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Due to the high intra-individual variability in attention deficit/hyperactivity disorder
(ADHD), there may be considerable bias in knowledge about altered neurophysiological
processes underlying executive dysfunctions in patients with different ADHD subtypes.
When aiming to establish dimensional cognitive-neurophysiological constructs
representing symptoms of ADHD as suggested by the initiative for Research Domain
Criteria, it is crucial to consider such processes independent of variability. We examined
patients with the predominantly inattentive subtype (attention deficit disorder, ADD)
and the combined subtype of ADHD (ADHD-C) in a flanker task measuring conflict
control. Groups were matched for task performance. Besides using classic event-
related potential (ERP) techniques and source localization, neurophysiological data was
also analyzed using residue iteration decomposition (RIDE) to statistically account for
intra-individual variability and S-LORETA to estimate the sources of the activations. The
analysis of classic ERPs related to conflict monitoring revealed no differences between
patients with ADD and ADHD-C. When individual variability was accounted for, clear
differences became apparent in the RIDE C-cluster (analog to the P3 ERP-component).
While patients with ADD distinguished between compatible and incompatible flanker
trials early on, patients with ADHD-C seemed to employ more cognitive resources
overall. These differences are reflected in inferior parietal areas. The study demonstrates
differences in neuronal mechanisms related to response selection processes between
ADD and ADHD-C which, according to source localization, arise from the inferior
parietal cortex. Importantly, these differences could only be detected when accounting
for intra-individual variability. The results imply that it is very likely that differences in
neurophysiological processes between ADHD subtypes are underestimated and have
not been recognized because intra-individual variability in neurophysiological data has
not sufficiently been taken into account.

Keywords: ADD, ADHD-C, event-related potentials, residue iteration decomposition, conflict processing

Abbreviations: ADD, attention deficit disorder; ADHD-C, attention deficit/hyperactivity disorder—combined
subtype; ERP, event-related potentials; RIDE, residue iteration decomposition.
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INTRODUCTION

Attention deficit/hyperactivity disorder (ADHD) is a multi-
faceted developmental disorder (Kieling and Rohde, 2012)
in which different subtypes can be distinguished based on
clinical criteria. The most prominent are the predominantly
inattentive subtype (attention deficit disorder, ADD) and the
combined ADHD subtype (ADHD-C; Randall et al., 2009;
Ahmadi et al., 2014). As stressed by the research domain
criteria (RDoC) initiative, there is an increasing need to validate
existing clinical classifications and to generate classifications
on the basis of neuronal (neurophysiological) data (Insel
et al., 2010). In this regard, neuronal correlates of cognitive
control and action selection mechanisms are of interest
given the prominent executive function deficits in ADHD
(Houghton et al., 1999; Kenemans et al., 2005; Roberts et al.,
2012). Conflict monitoring abilities play a crucial role in
this context (Randall et al., 2009; Cao et al., 2013; Bluschke
et al., 2016b, 2017; Stroux et al., 2016) and have been
suggested as an endophenotype of ADHD (Albrecht et al.,
2008). Concerning subtype differences, patients with ADHD-C
have been shown to be somewhat more affected by such
executive control deficits (Nikolas and Nigg, 2013; Ahmadi
et al., 2014; Bluschke et al., 2016a,c; Dobson-Patterson et al.,
2016).

Yet, critically, such executive control processes are affected
by a multitude of cognitive subprocesses from perceptual
and attentional selection to response selection and motor
processes (Barkley, 1997; Houghton et al., 1999; Nikolas and
Nigg, 2013). These different subprocesses are important to
consider when aiming to establish dimensional cognitive-
neurophysiological differences between ADD and ADHD-C.
This is due to the fact that a similar behavioral outcome
may emerge from dysfunctions at different processing levels.
While it is possible to examine the neurophysiology of these
different processing stages in ADD and ADHD-C using classic
event-related potential (ERP) methods (Johnstone and Clarke,
2009; Gong et al., 2014; Mazaheri et al., 2014), it is important
to consider that this and related methods can only yield a
true reflection of the neural activity when there is little intra-
individual variability (Ouyang et al., 2011, 2015a; Mückschel
et al., 2017). This however, is unlikely to be the case in ADHD
because a high behavioral intra-individual variability is a core
aspect also discussed as an endophenotype of this disorder
(Henríquez-Henríquez et al., 2014; Lin et al., 2015; Saville et al.,
2015). There may thus be a considerable bias in knowledge
about altered neurophysiological processes in patients with
ADHD and its different subtypes. When aiming to establish
dimensional cognitive-neurophysiological constructs of ADHD
(refer to the RDoC initiative; Insel et al., 2010), it is crucial to
eliminate this bias and to explore, how dissociable cognitive-
neurophysiological subprocesses differ between patients with
different ADHD subtypes.

