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Numerous studies have revealed various working memory (WM)-related brain activities

that originate from various cortical regions and oscillate at different frequencies. However,

multi-frequency band analysis of the brain network in WM in the cortical space remains

largely unexplored. In this study, we employed a graph theoretical framework to

characterize the topological properties of the brain functional network in the theta

and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual

n-back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task).

After preprocessing, Electroencephalogram (EEG) signals were projected into the source

space and 80 cortical brain regions were selected for further analysis. Subsequently, the

theta- and alpha-band networks were constructed by calculating the Pearson correlation

coefficients between the power series (obtained by concatenating the power values of

all epochs in each session) of all pairs of brain regions. Graph theoretical approaches

were then employed to estimate the topological properties of the brain networks at

different WM tasks. We found higher functional integration in the theta band and lower

functional segregation in the alpha band in the WM task compared with the control

task. Moreover, compared to the 0-back task, altered regional centrality was revealed

in the 2-back task in various brain regions that mainly resided in the frontal, temporal

and occipital lobes, with distinct presentations in the theta and alpha bands. In addition,

significant negative correlations were found between the reaction time with the average

path length of the theta-band network and the local clustering of the alpha-band network,

which demonstrates the potential for using the brain network metrics as biomarkers for

predicting the task performance during WM tasks.

Keywords: cortical functional connectivity, EEG, eLORETA, graph theory, n-back, working memory

INTRODUCTION

Workingmemory (WM) is a type of memory system that enables temporary storage and processing
of information (Baddeley, 2003, 2012; Postle, 2006). It allows for a limited amount of information
to be held and manipulated in the mental workspace. WM is a critical module as it provides the
basis for higher-level cognitive functions, and plays an essential role in many daily activities such
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as problem solving, decision-making, and the acquisition of
new skills (Gathercole and Baddeley, 1993; Pickering, 2006;
Logie, 2014). For example, as revealed by the Ease of Language
Understanding (ELU) model (Rönnberg et al., 2013), WM
provides crucial support for language processing and speech
perception.

Different WM-related tasks impose various levels of
demand/load on the WM system. A major topic in the study of
WM has been on how the brain characteristics are modulated by
the presence of or changes in memory loads, which is induced
by WM tasks with different difficulty levels (Cappell et al.,
2010; Michels et al., 2012; Konstantinou and Lavie, 2013).
Various electroencephalogram (EEG) studies have revealed the
involvement of the theta- and alpha-band activities in WM.
Specifically, the activity in the theta band, particularly in the
frontal lobe (Grunwald et al., 2014; Hsieh and Ranganath, 2014;
Roux and Uhlhaas, 2014), has been consistently found to be
positively correlated with WM demand and to be a reliable
indicator of variations in the memory load ofWM tasks (Sauseng
et al., 2005; Langer et al., 2013; Grunwald et al., 2014). The
positive correlation has been explained by the fact that theta
oscillation is responsible for coordinating and integrating
different cognitive processes during the execution of WM tasks,
which leads to heightened theta activity during high-demand
WM tasks due to the active recruitment of cognitive resources
(Sarnthein et al., 1998; Sauseng et al., 2010). On the other hand,
alpha-band oscillation has been discovered to be related to
the inhibition of the brain activities that are not involved in
the mental task (Klimesch et al., 2007; Mazaheri and Jensen,
2010; Scheeringa et al., 2012; Uusberg et al., 2013), which
has led to its negative association with the amount of mental
resources employed during a cognitive task and the memory
load in WM tasks (Smith et al., 1999; Gevins et al., 2012; Roux
et al., 2012). These studies may be considered compatible
with evidence on the two specialized storage systems for WM
information (Baddeley, 2012) and indicate distinct functional
roles and anatomical regions involved in the generation of
theta/alpha-band oscillations (Roux and Uhlhaas, 2014).

Despite these promising findings, most of these EEG studies
were conducted in sensor space, leading to possible bias in
inferring the locations of the sources inside the brain that are
responsible for the observed activity on the scalp (Schoffelen and
Gross, 2009; Ewald et al., 2012). Although other neuroimaging
techniques such as functional magnetic resonance imaging
(fMRI) could significantly improve the spatial resolution, these
methods are constrained by low temporal resolution and
therefore unable to reveal the multi-frequency aspects of the
WM-related characteristics of the brain activity. In order to
inspect the activity of the brain with both high temporal and
spatial resolutions, several recent studies of WM have been
performed in EEG source space, in which the sources of
the corresponding brain activities are localized through source
localization techniques (Gevins et al., 1997; Tuladhar et al.,
2007; Palva et al., 2010; Langer et al., 2013). It is noteworthy
that most EEG studies of WM so far have adopted univariate
approaches, such as evaluating the changes in the spectral power
of different frequency bands (Sauseng et al., 2005; Scheeringa

et al., 2009; Escolano et al., 2011; Gevins et al., 2012; Grunwald
et al., 2014), and the event-related potentials (ERPs; Duarte et al.,
2013; Missonnier et al., 2013; Dong et al., 2015; Katus et al.,
2015). These studies mainly focused on the regional properties
of the brain, largely neglecting the brain characteristics from a
global perspective. Therefore, a comprehensive approach in the
EEG source space that adequately reflects the overall organization
of the brain has the potential of shedding more light on the
mechanism of WM processing.

