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We propose and test the keyhole hypothesis—that measurements from low dimensional

EEG, such as ear-EEG reflect a broadly distributed set of neural processes. We formulate

the keyhole hypothesis in information theoretical terms. The experimental investigation

is based on legacy data consisting of 10 subjects exposed to a battery of stimuli,

including alpha-attenuation, auditory onset, and mismatch-negativity responses and a

new medium-long EEG experiment involving data acquisition during 13 h. Linear models

were estimated to lower bound the scalp-to-ear capacity, i.e., predicting ear-EEG data

from simultaneously recorded scalp EEG. A cross-validation procedure was employed

to ensure unbiased estimates. We present several pieces of evidence in support of

the keyhole hypothesis: There is a high mutual information between data acquired at

scalp electrodes and through the ear-EEG “keyhole,” furthermore we show that the

view—represented as a linear mapping—is stable across both time and mental states.

Specifically, we find that ear-EEG data can be predicted reliably from scalp EEG. We also

address the reverse view, and demonstrate that large portions of the scalp EEG can be

predicted from ear-EEG, with the highest predictability achieved in the temporal regions

and when using ear-EEG electrodes with a common reference electrode.

Keywords: EEG, ear-EEG, prediction, mutual information, mobility

1. INTRODUCTION

Neurotechnology will be a key component in future personalized services and health care. Many
applications will be based on “mental state decoding,” i.e., the process of estimating the cognitive
state of the human brain from quantitative measures. The main barriers to a broader application
of mental state decoding in the “wild” are lack of mobility, comfort, and robust decoding schemes.
Wearable EEG is a candidate for long termmental state monitoring (Casson et al., 2010; McDowell
et al., 2013; Lin et al., 2014; Meyer et al., 2016). Among wearable platforms so-called ear-EEG is
of special interest, since it enables recording of EEG in an unprecedented discreet and minimally
intrusive way. Ear-EEG is recorded from electrodes placed in the outer ear, see Kidmose et al.
(2013). As conventional EEG, ear-EEG reflects aggregated cortical activity as demonstrated in
Mikkelsen et al. (2015). Given the spatial constraints of the ear, ear-EEG is typically based on a
small number of electrodes, hence, providing for a relatively narrow field of view, which can be
conceptualized as a keyhole. We will elaborate further on this metaphor in the discussion. The
signals measured by ear-EEG have been characterized by core EEG experimental measures, such as
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event-related potential (ERP) responses to auditory and visual
stimuli (Kidmose et al., 2013) and in terms of auditory steady
state responses (ASSR) (Kidmose et al., 2012) for a recent
discussion of the state of the art, see Mikkelsen et al. (2015).
These results together indicate that when considering data at the
aggregate level, i.e., averaging over multiple instances, the EEG
signals propagating to the ear carry useful information about the
brain processes within the keyhole’s field of view.

In this work we aim to expand the analysis of the relation
between the EEG signals measured in the ear and at the scalp.
In particular, we analyse the sample-to-sample scalp-ear EEG
relation from the point of view of the keyhole hypothesis,
i.e., as a communication channel. We show that the Shannon
communication capacity can be lower bounded by optimizing a
linear predictive map between scalp and ear-EEG signals.We aim
to quantify the channel capacity and its variability using machine
learningmethods, including a study of the very long term stability
of the predictive relation between the input and the output of the
communication channel.

2. THEORY: MUTUAL INFORMATION AND
PREDICTABILITY

Considering instantaneous multivariate signals recorded from a
set of scalp positions and multiple locations in the ear as random
variables, we are interested in the ability of one set to predict
the other, i.e., the possibility of a predictive relation between one
set of measurements and a given electrode in the other set. For
readability we first focus on the scalp to ear prediction problem.

For a given point in time let x be the vector of measured scalp
signals and let y be the instantaneous signal recorded from an
ear electrode at the same time. The mutual information between
these two variables is defined as

I =

∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dydx , (1)

The functions p(x), p(y) represent the marginal probability
density functions of the scalp and ear signals, while p(x, y) is the
joint probability density of two signals. For further discussion
and references on mutual information, see e.g., Paninski (2003).