To achieve this, we use residue iteration decomposition
(RIDE; Ouyang et al., 2011, 2015a,b) applied on single-trial
ERP data in combination with source localization techniques
to examine neurophysiological changes at different levels in

the information processing stream in ADD and ADHD-C.
For this, participants performed a classical flanker task which
reliably measures conflict and interference control (Keye
et al., 2013; Chmielewski et al., 2014; Bluschke et al., 2016b)
and has already been extensively used in ADHD research
(e.g., Jonkman et al., 1999; van Meel et al., 2007; Albrecht
et al., 2008; Mullane et al., 2009; Iannaccone et al., 2015).
However, to the best of our knowledge, no study has so
far actually statistically accounted for alterations in intra-
individual variability when interpreting results. RIDE offers
a way of doing just that. It decomposes EEG data on the
basis of their timing and timing variability properties and is
therefore well-suited to address issues related to a possible
bias caused by intra-individual variability. Using conventional
techniques, this aspect of the data cannot be sufficiently
accounted for. RIDE calculates three clusters of components
locked to the target stimulus of the trial with dissociable
functional relevance (Ouyang et al., 2011, 2015a): the S-cluster
refers to processes related to the stimulus (like perception
and attention), the R-cluster refers to processes related to
the response (like motor preparation and execution) and the
C-cluster refers to intermediate processes between S and R
(like stimulus evaluation and response selection). The different
components within a RIDE cluster correspond to the traditional
components in the conventional ERP. The correspondence of
specific peaks and topographies, however, crucially depends on
the proximity to the locking point and the varying degrees
of variability in the neurophysiological signal resulting from
it (Ouyang et al., 2015a,b). Specifically, RIDE-components
in the S-cluster commonly only differ very little from the
corresponding ERPs like the P1 and N1, as they both are
closely locked (and thus immediately related) to the stimulus.
As the proximity to the locking point increases, the intra-
individual variance also rises. Based on the removal of this
variability by RIDE, there are more differences in latency
and scalp topography between the RIDE-component (i.e., the
C-cluster) and the corresponding ERP (like the P3; Mückschel
et al., 2017). These are larger than it is the case in the
S-cluster. Based on the common core attentional deficits,
we thus hypothesize that stimulus processing and attentional
selection mechanisms do not differ between ADHD-C and
ADD. In contrast, processes related to response selection
and decision processes are expected to be reduced in the
ADHD-C group, as most previous research results suggest
for executive control deficits to be more pronounced in this
subgroup (Nikolas and Nigg, 2013; Ahmadi et al., 2014; Dobson-
Patterson et al., 2016). We further do not expect any motor
processing deficits as behaviorally they are not specific to
one subtype (Ghanizadeh, 2010). Importantly we hypothesize
that due to the known high intra-individual variability, these
differential effects will only be found after RIDE-analysis but
not while using standard ERP methodology. To specifically focus
on dimensional neurophysiological constructs representing
symptoms of and differences between ADD and ADHD-C, we
deliberately do not focus on the contrast between these groups
of patients and healthy controls. Instead, we compare groups
of patients with ADD and ADHD-C who do not differ in
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interference control behavior in the applied task. Controlling
for differences on the behavioral level makes it possible to
exclude potential confounding effects on neurophysiological
data. Despite the complex and not necessarily direct associations
between electrophysiological and behavioral measures, such
differences may amplify neurophysiological differences between
the examined ADHD subtypes.