Accumulating studies have revealed that cognition emerges
from the interactions among various brain regions that may be
spatially separated but functionally and/or structurally linked
(Rubinov and Sporns, 2010; Park and Friston, 2013). Drawing
inspiration from this underlying mechanism of the brain, a
computational framework examining the brain as a complex
network (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010)
has the potential of providing more extensive understanding of
WM. The human brain can be represented as a “connectome,”
or a large-scale network of interconnected regions, which
provides the anatomical substrate for neural communication,
functional processing and information integration (Sporns,
2011). Functional connections are constructed by estimating the
statistical associations between the activities of different pairs
of brain regions. The brain functional connectivity network,
which unfolds dynamically upon the rigid structural connectivity
network across multiple scales, closely reflects the internal state
of the brain activities (Park and Friston, 2013). In recent years,
numerous studies on the brain have been conducted through
complex network analysis methods (Sporns and Zwi, 2004;
Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Using
graph theoretical models, which represent the brain regions
as nodes and the functional/structural connections as edges,
various neurobiologically meaningful measures have proved
instrumental in examining the characteristics of the cortical
network (Rubinov and Sporns, 2010).

The application of graph theoretical analysis to EEG
functional connectivity network has led to significant research
findings (Micheloyannis et al., 2006; de Haan et al., 2009).
Specifically, convergent evidence has demonstrated that human
brain networks possess a special topological organization,
i.e., small-world architecture, which is characterized by the
combination of dense local clustering of neighboring nodes and
short path lengths between distant nodes (Watts and Strogatz,
1998). This ideal combination is believed to provide an optimal
brain structure that simultaneously supports locally segregated
and globally integrated processing (Bassett and Bullmore, 2006,
2009; Sporns, 2011). In previous studies of brain functional
connectivity network, we have applied a similar graph theoretical
analytical framework in characterizing various cognitive mental
states (Sun et al., 2014a, 2017) and neurological disorders
(Sun et al., 2014b), which revealed that the topology of the
brain network could be modulated by mental fatigue (mainly
characterized by increased average path length among brain
regions) as well as Alzheimer’s disease (mainly manifested
by reduced efficiency of local information transfer). A recent
study in the EEG source space, which also utilized graph
theoretical analysis, discovered training effects of WM on the
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functional connectivity network (Langer et al., 2013). The current
study on the effects of WM load, which employs a similar
analytical framework, made some methodological modifications
by utilizing a more accurate source localization technique,
performing the analysis in two different frequency bands and
exploring more comprehensive graph theoretical metrics.

In this study, EEG data was recorded during n-back tasks
(Krieger et al., 2005; Ravizza et al., 2005; Valera et al., 2010)
at two difficulty levels [0-back (control task) vs. 2-back (WM
task)] and transformed into the source space using the exact Low
Resolution Electromagnetic Tomography (eLORETA; Pascual-
Marqui et al., 2011). Subsequently, using a graph theoretical
framework, we explored the topology of the cortical functional
connectivity network in different frequency bands. Given that the
theta (4–7 Hz) and alpha (8–12 Hz) bands have been consistently
discovered to be highly correlated with WM demand (for review,
see Klimesch, 1999), we focused on these two frequency bands in
the EEG analysis. Specifically, we calculated graph measures of
small-world properties (e.g., clustering coefficient, characteristic
path length and small-worldness), global and local efficiencies,
and nodal betweenness centrality to examine (1) the nature of
the WM-dependent global topological alterations of the cortical
functional network duringWM tasks; (2) the brain regions whose
centrality within the network varies with the presence of WM
load; and (3) the associations between the network characteristics
and the task performance. Based on the previous discoveries,
we hypothesized that the functional network constructed in
different frequency bands would demonstrate distinct WM-
dependent alterations. We further conjectured that different sets
of brain regions in the theta and alpha bands would exhibit WM-
dependent levels of centrality within the functional connectivity
network.

MATERIALS AND METHODS

Subjects
Twenty-eight students (age = 21.5 ± 1.6 years, male/female =

11/17) from National University of Singapore participated in this
study. All subjects were right-handed according to the Modified
Edinburg Questionnaire (Oldfield, 1971), and had normal or
corrected-to-normal vision. Subjects were prescreened through a
short telephone interview to ensure that they met all inclusion
criteria in the present study, i.e., those subjects who admitted
to chronic physical or mental illness, had been diagnosed with
a sleep disorder or childhood history of ADHD, or were taking
long-term medication were excluded. The study was approved
by the Institutional Review Board of National University of
Singapore (ReferenceNo. 13-516).Written informed consent was
obtained from each of the participant after the explanation of
the experimental protocol. Participants were reimbursed S$20 for
their participation.