Brain related EEG signals are well represented as synchronous
activity in mesoscopic patches; so-called equivalent dipoles. The
relations between scalp and ear-EEG measurements and the
dipole is linear, quantified by the electrical forward models A, a,
respectively,

x = Ad + ν (2)

and

y = aTd + η, (3)

where A, a represent the forward paths to the scalp and ear
electrodes, while ν, η are non-brain signals. Together, (2) and (3)
suggest a linear relation between dipole generated signals at the
scalp and in the ear

y = wTx+ ǫ, (4)

where ǫ are signals measured in the ear and not predictable by
signals measured at the scalp, i.e., ear-specific non-brain signals
and potential brain dipole signals invisible to the scalp electrodes.
Such brain signals, denoted d⊥ would be orthogonal to all rows
of the scalp forward model A, while non-orthogonal to the
ear electrode forward model a. The massive spatial averaging
effects of volume conduction (Holsheimer and Feenstra, 1977)
will here come to assistance and reduce d⊥. The usefulness of
the linear map will depend on multiple factors including head
and tissue geometry, electrical conductivities, and the signal to
noise characteristics of the relevant dipole signals generating the
measured signals at the scalp and in the ear. An illustration of the
forward model geometry is shown in Figure 1.

With Equation (4) and the data processing equation (Paninski,
2003), the mutual information between an ear electrode and
the scalp electrodes may be lower bounded by the mutual
information between y and its linear predictor ŷ(x) = wTx,

I ≥ Îy,y =

∫
p(̂y, y) log

(
p(̂y, y)

p(̂y)p(y)

)
d̂ydy. (5)

Within a joint multivariate normal approximation of two signals
distributions, the mutual information can be written simply in
terms of their correlation coefficient, ρ, see e.g., Granger and Lin
(1994)

Îy,y =

∫
p(̂y, y) log

(
p(̂y, y)

p(̂y)p(y)

)
d̂ydy = −

1

2
log(1− ρ2 (̂y, y)).

(6)
Considering the link between scalp and ear as a communication
channel, the Shannon capacity (Cover and Thomas, 2012) is
given as

C = max
p(̂y)

∫
p(̂y, y) log

(
p(̂y, y)

p(̂y)p(y)

)
d̂ydy

= max
p(̂y)

(
−
1

2
log(1− ρ2 (̂y, y))

)
. (7)

With respect to the weights of the linear predictor, ŷ = wTx, the
maximum correlation coefficient is obtained when

w ∝ 6−1
x,x6x,y (8)

i.e., proportional to the least squares estimate, where 6x,x =

E(xxT) and 6x,y = E(xy). We note that estimating the mutual
information viz. the correlation coefficient on the same set as
we estimate the weights will in general lead to an unknown
bias. To obtain an unbiased estimator we estimate the weights
of the linear map on a training set and evaluate the correlation
coefficient on separate test sets. This furthermore allows us to
measure and illustrate possible non-stationarities of the estimator
and predictions.

3. DATA

In this paper, data from two different experiments is used
to evaluate the mutual information and capacity of the scalp
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FIGURE 1 | Left: Illustration of the forward models A,a from equivalent cortical dipoles d to scalp and ear canal electrodes x,y, respectively. Center: illustration of the

predictive model w from scalp to ear. Right: Illustration of predictive model from ear to scalp.

FIGURE 2 | Short snippets of ear-EEG measurements together with their predictions.

and ear-EEG communication channel. In both cases, during
recording, scalp EEG and ear-EEG shared a reference (Cz). This
link was subsequently removed by preprocessing such that scalp
data and each ear (three groups in all) were referenced to their
respective averages. This re-referencing simulates a situation in
which the signal groups are independently acquired. Further
details of the ear-EEG setup can be found in Mikkelsen et al.