MATERIALS AND METHODS

Sample
Only patients in whom ADD or ADHD-C diagnoses had
been determined according to standard clinical procedures
(incl. parent and child interview, teacher report, symptom
questionnaires, IQ testing, exclusion of underlying somatic
disorders via EEG, ECG, audiometry and vision testing)
were included in the study. All participants fulfilled
criteria for ADHD according to ICD-10 criteria (F90.0,
F90.1 (ADHD-C) or F98.8 (ADD)). All participants were
regular patients of the outpatient clinic of the Department
of Child and Adolescent Psychiatry, University Hospital
Dresden. Patients were excluded if additional severe or
acute psychiatric (e.g., autism, tics, depressive episode)
or somatic comorbidities had been diagnosed. For the
descriptive biographical and clinical data, the mean and
the standard deviation are given. Overall, 34 patients with
ADHD-C (1 female, 11.0 ± 2.5 years, age range between
7 years and 15 years, IQ: 101.7 ± 13.9, 17 medicated with
extended-release Methylphenidate) and 25 patients with
ADD (3 female, 10.9 ± 1.9 years, age range between 7 years
and 15 years, IQ: 94.0 ± 14.3, 14 medicated with extended-
release Methylphenidate) participated in the study. The two
groups were recruited simultaneously and did not differ
regarding age (t(57) = 0.08, p = 0.93) or IQ (t(57) = −1.8,
p = 0.08). In the ADHD Symptom Checklist (Döpfner et al.,
2008), parents rated (0: no problems, 3: severe problems)
their children in regards to inattention (average raw score
ADHD-C: 2.2 ± 0.50, ADD: 2.0 ± 0.41, t(57) = −2.3,
p = 0.03), hyperactivity (average raw score ADHD-C:
1.7 ± 0.61, ADD: 0.59 ± 0.47, t(57) = −7.8, p ≤ 0.001)
and impulsivity (average raw score ADHD-C: 2.3 ± 0.39,
ADD: 1.1 ± 0.59, (t(57) = −9.6; p ≤ 0.001), thus confirming
ADHD symptomatology and the two different subtypes. All
subjects and their parents or legal guardians provided written
informed consent in accordance with the Helsinki Declaration
of 1975, as revised in 2008. The study was approved by the
local ethics committee of the Medical Faculty of the TU
Dresden.

Task
To examine conflict monitoring processes, a flanker task was
used (Beste et al., 2010, 2013). Flanker tasks are traditionally
used to examine interference control in ADHD (Mullane et al.,
2009). In the Flanker task used, vertically arranged visual stimuli
are presented with the target stimulus (white arrowhead) in the
center of the screen on a black background (see Figure 1).

FIGURE 1 | Stimuli and timings of a flanker trial. Compatible or incompatible
flanker arrows are presented 200 ms before the target stimulus. Participants
are required to indicate the direction of the target stimulus by pressing a
button accordingly. The response-stimulus interval (RSI) varies between
1400 ms and 1800 ms.

Target stimuli pointing to the left or right are flanked by two
vertically adjacent arrowheads pointing in the same (compatible)
or opposite (incompatible) direction as the target stimulus.
These flanker stimuli precede the target by 200 ms. To adapt
the paradigm to children, the stimulus onset asynchrony had
been prolonged by 100 ms compared to the adult version
(Beste et al., 2013; Bluschke et al., 2016b). This maximizes the
degree of conflict induced by the flankers and the likelihood of
premature responding to the flankers. The target is displayed
for 300 ms and flanker stimuli are switched off simultaneously.
The response-stimulus interval (RSI) is pseudo-randomized
between 1400 ms and 1800 ms. To further increase the level of
conflict, time pressure is administered by asking the participants
to respond within 450 ms. In case responses exceeded this
deadline, an auditory warning stimulus (1000 Hz, 60 dB SPL)
was given 1200 ms after the response. This stimulus setup
was used in two blocks of 120 stimuli each. Out of these
240 trials, 67% were compatible and 33% were incompatible
trials.

EEG Recording and Analysis
The EEG was recorded from 60 Ag/AgCl electrodes arranged in
equidistant positions (1000 Hz sampling rate, ground electrode
at θ = 58, φ = 78, reference electrode at Fpz) using the
BrainVision Recorder software. All electrode impedances were
kept below 5 kΩ. The BrainVision Analyzer II was used
for data pre-processing and analysis. Offline, the EEG was
down-sampled to 256 Hz. Data were manually inspected to
remove technical artifacts. A band-pass filter (0.5–20 Hz at
48 db/oct each) was applied. To correct for periodically recurring
artifacts (horizontal and vertical eye movements and blinks),
an independent component analysis (ICA; infomax algorithm)
was applied to the unepoched data sets. Components that
revealed horizontal and vertical eye movements and blinks were
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visually identified by means of recurrent similar waveform and
by means of scalp topography. ICA components reflecting the
above-mentioned artifacts were then discarded. The EEG was
segmented into compatible and incompatible trials under the
constraint that the response given in the trials was correct.
Trial segmentation was target-locked and began 2000 ms
before the target presentation of the respective trial and ended
2000 ms after its presentation. Afterwards, an automated artifact
rejection procedure using a maximum/minimum amplitude
of 100/−100 µV as well as an activity below 0.5 µV in a
200 ms period as rejection criteria was applied. A current
source density (CSD) transformation (Nunez and Pilgreen, 1991)
was utilized to eliminate the reference potential from the data.
For the baseline correction, a 200 ms time interval before
target stimulus presentation was utilized. At this point it is
important to note that another baseline (i.e., from −400 ms
until −200 ms; i.e., before flanker stimuli presentation) did
not change the pattern of results in the neurophysiological
data. Averages were calculated separately for all conditions at
the single subject level. Data quantification was conducted on
the single subject data. Specific electrodes and time windows
were selected on the basis of the scalp topography using a
data-driven approach. The classic ERPs were examined in
corresponding time windows. The P1Flanker (−95 ms to−75 ms),
the N1Flanker (−10 ms to 10 ms), the P1Target (115–135 ms)
and the N1Target (260–280 ms) were quantified at electrodes
P9 and P10. The N2 was measured at 280–320 ms over
electrodes FCz and Cz and the P3 was examined at electrode
Pz at 300–320 ms. This choice was validated using a statistical
approach outlined in Mückschel et al. (2014) for each group
separately (Chmielewski et al., 2014). Doing so, the above
time intervals were taken and the mean amplitude within
the defined search intervals was determined for each of the
60 electrode positions. Then, to compare activation recorded at
each electrode against the average of activation recorded at all
other electrodes, Bonferroni correction for multiple comparisons
(critical threshold, p = 0.0007) was used. Only electrodes at which
recorded activation was significantly stronger (i.e., negative
for the N-potentials and positive for the P-potentials) when
compared to that at other electrodes were chosen. This procedure
revealed the same electrodes of interest as those chosen by visual
inspection.