Experimental Protocols
Upon arriving at the lab, the subjects were instructed to provide
self-reports of their sleep history and use of alcohol/medication
over the 48 h before the experiments. Given that sleep quality
would affect various cognitive domains including WM (Lim

and Dinges, 2010), participants who reported sleep durations of
<6.5 h on either of the two previous nights were re-arranged
or excluded from further participation. Subjects who took
alcohol/medication within 6 h of entering the lab were excluded
from further participation. The subjects were then prepared to
undergo EEG recording before performing two cognitive tasks,
i.e., WM (n-back) task and mental arithmetic task, each at two
difficulty levels. Each participant was requested to complete 2
sessions of both tasks in a pseudorandom order. Each block was
around 5min and the length of the break between the consecutive
blocks was around 30 s. The entire experiment [comprising eight
blocks in total (2 tasks × 2 levels × 2 sessions)] lasted ∼45min.
In the current study, only the EEG data recorded during the WM
task were analyzed and reported.

In the n-back task, individual uppercase letters were presented
at a visual angle of∼2◦ × 1◦ in white font on a black background.
Letters were presented for 500 ms with an inter-stimulus interval
of 1.5 s. Stimuli were presented on a Windows computer via E-
Prime 2.0 (Schneider et al., 2002). In each trial, the participants
were instructed to indicate whether the current letter was a target
(key-press “P”) or a non-target (key-press “Q”). Two difficulty
levels of the task were created (control vs.WM tasks: 0-back vs. 2-
back). In the 0-back task, the target letter was an “X,” and all other
letters were non-targets. In the 2-back task, the targets were the
letters that were identical to the letters presented two trials before
it. During the experiment, behavioral data were recorded in both
target and non-target conditions. Participants performed the task
in blocks of 150 trials (block duration: ∼5 min). Blocks were
arranged in a predetermined, pseudorandom order. A schematic
diagram of the experimental protocol is shown in Figure 1.

Prior to the real recordings, the participants performed
one block of each of the task types to ensure that they
understood the instructions. During the EEG data collection,
the participants were instructed to emphasize both accuracy
and speed in their performance and to avoid unnecessary head
movement. The participants were scheduled individually for

FIGURE 1 | A schematic diagram of the experimental protocol with (A)

0-back as control tasks and (B) 2-back as WM tasks.
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sessions in the afternoon (between 1 and 5 p.m.) to control
for possible circadian confounds. All testing took place in the
Cognitive Engineering laboratory of Singapore Institute for
Neurotechnology (SINAPSE) in Singapore.

Data Acquisition
EEG data were recorded from 64-channel Ag/AgCl electrodes
(including two channels from the left and right mastoids) based
on the standard 10–20 system, sampled at 256 Hz with the ANT
wave-guard system (ASA-Lab, ANT B.V., Netherlands), and
referenced using the average reference technique. The bipolar
electrooculogram (EOG) signals were recorded from the outer
canthi (HEOG), and above and below (VEOG) the right eye.
Electrode impedances were maintained below 10 k� during the
entire experiment. Anti-aliasing was performed with a band-pass
filter (0.5–70Hz), and a 50 Hz notch filter was used to avoid main
interferences.

EEG Data Preprocessing and
Segmentation
A flowchart that outlines the procedure of data analysis for each
individual subject is presented in Figure 2.

EEG data preprocessing was performed with EEGLAB
(Delorme andMakeig, 2004). The recorded EEG signals were first
band-pass filtered from 1 to 40 Hz, and artifact rejection was
performed through independent component analysis (ICA) in
order to remove the artifacts caused by eye blinks, eye movement,
muscle movement, etc. (Jung et al., 2000; James and Hesse, 2005;
Mantini et al., 2008). Briefly, after ICA decomposition, the ICs
were classified via the following parameters: (1) the correlation

between different ICs and the horizontal as well as vertical EOG
components; (2) the kurtosis k of the IC; and (3) the coefficient
of determination r2 obtained by fitting the IC power spectrum
with a 1/f function. An IC was classified as artifact if any of
the above parameters was above a given threshold according to
Mantini et al. (2009). The number of rejected ICs was different
across subjects with a range of 3–8. The preprocessed EEG data
were then segmented into different epochs, with the beginning
of each epoch marked by the stimulus onset and the end of
each epoch marked by the exact time of the subject’s response
in the particular trial. Therefore, the length of each EEG epoch
varies across different trials and depends on the subjects’ response
time. Outlier detection for reaction time was performed through
the boxplot, significant outlier would be removed. Here, missing
responses were classified as incorrected trials and only correct
target trials in each of the experimental conditions were selected
for further analysis. The final number of trials were 42.30 ± 0.43
and 36.95 ± 0.87 (mean ± standard error of the mean) in the
0- and 2-back tasks respectively. No significant outlier in the
number of trails was revealed using boxplot.

