signal equilibration and the adaptation of
the participants to the scanning environment. The remaining
EPI images were preprocessed using the following steps:
slice timing, motion correction, spatial normalization to the
standard Montreal Neurological Institute (MNI) EPI template in
SPM8 with resampling to 3 × 3 × 3 mm3, and spatial smoothing
with a 6-mm full-width at half-maximum (FWHM) Gaussian
kernel. Based on the head motion records within each fMRI
run, no participant exhibited greater than 1.5 mm of maximum
displacement in the x, y or z direction or greater than 1◦ of
angular rotation about any axis.

Group ICA was performed with the GIFT toolbox (GIFT
v2.03) using the Infomax algorithm (Bell and Sejnowski, 1995)
and standard PCA and back-reconstruction using the GICA
method. For each subject, 36 independent components were
extracted. All single-subject component maps from all subjects
were then ‘‘clustered’’ at the group level, which resulted in
36 single-group average maps that were visually inspected
to determine the main physiological resting-state networks.
The selection of clusters of interest implied the presence of
anatomically relevant areas in each group component map that
reproduced the layouts of the main physiological RSN jointly and
consistently across subjects. Network co-activation differences
between patients with BPS and HCs were examined using REST
(v1.8; Song et al., 2011) with two-sample t-tests performed on the
spatial distributions of the components. Statistical images were
AlphaSim corrected (p < 0.05).

RESULTS

Clinical Data
The clinical and demographic characteristics of the samples
and levels of significance of the clinical variables are provided
in Table 1. There were no significant differences in the
demographic variables between the patients with BPS and the
HCs.

Sensory-Motor Network
By visually inspecting the ICA-derived components of the
RS-fMRI data from the two groups, we identified several RSN

3http://mialab.mrn.org/software/gift

TABLE 1 | Demographic and clinical characteristics of patient group and
control group.

P C P-Value

Age (years) 56.28 ± 1.89 55.17 ± 1.69 0.67
Gender (M:F) 25 (8:17) 25 (8:17) >0.99
Education (years) 9.70 ± 1.37 8.00 ± 1.39 0.41
Disease duration (months) 56.36 ± 10.67 None –
JRS 6.36 ± 0.33 None –
HAMA 9.42 ± 1.86 2.00 ± 0.37 <0.001
Familly history None None –

C, controls; P, patients; M, male; F, female; JRS, Janckovic Rating Scale; HAMA,

Hamilton Anxiety Scale.

components using similar methodology to previous studies
(Delnooz et al., 2013; Battistella et al., 2017). Between-
group ICA revealed significant distinct functional connectivity
abnormalities of the SMN and right frontoparietal network
(rFPN) in the patients compared with those in the HCs
(Figure 1). Generally, the SMN includes the sensorimotor cortex,
supplementary motor area (SMA) and secondary somatosensory
cortex and closely corresponds to the brain activation that
occurs during action execution and perception (Beckmann et al.,
2005; Smith et al., 2009). Compared with those in healthy
participants, patients with BPS showed decreased functional
connectivities in the bilateral primary sensorimotor cortex,
SMA, right superior frontal gyrus (premotor cortex), bilateral
precuneus and left superior parietal cortex (Alphasim corrected
P < 0.05, cluster size >85 voxels, cluster edge connected;
Figure 2A; Table 2).

Right Frontoparietal Network
The rFPN has been found to play important roles in cognitive,
emotional and pain information processing (Smith et al.,
2009). The rFPN showed significant group differences in the
middle frontal gyrus, dorsolateral prefrontal cortex (DLPFC)
and inferior frontal gyrus (Alphasim corrected P < 0.05, cluster
size >85 voxels, cluster edge connected; Figure 2B; Table 3).
No significant differences were found for the CN. The control
vs. patient analysis at t = 2 confirmed the patterns of altered
connectivity (data not shown).