The RIDE decomposition was performed according to
established procedures (Ouyang et al., 2011; Verleger et al.,
2014) using the RIDE toolbox and manual available on
http://cns.hkbu.edu.hk/RIDE.htm. RIDE decomposes EEG data
on the basis of their timing and timing variability properties.
Because RIDE only makes use of latency variability and separates
component clusters irrespective of their scalp distributions and
waveforms (Ouyang et al., 2015a,b), the application of the CSDs
that work as a spatial filter is not critical. The time markers
(‘‘latencies’’) used for deriving the S and R cluster components
(‘‘LS’’ and ‘‘LR’’) are the time points of the stimulus and response
onsets, respectively. In contrast to this, the time markers for
deriving C (‘‘LC’’) are estimated and iteratively improved. RIDE
uses a time window function to extract the waveform of each
RIDE component. For the current study this was from 200 ms

prior to target to 600 ms after the target for the S-cluster, from
200 ms to 900 ms after the target for the C-cluster and ±300 ms
around the response trigger for the R-cluster (Ouyang et al.,
2015a). To estimate S, RIDE subtracts C and R from each single
trial and aligns the residual of all trials to the latency ‘‘LS’’ in
order to obtain S as the median waveform for all time points.
The equivalent procedure is applied to obtain C and R. For
the R-cluster the response needs to be part of the epoch and
around 98% of all responses were carried out within the epoch.
The whole procedure is iterated to improve the estimation of
the components until they converge (criterion: less than 10−3

difference for the values of two successive iterations). Full details
on the RIDE method can be found in Ouyang et al. (2011,
2015a).

The three RIDE clusters can be used to quantify components
corresponding to classic ERPs. Just like it was the case for
the traditional ERP analysis, we also applied a data-driven
approach to quantify appropriate time windows and topographic
locations for the RIDE-components (2014). In our case, the
R-cluster was examined at electrodes C3 and C4 in the time
window of ±10 ms around the average reaction times (RTs)
in the compatible and incompatible trials. In the S-cluster, we
quantified the RIDE-P1Flanker (−95 ms to −75 ms), the RIDE-
N1Flanker (−10 ms to 10 ms), the RIDE-P1Target (115–135 ms)
and the RIDE-N1Target (260–280 ms) at electrodes P9 and P10.
In addition, the S-cluster RIDE-N2 (N2S) was examined over
electrodes FCz and Cz at 280–320 ms. As reported previously
(Ouyang et al., 2011, 2015a,b; Verleger et al., 2014), the latencies
and topographies of the ERP- and the RIDE-components were
identical in the S-cluster, as the close proximity to the common
locking point leads to a relatively low impact of the intra-
individual variability. In the C-cluster, the RIDE-N2 (N2C) was
quantified in the time window of 370–390ms over electrodes FCz
and Fz. The C-cluster RIDE-P3 was measured over electrode Pz.
Time windows (ADD: 520–540 ms; ADHD-C: 590–610 ms) were
adapted based on the observed peak latencies. As it was to be
expected (Ouyang et al., 2011, 2015a,b; Verleger et al., 2014), the
component characteristics in the RIDE analysis were different
to those in the ERP analysis. This is due to the larger impact
of the variability, which arises due to the larger time interval
to the common locking point. The choice of time windows
and electrodes quantified for the RIDE decomposition was also
validated using the statistical approach outlined in Mückschel
et al. (2014).