Source Localization
Themethod used here to estimate the cortical activity was similar
to the procedure adopted in (Langer et al., 2013), however,
we have employed a source localization technique (eLORETA)
that produces more robust and accurate result (Pascual-Marqui
et al., 2011; Jatoi et al., 2014) than the approach adopted in
(Langer et al., 2013; sLORETA: standardized Low Resolution
Electromagnetic Tomography). Specifically, for each EEG data
epoch, the power spectrum of each EEG channel and the cross-
coherence between all pairs of EEG channels in both frequency

FIGURE 2 | A flowchart of the data analysis procedures.
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bands were obtained with the multi-taper approach using a
Hanning window. Subsequently, eLORETA source localization
was carried out using FieldTrip (Oostenveld et al., 2011) running
under Matlab 2012a (Mathworks, USA). A template T1 image
from the SPM8 toolbox (Litvak et al., 2011) was segmented
into three tissues: scalp, brain, and skull, which were then used
to create the three shell boundary element models. Electrode
locations (comprising 64 channels based on the standard 10–20
system, among which the average signal of the two electrodes
from the left and right mastoids were used as references to
re-reference the EEG recordings) were then mapped onto the
scalp using a transformation matrix obtained by FieldTrip.
Tissue conductance values were kept at the default values: 0.33
S/m for the scalp and brain, and 0.008 S/m for the skull. A
volume conduction model was then created based on the above
criteria. Sources were restrained to the gray matter for this study,
and the lead-fields were obtained using this approach. Source
localization was then carried out by interpolating the sources
onto the T1 image. Subsequently, the power values produced by
the source localization were parcelated into 116 regions based
on the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer
et al., 2002; by averaging the values of the voxels within each
region), among which 26 cerebellar and 10 subcortical regions
were excluded due to the limited capability of EEG to detect
sources of electrical activity at deep locations inside the brain
and in the cerebellum (Andreou et al., 2015), resulting in 80
regions of interest (ROIs) for further analysis. The names and the
corresponding abbreviations of the selected cortical regions are
listed in Table S1.

Cortical Functional Connectivity Network
Construction
After the source localization and parcellation, for every subject
and in each frequency band, the power values derived from
all epochs under the same experimental condition (0- or 2-
back; one power value from each epoch) were concatenated
to form a series of power values for each ROI, leading
to a matrix (80 × number of correct trials). Subsequently,
employing similar approaches for the estimation of cortical
functional connectivity to those in Cannon et al. (2012) and
Thatcher et al. (2012), the Pearson correlation coefficients
between all pairs of power series were calculated, resulting in
a weighted symmetric connectivity matrix (80 × 80) for every
subject under each experimental condition in each frequency
band.

Prior to the graph theoretical analysis, each of the obtained
correlation matrices was converted into a binary matrix with
a fixed sparsity value to ensure that the wiring cost of each
participant were at the same level. For a given network G with N
(N = 80) nodes, the sparsity is defined as the ratio of the number
of existing edges to the maximum possible number of edges. In
the current study, sparsity values in the range of 10–50% with
a step of 1% were selected to maintain the network reachability
and allow for prominent small-world properties in the cortical
networks. All the networks with the entire sparsity range were
fully connected.

Graph Theoretical Analysis
In order to quantitatively investigate the topological properties
of the cortical functional connectivity network in different WM
tasks, we performed graph theoretical analysis on the networks
using the Brain Connectivity toolbox (Rubinov and Sporns,
2010).

Global Metrics
For a graph G with N nodes (N = 80 in this work), the clustering
coefficient (C), which is ameasure of the degree of local clustering
of a graph, is computed as (Rubinov and Sporns, 2010):

C =
1

N

∑

i∈N

2Ei
(

ki
(

ki − 1
)) , (1)

where ki is the number of edges directly connected with
node i, and Ei is the number of triangles around node i.
The characteristic path length, which quantifies the overall
communication efficiency between any pair of nodes, is
calculated as (Rubinov and Sporns, 2010):

L =
1

N (N − 1)

∑

i∈N

∑

i6=j∈N

min
{

Lij
}

, (2)

where min
{

Lij
}

is the shortest path length between nodes i and j.
In order to characterize the small-world properties of the

networks, the normalized clustering coefficient (γ = C/Crand)
and normalized characteristic path length (λ = L/Lrand) were
calculated, in which Crand and Lrand represent the average
clustering coefficient and average characteristic path length of
an ensemble of 100 surrogate random networks. Each of the
random networks was generated from the original network by
randomly rewiring the edges in the graph, while preserving the
total number of nodes and edges, the degree distribution and the
connectedness of the graph (Maslov and Sneppen, 2002). γ and
λ can be unified into one metric: small-worldness (σ = γ /λ).
A network is considered as small-world if it meets the criteria:
γ >> 1 and λ ≈ 1 (Humphries et al., 2006).