Salience Network
We explored four other RSNs that were derived from Smith
et al. (2009), i.e., the SN, the left frontoparietal network (LFPN),
the auditory network (AN) and the primary visual network
(PVN) and applied an AlphaSim corrected p < 0.05. Only the
SN exhibited differential connectivity. Between-group analysis
showed increased connectivity in patients with BPS in the left
superior frontal gyrus and middle frontal gyrus (including the
DLPFC; Table 4; Figure 2C).

Correlation Analysis
We analyzed the correlations of the abnormal regions within
the SMN (Table 2) with disease characteristics. Among the
25 subjects, 12 were sensory tricks-positive (ST+), 9 did not
perform sensory tricks (ST−) and the other 4 were uncertain.
ST+ patients exhibited significant higher connectivity in the right
premotor cortex compared to ST− patients (superior frontal
gyrus and middle frontal gyrus BA 6; Figure 3; Table 5). The
results also showed a significant negative correlation between the
rSFG and disease duration (Pearson’s correlation r = −0.414,
p = 0.038; Figure 4). In addition, we observed a positive
correlation between the left superior frontal gyrus and HAMA
scores, but this result was not significant (Pearson’s correlation
r = 0.508, p = 0.092).

Treatment-Related Connectivity
We compared the connectivity maps from before and after
treatment, evaluating BoNT-driven connectivity changes. There
were changes in the SMN and rFPN, but neither persisted
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FIGURE 1 | Group maps of the networks showing statistically significant differences between patients and controls: (A) sensorimotor network (SMN),
(B) right frontoparietal network (rFPN), (C) salience network (SN).

FIGURE 2 | Between-group effects in the SMN, rFPN and primary visual network (PVN). The between-group effects for three networks are shown. The
between-group effects were AlphaSim corrected (p < 0.05). (A) Precentral regions, postcentral regions, frontal regions, supplementary motor area (SMA), precuneus
and parietal regions that were abnormally connected within the SMN, indicating decreased connectivity within the blepharospasm (BPS) group. (B) The brain regions
linked to the rFPN and exhibiting decreased connectivity in the BPS group. (C) The SN exhibited a BPS-related increase in the connectivity of several regions,
including the left superior frontal area, middle frontal area (including dorsolateral prefrontal cortex (DLPFC)).
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TABLE 2 | Local maxima of regions with altered connectivity within the sensorimotor network (SMN).

Network Contrast Region Area X Y Z T-Score

Sensorimotor network P < C Precentral cortex_R 4 36 −27 66 −3.22
Premotor cortex_R 6 33 54 16 −3.16
SMA_R 6 7 −15 63 −2.47
Precuneus_R 5 6 −47 68 −2.52
Superior parietal_L 2/5/7 −22 −45 69 −3.70
Precentral cortex_L 4/6 −27 −21 72 −4.28
Precuneus_L 5 −15 −47 68 −2.53
Postcentral cortex_L 2/3 −18 −44 69 −3.29
Paracentral Lobule_L 4/6 −2 −25 72 −3.80

C, controls; P, patients; R, right; L, left; SMA, supplementary motor area. Between-group effects are corrected for Alphasim (P < 0.05, cluster size >85 voxels, cluster

edge connected).

TABLE 3 | Local maxima of regions with altered connectivity within the right frontoparietal network (rFPN).

Network Contrast Region Area X Y Z T-Score

Right fronto-parietal network P < C Middle frontal gyrus_R 46/48 30 27 31 −4.13
DLPFC_R 9 20 27 34 −3.28
Inferior frontal gyrus_R 48/44 30 27 29 −3.62

C, controls; P, patients; R, right; DLPFC, dorsolateral prefrontal cortex. Between-group effects are corrected for Alphasim (p < 0.05, cluster size >85 voxels, cluster edge

connected).

TABLE 4 | Local maxima of regions with altered connectivity within the salience network (SN).