Source Localization Analysis
For the source localization analysis, standardized low resolution
brain electromagnetic tomography (sLORETA; Pascual-Marqui,
2002) was used. As a basis for the source localization analysis
we used the estimated RIDE cluster. sLORETA provides
a single solution to the inverse problem (Pascual-Marqui,
2002; Marco-Pallarés et al., 2005; Sekihara et al., 2005)
based on the MNI152 template (Mazziotta et al., 2001). It
has been mathematically proven that sLORETA provides
reliable results without a localization bias (Sekihara et al.,
2005) and also combined TMS/EEG studies support this
(Sekihara et al., 2005; Dippel and Beste, 2015). The voxel-based
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sLORETA images were compared across compatibility
conditions and groups using the sLORETA-built-in voxel-wise
randomization tests with 2000 permutations, based on statistical
nonparametric mapping (SnPM). Voxels with significant
differences (p < 0.01, corrected for multiple comparisons)
between contrasted conditions were located in the MNI-
brain1.

Statistics
Descriptive statistics are shown as mean ± standard error.
The data was analyzed using mixed effects analysis of
variance (ANOVAs) using Group (ADD vs. ADHD-C) as the
between-subject factor. As a within-subject factor, Compatibility
(compatible vs. incompatible trials) was modeled to account for
the two different flanker-target combinations (not applicable
to (RIDE-)P1Flanker and (RIDE-)N1Flanker). Where necessary,
Electrode was modeled as an additional within-subject factor
and is only reported when a relevant interaction with Group
was observed. Greenhouse-Geisser correction was applied for
all ANOVAs. Post hoc tests were Bonferroni-corrected when
necessary. All variables included in the analysis were normally
distributed, as indicated by Kolmogorov-Smirnov tests (all
z < 1.05; p> 0.3).

RESULTS

Behavioral Data
As groups were compiled specifically to not display any
differences on the behavioral level, there was only a main
effect of Compatibility (F(1,57) = 65.9; p ≤ 0.001; η2p = 0.54)
in RTs, showing faster responses in compatible (339 ± 10 ms)
compared to incompatible trials (402 ± 15 ms; all other
F ≤ 0.48; p ≥ 0.49; η2p = 0.008). Similar results were
found for accuracy. The main effect of Compatibility was
significant (F(1,57) = 64.6; p ≤ 0.001; η2p = 0.53), with
more correct responses in compatible (66.2 ± 3.0%) than in
incompatible trials (39.7 ± 2.5%; all others F ≤ 0.5; p ≥ 0.48;
η2p = 0.009). Moreover, further analyses show that performance
on incompatible trials was significantly below chance level in
each of the investigated groups (p < 0.001). Regarding intra-
individual variability, we calculated the within-subject standard
deviation of the RTs at the single subject level and analyzed
this data using mixed ANOVAs. The results show only a main
effect Compatibility (F(1,57) = 5.86; p = 0.019; η2p = 0.093) with
the variability being higher on incompatible (134 ± 4.7 ms)
than compatible trials (124 ± 6.5 ms). There were no main
effects or interactions involving the factor Group (all F ≤ 0.008;
p ≥ 0.9).

Neurophysiological Data
Event-Related Potentials (ERPs)
No main effects or interactions were statistically significant
for the P1Flanker (all F ≤ 1.0; all p ≥ 0.32; all η2p ≤ 0.02),
the N1Flanker (all F ≤ 2.9; all p ≥ 0.1; all η2p ≤ 0.05),

1www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA.htm

the P1Target (all F ≤ 2.1; all p ≥ 0.15; all η2p ≤ 0.04) or
the N1Target (all F ≤ 3.5; all p ≥ 0.07; all η2p ≤ 0.06; see
Figure 2A).

For the N2, we only found a main effect of Compatibility
(F(1,57) = 6.8; p = 0.01; η2p = 0.1), with the component being
more pronounced in incompatible (−23.4 ± 3.7 µV/m2) than
in compatible trials (−14.1 ± 3.6 µV/m2; all others F ≤ 3.1; all
p ≥ 0.09; all η2p ≤ 0.05; see Figure 3A).

Finally, the analysis of the P3 revealed no significant main
effects or interactions (all F ≤ 3.3; all p ≥ 0.07; all η2p ≤ 0.06;
see Figure 4A). Even though the choice of the electrode sites
and time windows was validated using statistical methods, the
time windows for data quantification in the P3 ERP differed from
those used in the RIDE C-cluster (see ‘‘Materials and Methods’’
Section). To rule out that the pattern of results changed when
the same time windows were used for data analysis, we analyzed
the P3 ERP data in the same time windows as used for the
RIDE C-cluster data. This analysis revealed no main effects or
interactions (F ≤ 1.4; all p ≥ 0.34; all η2p ≤ 0.03). This shows that
the effects obtained in the RIDE C-cluster data (see below) are
not due to a bias related to different time intervals used for data
quantification.