In order to further characterize the small-world properties
of the networks in terms of information flow, global efficiency
(Eglobal) and local efficiency (Elocal) were calculated. Eglobal, which
measures the overall efficiency of information exchange on the
network and is inversely related to L, is computed as (Rubinov
and Sporns, 2010):

Eglobal =
1

N (N − 1)

∑

i6=j∈N

1

min
{

Lij
} , (3)

Elocal, which is a measure of the efficiency of information
transmission within the local clusters in a graph, is calculated as
(Rubinov and Sporns, 2010):

Elocal =
1

N

∑

i∈N

Eglobal (Gi), (4)

where Eglobal(Gi) is the global efficiency of Gi, the subgraph
consisting of the neighbors of node i.
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Nodal Metrics
In addition to evaluating the global metrics of the cortical
network, we also performed nodal analysis and assessed the
importance of different ROIs within the brain network by
evaluating the betweenness centrality (bi) of each node in the
network, which is defined as the fraction of all shortest paths in
the network that pass through node i (Freeman, 1979).

Statistical Analysis
Statistical Analysis of the Integrated Global and

Nodal Metrics
In order to avoid the bias introduced by the selection of
network sparsity, we integrated the global and nodal network
measures over the entire sparsity range (Achard and Bullmore,
2007). Mathematically, the integrated metrics correspond to the
areas under the respective metric curves. Subsequently, two-
tailed paired t-tests were performed on all subjects in order to
identify the metrics showing statistically significant differences
between the 0- and 2-back tasks. The threshold for statistical
significance was selected as 0.05 (p = 0.05) for the global
metrics and 0.01 (p = 0.01) for the nodal metric. To address
the problem of multiple comparison in the nodal analysis,
false discovery rate (FDR) correction with a threshold of q =

0.05 was performed on the integrated betweenness centrality
values.

Correlation between the Behavioral Metrics and

Integrated Graph Measures
In order to investigate the association of the task performance
with the characteristics of the functional connectivity network
and assess the capability of the network metrics for predicting
the individual performance of the WM tasks, we computed the
Pearson correlation coefficients between the integrated graph
theoretical metrics (both global and nodal metrics) and the
behavioral statistics (both the reaction time and accuracy) across
all subjects. Only those network metrics that showed statistically
significant group difference were investigated in the correlation
analysis.

RESULTS

Behavioral Results
As amanipulation check, we compared the reaction times and hit
rates between the two WM tasks (Table 1). A clear effect of WM
was revealed in both the reaction time and accuracy. Compared

with the control (0-back) task, the reaction time was significantly
increased for both (target and non-target) conditions (p < 0.01)
in the WM (2-back) task, together with a significantly reduced
accuracy (p < 0.01).

Global Network Characteristics
The normalized clustering coefficient and normalized
characteristic path length of the networks are shown in
Figure 3. We found that the criteria for small-worldness was
satisfied (γ >> 1 and λ ≈ 1) in both experimental conditions
and both frequency bands. Quantitative statistical analyses
revealed significant topological alterations (p < 0.05) in the
global network metrics between the two WM tasks in both
frequency bands. Figure 4 shows the integrated global metrics
of the functional connectivity networks in both the theta and
alpha bands. As shown in Figure 4A, in the theta-band network,
compared with the 0-back task, the integrated normalized
characteristic path length decreased significantly (p = 0.036),
while the integrated global efficiency exhibited a statistically
significant increase (p = 0.010). In the alpha-band network,
as shown in Figure 4B, the clustering coefficient decreased
significantly (p= 0.012) in the 2-back task.

Regional Network Characteristics
The brain regions that showed significantly different betweenness
centrality in the two experimental conditions (p < 0.01) are
shown in Figure 5. Specifically, in the theta band, significant
inter-task differences were observed in five brain regions.
Three of those regions [the left middle frontal gyrus (MFG.L),
p = 0.008, the left inferior occipital gyrus (IOG.L), p = 0.003
and the left lingual gyrus (LING.L), p = 0.006] exhibited
reduced betweenness centrality values in the 2-back task,
while significantly increased betweenness centrality values were
revealed in the bilateral precentral gyrus (PreCG.L, p < 0.0001∗,
∗indicates the regions that survived the FDR threshold at
q < 0.05, and PreCG.R, p = 0.0004∗). In the alpha band,
four brain regions showed statistically significant differences
between the two tasks, among which three of them [the left
insula (INS.L), p = 0.007, the left superior frontal gyrus, medial
part, (SFGmed.L), p = 0.007, and the right fusiform gyrus
(FFG.R), p = 0.005] showed reduced betweenness centrality
values in the WM task, while the betweenness centrality of the
left gyrus rectus (REC.L, p= 0.009) was increased due to theWM
demand.