Network Contrast Region Area X Y Z T-Score

Salience network P > C Superior frontal gyrus_L 10 −18 54 18 4.128
Middle frontal gyrus_L/ DLPFC 10/46 −33 54 16 3.04

C, controls; P, patients; L, left; DLPFC, dorsolateral prefrontal cortex. Between-group effects are corrected for Alphasim (p < 0.05, cluster size >85 voxels, cluster edge

connected).

FIGURE 3 | T-map of group-level sensory-motor network connectivity in ST(+) and ST(−) patients (p < 0.01, AlphaSim corrected). ST(+) patients
demonstrated higher connectivity in right premotor cortex (superior frontal gyrus and middle frontal gyrus BA 6).

through AlphaSim correction. Regarding the SMN, increased
connectivity was found after treatment in the left SMA and
right premotor cortex, and decreased connectivity was found
in the right SMA and right precentral gyrus. The right inferior
parietal cortex (BA 48), middle frontal gyrus (BA 46), superior
frontal gurus (BA 8) and middle temporal gurus (BA 20)
demonstrated increased connectivity within rFPN after BoNT
injections.

DISCUSSION

In this study, the patient group showed decreased functional
connectivity in the SMA and premotor cortex within the SMN.
The functions of the SMN are primarily related to sensory
processing, motor planning and motor execution. Specifically,
the SMA and premotor cortex seems to play critical roles in
motor preparation and execution during the construction of a
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TABLE 5 | Different regions within the SMN between ST(+) and ST(−) patients.

Network Contrast Region Area X Y Z T-Score

Sensori-motor network ST(+) > ST(−) Superior frontal gyrus_R 6 27 −3 57 4.998
Middle frontal gyrus_R - - - - -

ST, sensory tricks; R, right. Between-group effects are corrected for Alphasim (p < 0.01, cluster size >19 voxels, cluster edge connected).

FIGURE 4 | Correlation with the mean z-value of the right superior
frontal gyrus (rSFG). The results revealed a negative correlation of the mean
z-value of the rSFG with disease duration (r = −0.414, p = 0.038).

motor representation and is important in the control of the
engagement in motor inhibition and halting or overriding of
motor responses(Carbonnell et al., 2004; Gross et al., 2005;
Tanji and Hoshi, 2008). Decreased connectivity of the SMA
has been previously been linked to abnormal inhibition in
patients with focal dystonia (Naumann et al., 2000; Jin et al.,
2011). The premotor cortex showed abnormal connectivity with
the primary motor cortex, parietal cortex and basal ganglia
and improved deficits in reciprocal inhibition and mitigation
of spasms following stimulation of this region (Kranz et al.,
2009; Pirio Richardson, 2015). In this study, patients that
were sensory tricks-positive exhibited higher connectivity in the
premotor cortex, which suggested a relative reserved function
for this area and a central role for the premotor cortex in
the mechanism of sensory tricks. Our finding of a significant
relationship between the decreased connectivity in the rSFG
and the duration of disease suggests that impairment of this
region may be a secondary manifestation of dystonic symptoms,
whereas deficiencies in other regions (e.g., the SMA and sensory
cortex) may represent primary deficiencies.

Decreased connectivity in the sensory cortex suggests deficits
in sensory processing play a role in abnormal sensorimotor
integration. Previous studies showing electrophysiology and
structural changes in the primary somatosensory cortex support
the concept of abnormal sensory-motor integration in BPS
(Martino et al., 2011; Suzuki et al., 2011; Yang et al., 2013). The
findings of our study extend current knowledge by providing
functional neuroimaging evidence for the presence of sensory

alterations at the network level. In the present study, the
superior parietal cortex within the SMN also exhibited decreased
functional connectivity. The parietal cortex, particularly the
posterior parietal cortex, serves as an important sensory-
associative area that integrates somatosensory, visual and spatial
information to create a body scheme prior to the execution of
voluntary movements (Sereno and Huang, 2014). Decreases in
gray and white matter integrity in the parietal lobes of patients
with BPS have been observed via voxel-based morphometry
(VBM) and diffusion tensor imaging (DTI) analyses (Etgen et al.,
2006; Yang et al., 2014), respectively. Additionally, infarction
lesions in the parietal cortex can induce BPS (Jacob and Chand,
1995). These findings may be representative of impairment in the
integration of sensory information with movement processing.
These results suggest that faulty processing of motor programs
in patients with BPS is possibly related to a larger planning
defect that results in difficulty focusing a motor command on the
appropriate muscles.