Residue Iteration Decomposition (RIDE)
For the R-component measured at electrodes C3 and C4, the
mixed effects ANOVA revealed nomain or interaction effects (all
F ≤ 2.5; all p ≥ 0.12; all η2p ≤ 0.04; see Figure 5).

For the S-cluster, the repeated measures ANOVA revealed
no effects of any of the factors on RIDE-P1Flanker (all F ≤ 2.6;
all p ≥ 0.11; all η2p ≤ 0.043), RIDE-N1Flanker (all F ≤ 3.3;
all p ≥ 0.07; all η2p ≤ 0.06), RIDE-P1Target, (all F ≤ 2.5;
all p ≥ 0.1; all η2p ≤ 0.042) or RIDE-N1Target, (all F ≤ 1.4;
all p ≥ 0.24; all η2p ≤ 0.03; see Figure 2B). Concerning
the S-cluster N2 (Figure 3B), the mixed effects ANOVA
only showed an interaction of Group∗Electrode (F(1,57) = 4.8;
p = 0.03; η2p = 0.08), but further post hoc testing did not
withstand Bonferroni-corrections (p > 0.2; all others F ≤ 2.5;
all p ≥ 0.12; all η2p ≤ 0.04). Thus, the results of the RIDE
analysis very closely reflect those of the traditional ERP analysis.
The reason for this is the close proximity to the locking point
(stimulus), which results in the variability having only a small
effect.

Regarding the C-cluster RIDE-N2 (see Figure 3C), no
significant main effects or interactions were evident (all F ≤ 3.8;
all p ≥ 0.06; all η2p ≤ 0.06). Opposed to this, the analysis of
the C-cluster RIDE-P3 (see Figure 4B) revealed a main effect
of Compatibility (F(1,57) = 34.6; p ≤ 0.001; η2p = 0.38) with
the RIDE-P3 being larger for incompatible (48.2 ± 4.5 µV/m2)
than for compatible trials (26.5 ± 4.4 µV/m2). Furthermore,
there was a significant main effect of Group (F(1,57) = 6.4;
p = 0.014; η2p = 0.1), showing that the ADHD-C group generally
had a larger RIDE-P3 (47.5 ± 5.2 µV/m2) than the ADD
group (27.2 ± 6.1 µV/m2). Interestingly, there was also a
significant interaction of Compatibility∗Group (F(1,57) = 4.9;
p = 0.03; η2p = 0.08). Post hoc tests showed that the compatibility
(conflict) effect was larger (29.7 ± 6.7 µV/m2) in the ADD
group than in ADHD-C group (13.5 ± 3.9 µV/m2; t(57) = 2.2;
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FIGURE 2 | (A) Stimulus-locked waveforms (current source density, CSD) for P1Flanker, N1Flanker, P1Target, N1Target components and (B) the equivalent residue
iteration decomposition (RIDE)-components (S-Cluster), depicted for both attention deficit/hyperactivity disorder (ADHD) subtypes and for compatible and
incompatible flanker trials at electrodes P9/P10. Point 0 denotes the onset of the target stimulus.

FIGURE 3 | (A) Stimulus-locked waveforms (CSD) for the N2 component and (B) the equivalent RIDE-components in the S-Cluster) and (C) the C-Cluster, depicted
for both ADHD subtypes and for compatible and incompatible flanker trials at electrodes Cz/FCz. Point 0 denotes the onset of the target stimulus.

p = 0.016). This effect was mainly driven by the compatible trials.
There, the patients with ADD group showed a smaller RIDE-P3
(12.2 ± 7.1) than those with ADHD-C (40.7 ± 5.2; t(57) = −3.23;
p = 0.001). There was no group difference on incompatible
trials (t(57) = −1.36; p = 0.18; ADD: 42.0 ± 6.2; ADHD-C
54.3 ± 6.2). Correlational analyses revealed no connection
between RIDE-P3 and severity of ADHD symptoms (all −0.08
≤ r ≤ 0.19, all p ≥ 0.14). The sLORETA analysis shows that
the modulation in the conflict effect was related to activity
modulations in the inferior parietal cortex and the temporo-
parietal junction (TPJ; BA40) in particular. Thus, the results of
the RIDE analysis differ significantly from those of the traditional
ERP analysis.