TABLE 1 | Behavioral results of the 0-back and 2-back tasks.

Task level Reaction time (ms) Accuracy (%)

Target Non-target Target Non-target

0-backa 414.4 ± 45.6 390.4 ± 54.3 94.0 ± 5.1 98.7 ± 1.7

2-back 578.5 ± 131.0 547.7 ± 138.0 82.1 ± 10.2 95.1 ± 1.9

Statistical testb t(27) = −8.40 (p = 5.22e−9) t(27) = −7.44 (p = 5.33e−8) t(27) = 6.52 (p = 5.39e−7) t(27) = 8.76 (p = 2.26e−9)

aValues are expressed as mean ± SD.
bThe p-values were obtained using paired t-tests.
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FIGURE 3 | The normalized clustering coefficient (γ) and normalized characteristic path length (λ) of the cortical functional connectivity networks over

different sparsity values (mean ± standard deviation) in (A) 0-back task, theta band, (B) 0-back task, alpha band, (C) 2-back task, theta band, and (D) 2-back

task, alpha band.

Correlation between the Behavioral
Metrics and Network Measures
The normalized characteristic path length of the theta-band
network (r = −0.267, p = 0.047) and the clustering coefficient
of the alpha-band network (r = −0.292, p = 0.029) were
revealed to possess significant negative correlations with the
reaction time (Figure 6). Moreover, a significant positive
correlation was found between the betweenness centrality of
the PreCG.L in the theta-band network and the reaction time
(r = 0.340, p = 0.010). No statistically significant correlation
was discovered between the graph metrics and the response
accuracy.

DISCUSSION

Using a graph theoretical approach, we investigated the global
and regional alterations of the cortical functional connectivity
network in the theta and alpha bands in a WM task compared
with a control task. We discovered that in the WM (2-back)
task, the theta-band functional connectivity network became
more globally integrated, leading to a more efficient overall
organization; the local segregation of the alpha-band network
was degraded, resulting in a less optimal network architecture.
Additionally, distinct sets of brain regions in the two frequency
bands exhibited WM-dependent centrality within the functional
network, and regions showing both positive and negative
associations with the memory demand were revealed in each
frequency band. Moreover, we found significant correlations
between the reaction time and the network characteristics in
both frequency bands, which demonstrates the potential of the

respective network characteristics for predicting the performance
in the WM tasks.

Variations in the Global Topology of the
Cortical Functional Connectivity Network
Various studies have discovered that the brain functional
network possesses small-world architecture (for reviews, see
Bassett and Bullmore, 2006, 2009; Sporns, 2011), which features
the combination of strong global integration and high local
clustering (Watts and Strogatz, 1998). In the current study, in
accordance with previous findings, the small-world topology
was revealed in both task conditions (the 0- and 2-back tasks)
and both frequency bands (the theta and alpha bands), which
suggests that regardless of the presence of WM requirement and
the frequency of oscillation, the functional connectivity network
is optimally organized for efficient exchange of information.
However, despite the common small-world structure, distinct
alterations in the global network topology resulting from the
presence of WM load were found in the theta and alpha bands.

In the theta band, the global efficiency of the cortical
functional connectivity network increased significantly in the 2-
back task compared with the 0-back task, while the normalized
characteristic path length exhibited a significant decrease. These
findings indicate enhanced functional integration of the brain
network and strengthened overall interaction among different
brain regions, which result in an improvement in the overall
efficiency of information transfer on the brain functional network
and greatly facilitate the execution of the WM task. It has
been reported that the theta synchronization among different
brain regions contributes substantially to the co-activation of
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FIGURE 4 | Integrated global metrics (corresponding to the area under the curves of each metric over the entire sparsity range) of the cortical

functional connectivity networks in the 0-back and 2-back tasks in (A) theta band, (B) alpha band. The metrics are (from left to right) clustering coefficient (C),

characteristic path length (L), normalized clustering coefficient (γ), normalized characteristic path length (λ), small-worldness (σ), local efficiency (Elocal ), and global

efficiency (Eglobal ). The bars represent mean ± standard error. The t- and p-values of the corresponding metrics showing statistically significant differences (p < 0.05)

between the 0-back and 2-back tasks are presented.