(2015).
The two experiments are:

Laboratory dataset: Ten subjects aged 23–43 (median 30) were
subjected to a battery of EEG-related paradigms, as described
in Mikkelsen et al. (2015). Of importance to this study, the
paradigms included an alpha-attenuation task and an ERP-
task. The alpha-attenuation task required the participant to
alternate between open and closed eyes, while performing

a simple arithmetic task, and the ERP-task consisted of a
classical auditory odd-ball paradigm, adapted from Näätänen
et al. (2004). The 32 scalp channels were C1-6, CP3-6, F7-8,
FC3-6, FCz, FT7-8, Fz, P3-8, T7-8, and TP7-10. The sampling
rate was 256 Hz. Scalp electrodes were embedded in a cap.
Each ear had six electrodes, as described in Mikkelsen et al.

(2015).

In the wild longitudinal dataset: A single subject (aged 44)
wore combined ear- and scalp EEG for a total of 12 h and

55min. The subject performed normal life activities during
the measurement. The 24 scalp channels were C3-4, CP1-2,

CP5-6, Cz, F3-4, F7-8, FC1-2, FC5-6, Fz, M1-2, P3-4, P7-8,

and T7-8. Data was originally sampled at 2,000 Hz, but was
down sampled to 256 Hz prior to processing. Scalp electrodes
were embedded in a cap. Each ear had four electrodes, ExI and
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ExE (inside the canal), and ExA and ExB (in the concha), see
Kidmose et al. (2013).

The experiment was approved by the regional scientific ethics
committee and by the national Danish Health and Medicines
Authority1. As per the guidelines of these authorities, all
participants were given written and oral information. All gave
written, informed consent before participating, and after having
had ample time for consideration.

4. METHODS

4.1. Preprocessing
All data was filtered with a pass-band of 0.5–45Hz, using
EEGLAB (Delorme and Makeig, 2004). Additionally, in the
case of the laboratory dataset, the first 6 s of each time series
were discarded. As described in Mikkelsen et al. (2015), faulty
ear-EEG channels were identified and discarded (in both data
sets).

4.2. Model Estimation and Analysis
The weights of the predictive model were estimated using
Equation (8) with expectations computed as empirical averages
over cleaned training sets. Least squares estimation is sensitive to
outliers (Rousseeuw, 1984), and outliers can indeed be abundant
in EEG caused by electro-physiological artifacts, such as blinks
and muscle activity, by electrode motion and multiple other
external influences. Since we are not limited by data in the
present context we aimed at identifying outliers by aggressive
outlier rejection (Markou and Singh, 2003). In particular we
estimated the sample covariance matrices of both scalp and ear-
EEG, computed the Mahalanobis distance of individual samples
to the sample median and rejected the 15% highest distances
within each measure separately, safely removing outliers in both
scalp and ear signals according to visual inspection.

The model was estimated separately for each subject. The
correlation coefficient, ρ, was calculated using the corrcoef.m
command in Matlab2.

5. RESULTS

The performance of the prediction models was evaluated as the
correlation between the measured and the predicted signals on
the test sets. Figure 2 shows examples of short time segments
of measured and predicted ear-EEG signals for cases with both
high and low cross correlation. More generally, the distribution
of prediction-EEG correlations is displayed in Figure 3. A spread
in correlations is found ranging from∼0.1 to∼0.6.

5.1. Stability, Generality and Uniqueness
Also seen in Figure 3 is the resulting ρ’s as the training and
test stimulus paradigms are interchanged. While changing the
type of data used in testing generally reduces ρ, the correlation
is mostly conserved if the training data contains measurements
from several paradigms including the one of the test data. This

1Danish: “De Videnskabsetiske Komiter for RegionMidtjylland,” case no: 1-10-72-

48-15; and Danish: “Sundhedsstyrelsen,” case no: 2014080169.
2Mathworks https://www.mathworks.com/products/matlab.html

suggest that a sufficiently general training data set could generate
a general predictor valid for all stimuli type scalp data.