To control whether the specificity of effects obtained for
the C-cluster data is an effect of a systematic bias in the
signal-to-noise ratio (SNR) attributable to one specific group,
we calculated the SNR for each condition, electrode and
RIDE-cluster. We calculate the SNR as implemented in the
Brain Vision Analyzer II as previously done in other studies
(Beste et al., 2015; Gohil et al., 2016). The results show that
in all analyzed RIDE-clusters and electrodes, there was only

a main effect of Compatibility (all F > 11.41; p < 0.001;
η2p = 0.251) showing that the SNR was higher in compatible
(1.15 ± 0.5) than incompatible trials (1.01 ± 0.3). This is a
trivial finding because the SNR is affected by the number of
trials included in the analysis. Importantly, there were no other
main effects or interactions (all F < 1.05; p > 0.32). This
shows that the SNR does not pose a systematic bias in the
data analysis regarding any main effects or interactions with
the factor Group. This underlines the reliability of the obtained
results.

DISCUSSION

We examined differences in the intra-individual variability
of cognitive-neurophysiological processes related to conflict
monitoring between patients with ADD and ADHD-C.
Importantly, we used RIDE (Ouyang et al., 2011, 2015a,b;
Verleger et al., 2014) to examine differences in neural activity
independent of the strong intra-individual variability that may
bias insights into such processes. This is important because
of the inherent high intra-individual variability in ADHD
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FIGURE 4 | (A) Stimulus-locked waveforms (CSD) for the P3 component and (B) the equivalent RIDE-component, depicted for both ADHD subtypes and for
compatible and incompatible flanker trials at electrode Pz. Point 0 denotes the onset of the target stimulus. Topographic maps are also shown—blue denotes
negative deflections whereas red reflects positive ones.

(Henríquez-Henríquez et al., 2014; Lin et al., 2015; Saville et al.,
2015). To further control for this variability factor, we specifically
compared patients with ADD and ADHD-C that did not differ
in behavioral performance.

There were no differential modulations between groups
and conditions in neurophysiological processes related to the
sensory and attentional processing of stimuli and to primary
motor processes. Thus the characteristic differences between
the two groups on the symptom level (specifically concerning
hyperactivity/impulsivity) are not connected to differences in
basic sensory or attentional processing. This was the case
independent of the applied methodology (standard ERPs vs.
RIDE-ERPs), showing that this finding does not seem to be
influenced by the characteristic high intra-subject variability.
Also, due to the close proximity to the common locking point,
the effects of variability are generally rather small in this time
window (Ouyang et al., 2011, 2015a,b; Verleger et al., 2014;
Mückschel et al., 2017). This is equally the case for primary
motor processes. Here, the RIDE analysis also did not reveal any
differences between the two ADHD subgroups, thus supporting
findings suggesting that any problems in motor execution in
ADHD are independent of the subtype (Ghanizadeh, 2010).

In contrast, the RIDE analysis (C-cluster) did indeed
show significant differences between subgroups in conflict-
related neurophysiological processes. This effect was not biased
by issues relating to differences in SNRs. The fact that
these results did not become apparent in the standard ERP
analysis very likely reflects the strong intra-individual variability
inherent to ADHD (Henríquez-Henríquez et al., 2014; Lin
et al., 2015; Saville et al., 2015). Importantly, also from a
conceptual/methodological point of view, the finding that only
the RIDE-P3 shows differences between groups makes much
sense. It has been shown that intra-individual variability mostly
affects long latency ERP components (Ouyang et al., 2011,
2015a,b; Verleger et al., 2014). So, if the intra-individual
variability is different between groups, it is to be expected that
particularly the P3 shows differences. The obtained specific
group effect found in this study (which was specific to
the P3) is what has to be expected. This conceptual aspect
makes it very unlikely that the result reflect a false positive
effect and also recent analyses suggest that especially findings
concerning the P3 are influenced by RIDE analyses, independent
of the paradigm applied (Ouyang et al., 2017; Wolff et al.,
2017).
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FIGURE 5 | R-Cluster RIDE-component depicted for both ADHD subtypes
and for compatible and incompatible flanker trials at electrodes C3/C4. Point 0
denotes the onset of the target stimulus.