FIGURE 5 | The surface spatial distribution of the cortical regions showing significantly different betweenness centrality values between the 0-back

and 2-back tasks (p < 0.01) in (A) theta band and (B) alpha band. The color bar represents the t-values of the corresponding regions obtained from paired t-test

between the two tasks. The names of the regions that survived the FDR correction are highlighted in green. The brain regions were overlaid on inflated surface maps

with the BrainNet Viewer toolbox (Xia et al., 2013). For the abbreviation of the cortical regions, see Table S1. L = left, R = right.

various brain structures in WM task execution and that the
theta oscillation might play an integrative role in the overall
organization of the brain activity, making it actively involved
in WM tasks during which various cognitive resources are
recruited and coordinated (Sarnthein et al., 1998; Sauseng et al.,
2010). Therefore, the observed improvement in the functional
integration of the theta-band network, together with previous
findings that demonstrated increased theta activity in high-
load WM tasks (Gevins et al., 1997; Jensen and Tesche, 2002;
Sauseng et al., 2005; Langer et al., 2013; Grunwald et al.,
2014), might suggest that when a WM task (as opposed to a
control task in which no WM is required) is performed, the

activity of the theta-band network is enhanced toward more
efficient and economical propagation of information on the
network. The strengthened theta oscillation and more globally
efficient network structure in the theta band might be attributed
to the need for enhanced attention to facilitate the sustained
maintenance of memory representations, in order to cope with
the memory-demandingWM task (Gevins et al., 1997; Hsieh and
Ranganath, 2014; Roux and Uhlhaas, 2014).

In the alpha-band cortical functional connectivity network,
the clustering coefficient decreased significantly in the 2-back
task. This observation demonstrates a decline in the functional
segregation and a reduction in the local density of connections
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FIGURE 6 | Scatter plots showing the correlations between the subjects’ reaction time and (a) the normalized characteristic path length of the theta-band

network and (B) the clustering coefficient of the alpha-band network. The horizontal axis represents the values of the respective graph metrics, and the vertical axis

stands for the reaction time. The r- and p-values of the corresponding correlations are displayed in the figures.

in the WM network. Many studies in recent years have led to
the hypothesis that alpha oscillations are associated with the
suppression of spurious brain activities and the inhibition of
brain regions that are irrelevant to the mental task (Klimesch
et al., 2007; Mazaheri and Jensen, 2010; Scheeringa et al., 2012;
Uusberg et al., 2013), which suggests an inverse correlation
between the amplitude of the alpha activity and the amount
of cortical resources employed to perform the cognitive task.
Specifically, previous WM studies have consistently revealed
weakened alpha activity in WM tasks with increased memory
demand (Cohen et al., 1997; Gevins et al., 1997, 1998, 2012; Smith
et al., 1999; Roux et al., 2012; León-Domínguez et al., 2015).
Therefore, taking into account the observed decline in local
clustering, we speculate that this inverse relationship between the
alpha activity and WM load might be associated with weakened
local functional clustering of functionally related brain regions in
the alpha-band network during WM tasks.

Alterations in the Importance of Individual
Brain Regions in the Cortical Functional
Connectivity Network
In contrast to previous studies investigating the alterations in the
activations of different brain regions in WM tasks, in the current
study, we assessed the variations of the importance of individual
brain regions within the cortical functional connectivity network
using a graph theoretical measure: betweenness centrality.

In the theta-band functional connectivity network, three
brain regions in the frontal lobe were discovered to possess
WM-related betweenness centrality (the PreCG.L, PreCG.R, and
MFG.L), and the activations of all three regions have previously
been revealed to be associated with the load ofWM tasks (Carlson
et al., 1998). Of note, two out of the three regions (the PreCG.L
and PreCG.R, both of which survived the FDR correction for

multiple comparisons) exhibited increased importance within
the brain network in the WM task. The observation, together
with previous findings demonstrating heightened theta activity
in the frontal regions with increased WM load (Gevins et al.,
1997, 1998; Jensen and Tesche, 2002; Sauseng et al., 2005; Langer
et al., 2013; Grunwald et al., 2014), might further corroborate
the notion that the theta oscillations in the frontal regions
become more critical for the execution of tasks requiring WM
(in contrast to those tasks with the absence of WM) or with
heavier WM load. Moreover, reduced centrality in the 2-back
WM task was observed in two brain regions that reside in the
occipital lobe (the IOG.L and LING.L). The visual cortex has
been discovered to be transiently involved in the execution of
WM tasks yet independent of the memory load (Cohen et al.,
1997). Meanwhile, in the presence of WM load, more cognitive
resources are recruited to cope with the memory-demanding
WM task, and the theta oscillation has been suggested to be
responsible for integrating different cognitive processes in WM
(Sauseng et al., 2010). Therefore, in the theta-band network,
due to the increased employment of various cognitive resources
and maintained involvement of the visual cortex in WM tasks
(compared with the control task), the relative participation of
the visual cortex in the processing of the functional connectivity
network is expected to decline, which is supported by the
observation of decreased betweenness centrality of the two
occipital brain regions in the current study.