In this study, the rFPN showed significant group differences
in the middle frontal gyrus, DLPFC and inferior frontal gyrus.
The fronto-parietal (or ‘‘executive-attention’’) network seems
to be critical for cognitive control and complex attention
control, and it includes regions such as the dorsal frontal
and parietal cortices, which are known to mediate cognitive
and executive control processing. Moreover, rFPN dysfunction
may be involved in abnormal processing of harmful external
stimuli (Tan et al., 2015). Numerous studies have demonstrated
that patients with BPS exhibit relatively poor performance on
non-motor tasks related to cognition functional domains, for
example, complex movement planning, visuo-spatial working
memory, tactile recognition and sustained attention (Scott
et al., 2003; Alemán et al., 2009). If BPS disrupts normal
pain processing by the rFPN, this dysfunction may be a
strong contributor to central nervous system-mediated sensory
dysfunction. Delnooz et al. (2013) explored rFPN connections
in cervical dystonia patients and normal controls but found no
significant difference. Whether decreased connectivity within
the rFPN may be at least partially related to the cognitive and
executive aspects or pain processing of BPS requires further
exploration.

As to our knowledge, the SN has not been reported to
play a role in other types of focal dystonia, such as cervical
dystonia and hand dystonia, which may indicate a distinctive
pathophysiology mechanism in BPS. Abnormal connections
within the SN or between the SN and other regions may
involve the middle temporal gyrus and the DLPFC, and these
regions participate in prefrontal associational integration. The
SN typically consists of the fronto-insular cortex, the dorsal
ACC, the amygdala and the temporal poles. This network
is believed to reflect emotional processing and to play a
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central role in emotional control. Recently, SN has been
found to be involved in non-motor symptoms of movement
disorders, e.g., mood disorders, pain, cognitive dysfunction and
working memory (Metzler-Baddeley et al., 2016). Increased
functional connections within the SN may be related to
anxiety disorders (Pannekoek et al., 2013). Several studies
have demonstrated that neuropsychiatric symptoms, particularly
anxiety and obsessive-compulsive disorders, are frequent in
patients with BPS (Hall et al., 2006; Fontenelle et al., 2011).
Whether increased connections in the SN may be related to
concomitant neuropsychiatric symptoms in patients with BPS
requires further research.

In this study, we did not measure the potential dystonic
activity of the orbicularis oculi musculature during scanning.
However, it is known that in most patients with BPS,
dystonic symptoms are absent or minimal in closed-eye
states. Additionally, none of the subjects reported spasms
during scanning in the post-scanning debriefings. However,
this limitation must be taken into account when interpreting
the results. Despite these limitations, our data provide further
insights into the mechanisms underlying BPS.

In conclusion, this study demonstrated differences inmultiple
neural networks in primary BPS. In BPS, regions in the SMA,
premotor cortex, SPL and precuneus, i.e., regions related to
motor planning and execution, exhibited reduced connectivity
with regard to the SMN. Selected regions in the middle frontal
gyrus, DLPFC and inferior frontal gyrus areas, i.e., regions

related to spatial cognition, demonstrated reduced connectivity
in the right fronto-parietal network. The observation of increased
connectivity of regions in the left superior frontal gyrus
and middle frontal gyrus (including DLPFC) with regard to
the SN is supposedly explained by the disrupted motion
control.
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