When neuronal variability was accounted for, differences
between ADHD subtypes actually did emerge. In this regard,
the source localization analysis shows that differences between
ADD and ADHD-C subtypes are associated with sources
localized in the inferior parietal cortex (BA40) including the
TPJ. The parietal cortex has been shown to reveal structural
and functional abnormalities in ADHD (Bush et al., 2013).
The TPJ has also been shown to be associated with the
P3 ERP in the ADHD patients enrolled in this study (refer
source localization results), which however did not show
differences between subtypes. These results suggest that there
is a strong variability of neuronal processes in ADHD that
relates to the inferior parietal cortex and the TPJ. Interestingly,
the C-cluster has been shown to reflect processes that are
functionally similar to those attributed to the classic P3 ERP
(Verleger et al., 2014). The P3 is well-known to reflect
decision processes occurring between stimulus- and response-
related mechanisms, (Mückschel et al., 2014; Verleger et al.,
2014), for which the TPJ plays an important role (Geng and
Vossel, 2013; Mückschel et al., 2014; Verleger et al., 2014). It
has also been suggested that the P3—and thus possibly also
the C-cluster—reflects mechanisms of accumulating evidence
needed for reaching a decision about the response to be
selected (Twomey et al., 2015). The present results suggest
that this process takes place in two different manners in the
examined patient groups and that thus, differences between
the groups may not be as straightforward as initially assumed.
ADD patients seem to be able to achieve a distinction
between compatible and incompatible trials more efficiently
than ADHD-C patients. This is supported by the fact that
the difference in C-cluster amplitudes in compatible trials
only was twice as large in ADD as in ADHD-C. When
considering the latency of the C-cluster it becomes apparent
that this process of distinguishing between compatible and
incompatible trials occurs relatively early on in patients
with ADD. In patients with ADHD-C, no such distinction
between compatible and incompatible trials is taking place,
suggesting that evidence accumulation functions differently
in ADHD-C. Patients with ADHD-C generally had stronger

C-Cluster activations, possibly pointing towards more cognitive
resources being invested during decision-making. This could
be interpreted as a more automated response selection strategy
that functions efficiently even without a clear distinction
between compatible and incompatible trials. Thus, the two
examined experimental groups reach the same behavioral
outcome through two different manners of accumulating the
evidence needed to reach a decision for a response. These
results thus render further support for the idea that patients
with ADD and ADHD-C may not just simply differ in
their behavior, but actually are characterized by different
underlying information processing strategies. These may not
be apparent at first glance, but may still carry important
implications for clinical practice. For example, knowledge of
such differences could, in the future, be applied to achieve
improvements of the diagnostic process. Applying methods
that quantify and account for intra-individual variability in
neurophysiological data may also prove useful in clinical trials
trying to establish neurophysiological biomarkers of ADHD
subtypes.

Of course, this study also is not without limitations. First,
no correlations were evident between the neurophysiological
and clinical measures. In this regard it needs to be noted
that the reliability of the different correlated measures is an
issue that needs to be considered. However, the current study
shows that some differences between ADD and ADHD-C
subtypes might not be reflected in routinely used clinical
measures and therefore may remain unnoticed. Second, it may
be argued that parts of the above interpretation concerning
the nature of processes differentially modulated in ADD
and ADHD-C are based on reverse inference (Poldrack,
2006, 2011), as no behavioral effects were evident. However,
the functional relevance of the examined neurophysiological
correlates has been well-established in the applied task
(van Meel et al., 2007; Albrecht et al., 2008; Mullane
et al., 2009; Beste et al., 2010; Chmielewski et al., 2014).
Third, error rates in the current task were rather high.
However, the reported main effect of Condition clearly
shows that patients were not just responding randomly (as
they could distinguish between compatible and incompatible
trials). The low accuracy rates overall can thus not simply
be attributed to the ADD/ADHD-C diagnoses. Lastly, no
patients with the predominantly hyperactive/impulsive ADHD
subtype were included in the study. Doing so would allow
a better differentiation of the effects of inattentiveness and
hyperactivity/impulsivity on executive functions generally and
on conflict processing in particular.

In summary, the study shows that there are differences in
neuronal mechanisms related to response selection processes
between ADD and ADHD-C. Importantly, these differences in
neuronal processes were only detected when methodologically
accounting for intra-individual variability. We were thus able to
show that differences between the examined ADHD subtypes
not only occur on the symptom level, but are also clearly
reflected on the neuronal level. These findings illustrate the
need to changes perspectives, to look beyond pure behavioral
performance and to take alterations in intra-individual variability
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into account when interpreting data. An unbiased consideration
of underlying neuronal processes adds crucial information
concerning inter-individual differences within one diagnostic
category, just like suggested by the RDoC initiative (Insel et al.,
2010). The results imply that it is very likely that differences
in neurophysiological processes between ADHD subtypes are
underestimated and have not been recognized because variability
in neurophysiological data has not sufficiently been taken into
account. It is therefore important that methods being able to
control intra-individual variability in neurophysiological data
are increasingly considered to avoid biases in knowledge on
neurophysiological processes in ADHD. The same may apply to
existing data.
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