In the alpha-band network, three anterior regions showed

WM-dependent betweenness centrality; among these regions,

two of them (the INS.L and SFGmed.L) exhibited reduced
importance within the network in the WM task, while the other
brain region (the REC.L) was found to be positively correlated
with WM. Additionally, one posterior brain region (the FFG.R)
was revealed to be negatively associated with WM. In line with
our observations, the functional coupling among the anterior
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brain regions in the upper alpha band has been discovered to
decrease with WM demand (Sauseng et al., 2005). Therefore, we
speculate that the memory demand inWM tasks (compared with
the control task) leads to decoupled alpha oscillations among
the anterior brain regions, thus reducing the centrality of these
regions within the alpha-band functional connectivity network.
One of the anterior regions displaying reduced betweenness
centrality in the 2-back task (the SFGmed.L) has previously
been discovered to be more activated at rest than during WM
tasks (Mazoyer et al., 2001). The SFGmed.L region has been
consistently discovered to be contained in the default mode
network (DMN; Mason et al., 2007; Uddin et al., 2009), whose
activity is enhanced during the resting condition and lessened
during the performance of cognitive tasks (Raichle et al., 2001;
Greicius et al., 2003). Therefore, we conjecture that as a result
of the presence of WM load in the 2-back task, the weakened
activity of the DMN leads to the reduction in the involvement of
the DMNbrain regions in the alpha-band functional connectivity
network and results in the observed decline in the betweenness
centrality of the SFGmed.L.

Correlations between the Behavioral
Metrics and Network Measures
The performance of WM tasks, which can be quantified by
behavioral measures such as reaction time, has been repeatedly
found to be correlated with the functional connectivity in both
theta and alpha bands (Palva et al., 2010; Roux et al., 2012;
Langer et al., 2013). The normalized characteristic path length
in the theta-band functional connectivity network has been
found to be negatively correlated with the reaction time. Since
the normalized characteristic path length is inversely associated
with the global integration, this finding further corroborates the
integrative role taken by the theta oscillation in coordinating
different cognitive resources and the improvement in the global
integration of the theta-band brain network in high-demandWM
tasks (Sarnthein et al., 1998; Sauseng et al., 2010). Moreover, the
clustering coefficient of the alpha-band network was revealed
to possess significant negative correlation with the reaction
time, which provides additional evidence in support of the
inhibition of the activity of irrelevant brain regions related to
alpha oscillations and the reduced functional segregation of the
alpha-band network as a result of the presence of (compared
with WM-free tasks) or increase in WM load (Klimesch et al.,
2007;Mazaheri and Jensen, 2010; Scheeringa et al., 2012; Uusberg
et al., 2013). These findings demonstrate the intimate associations
between the network characteristics in different frequency bands
and the task performance, and thus reveal the potential of the
respective network metrics for predicting the performance of the
subjects in WM tasks.

Methodological Considerations
In the present study, a standard T1 image was used in the
source localization process for all subjects. We have attempted
to minimize the effects of the estimation error through choosing
relative large cortical parcellations and investigating the group-
averaged data. However, the source localization can be improved
if subject-specific anatomy were used. Therefore, future studies

employing the brain anatomy of each individual subject, which
could be obtained through high-resolution fMRI images, to
improve the accuracy of the source localization are encouraged.
Furthermore, since the current study is exploratory in nature,
an uncorrected p-value of 0.01 was used as the threshold for
establishing the significance and interpreting the results of
the regional analysis. However, due to the large number of
comparisons performed in the nodal analysis, the possibility
that some of the nodal results may have occurred by chance
cannot be ruled out. Therefore, some caution is needed when
interpreting the results of the nodal analysis. In the current
study, we focused on the interpretation of the general patterns
of the findings; we also provided the detailed statistical results
and highlighted those regions that survived the correction
for multiple comparisons for readers’ interpretation. Third,
although EEG has several advantages in revealing neural network
dynamics and the precise coordination of oscillations at different
frequencies as performed in the current work, it is limited
both in its spatial resolution and in its capacity to detect
sources of electrical activity at deep locations and in the
cerebellum (Andreou et al., 2015). Therefore, brain networks
were constructed with parcellation covered only cortical areas
in the current work. Future studies with cautious application
of source localization methods with concurrent EEG/fMRI
recordings are anticipated. Lastly, the final number of trails
for functional connectivity estimation in the current study
was different between control and WM tasks. Further studies
with more trails and multiple load levels were needed to
confirm our observations and investigate the characteristics of
cortical network reorganization under various levels of WM
load.

CONCLUSION

In this study, we constructed cortical functional connectivity
networks in the EEG source space and adopted a graph
theoretical framework to analyze the topological variations
of the brain network during a WM task compared with a
control task. We revealed that, in the WM task (compared
with the control task), the theta-band functional integration
was improved, whereas the alpha-band functional segregation
was reduced; the network centrality of different brain regions
in the frontal, temporal and occipital regions were altered in
both frequency bands; the reaction time of the subjects was
negatively correlated with the average path length in the theta
band and positively correlated with the degree of local clustering
in the alpha band. Our findings might shed further light
on the frequency band-dependent alterations in the topology
of the functional brain network in WM tasks and promote
our understanding of the underlying mechanism of the effects
in WM.
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