An additional stability metric is the behavior of the prediction
quality as a function of time. In Figure 4 is shown the correlation,
ρ(t), for both a fixed predictor trained on the first 2 min of data
(blue line), and a “local” predictor, described in the following. The
predictions were obtained by stepping through the longitudinal
13-h data set with a time step of 20 min. After each step, 2 min
of data is used to train a “local” model, while the following 8
min were partitioned into 3-s intervals on which both local and
original models were used. From the distribution of correlation
ρ for each of these sets of 3-s intervals, we estimated mean and
standard deviation of ρ. In Figure 4we show both these estimates
for the original model (in blue), as well as the estimated mean ρ

for the local model (in red).
While the correlation for the prediction by the local model is

generally higher than that of the long term—“global”—model,
they do exhibit similar temporal trajectories. We hypothesize
that the variability of prediction quality (particulary the points
of where prediction is challenged) is driven by a combination of
artifacts (non-brain signals) and general non-stationarity of the
brain signals. Toward the end of the measurement we see a clear
departure between “global” and “local” predictors. This point of
departure happens to coincide quite well with the subject going to
bed, and we hypothesize that the decay of the prediction quality
at this point is again due to the non-stationarity induced by sleep,
since the long term model (blue) was trained on wake data and
thus the predictive performance is lower on sleep data. To test
this hypothesis, we introduced a third model (“Night model,”
in green) trained on data immediately after the subject went to
sleep. We see that this model continues to perform well for the
remainder of the data set. We postulate that if the measurement
had continued until morning, the “local” and “global” lines would
have converged again, and “Night Model” would have dropped
below “global.” As a further test, we introduced a fourth model,
trained on both the training set for the “global” model as well as
the “night” model (“Combinedmodel”).We see that this achieves
equal prediction quality during both night and day portions of
the data.

It is interesting to see the small, yet general, increase in
prediction quality during sleep, c.f., the recent results presented
in Zibrandtsen et al. (2016) that gave an example of ear-EEG’s
ability to capture relevant sleep stages as identified by scalp EEG.

As a final stability test, Figure 5 shows ρ as a function of
amount of training data. In this scenario, 10 time intervals
of equal length were scattered throughout a 15-min interval
(corresponding to a measurement from the “Laboratory”
dataset), and each interval in turn was used as a training data
set, which was tested on the other 9 intervals (so 90 tests
were performed in total, for each 15-min data set). For each
interval length is reported the mean of these 90 tests. Each line
corresponds to a different 15-min data measurement (hence,
belonging to different subjects).

5.2. Prediction of Event-Related Potentials
To investigate to which extent the predicted signals reflect
cortical activity, we estimated the ERP from both the measured
and the predicted ear signals. Specifically, the ERP was estimated
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FIGURE 3 | The relation between ρ when the training and test sets are varied. For the x-axes are reported ρ when test and training sets come from the same task

(ERP or alpha paradigms), while the values on the y-axes correspond to training data drawn from a different task. Histograms are marginal distributions. Left: Training

data was here 2 min of alpha and ERP tasks (4 min in total). Right: Training was here 2 min of alpha/ERP for ERP/alpha test data.

FIGURE 4 | Prediction correlation, ρ, as a function of time since training (in blue). Shown in red is prediction correlation for a model trained on data within the last 10

min. “Night model” is a prediction based on the red model from the time when the subject went to sleep. “Combined model” is a prediction based on combining the

night training data with data from the beginning of the dataset.

from standard stimuli epochs from the auditory mismatch
negativity (MMN) paradigm in the Laboratory dataset. In
Figure 6 (left) is shown the auditory onset response from one
of the subjects; we observe a good correspondence between
the measured and predicted ERP waveforms and the timings
of the components are close to what have been previously
reported (Picton et al., 1974). In Figure 6 (right) is shown the
so-called MMN response, which is the difference between the
ERP estimated from standard and oddball stimuli. This particular
subject had a clear 150 ms component in both the measured
and the predicted MMN response. This suggests that while
(Mikkelsen et al., 2015) did not find a significant MMN response
in the ear-EEG across the 13 subjects, it may be possible in a
subset of individuals. Additionally, the fact that predicted and
measured ERPs are seen to be in excellent correspondence is
further evidence that the high correlations reported above are
not caused by confounding signals appearing in both datasets.
Finally, we note that the predicted ERP has a significantly lower
noise level. This is most likely due to the fact that the prediction
inherits the higher SNR of the scalp data as well as the fact that the

prediction algorithm combines data frommultiple EEG channels,
causing the individual scalp electrode noise components to
average out.

5.3. Predicting Scalp From Ear Data
In the above, we have focused on the communication channel
from the point of view of ear-EEG. However, as illustrated in
Figure 1 we can expect the scalp-ear channel to be bidirectional.
We thus explore the reverse mappings letting y be a scalp
electrode and let x represent either of the two sets of four ear-EEG
electrodes (left or right) or the eight electrodes combined (i.e.,
with common reference). In Figure 7 is shown test correlations
for the scalp data predicted from ear data. Data is shown for
the three different scenarios mentioned. The overall prediction
quality increases as more ear-EEG information is made available.
While the correlation drops below 0.1 for the central scalp
electrodes when prediction is based on a single ear, the
correlation values are high in the temporal regions, reaching>0.6
when both ears are used for the prediction and have common
reference.
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FIGURE 5 | Average correlation as a function of training set size. Each colored line corresponds to a 15-min data set, while the bold black line is the population

average. Each data points consists of the average over 10 sets of 9 test data. All data was taken from the ERP-part of the “laboratory data set.”

FIGURE 6 | Result of running scalp-based ERPs through the prediction algorithm (blackened) together with ERPs calculated from the ear-EEG data. Each color

corresponds to 15 min of measurements. All data is from the same individual, electrode ERE. The ERPs are the so-called difference waves, obtained by deducting the

ERP of the standard “beep” from the ERP of the pooled “oddball beep”. Left: Auditory ERP. Right: Mis-Match Negativity ERP (MMN).

6. DISCUSSION AND CONCLUSIONS

Due to volume conduction, EEG signals from all locations in the
brain are distributed widely in the human head. This opens the
possibility that electrodes in unconventional positions, such as
the ear, may be used to pick up signals from distant locations. In
technical terms: A large fraction of the signal of an EEG electrode
can be predicted from the remaining EEG electrodes. While high
density EEG has been proven to open doors to numerous mental
processes, we may think of the few electrode EEG as in the case of
ear-EEG giving a keyhole’s view. The objective of the theoretical
framework and the analysis of EEG signals presented in this paper
was to substantiate this statement.

Specifically, we aimed at investigating how the information
observed through the keyhole relates to cortical processes, and

how stable the projection of these cortical processes are over time
and type of mental state. A long term aim of this research is to
decode mental states based on low dimensional EEG, specifically
EEG acquired from wearable devices as e.g., embodied by the
ear-EEG platform. Therefore, we have used data recorded from
conventional scalp EEG and from electrodes placed in the ear.
To further test the keyhole hypothesis EEG measured from ear
electrodes were compared to EEG predicted from the scalp EEG.

First, to evaluate the generality of the predictor, it was
investigated how well a predictor trained on one dataset
performed in prediction of another dataset. For that purpose
EEG recordings from two fundamentally different paradigms
were used: an exogenous paradigm where the origin of the
responses is in the auditory pathway and primary auditory cortex
located in the temporal lobes, and an endogenous paradigm
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FIGURE 7 | Scalp plots of prediction correlation for each scalp channel, as predicted from ear-EEG data. We see that in the regions close to the ears, the mutual

information is high. Each data point is the average correlation over both α and ERP paradigms, averaged over all 10 subjects. The histogram next to the color bar

shows the distributions of the correlations before averaging. Top right: Using only the left ear. Top left: Decoupled ears. Bottom: Coupled ears, with common

reference.

where the responses primarily originate from the occipital and
parietal lobes. Even though these datasets represent very different
cortical activations, only minor impact on the prediction
performance was observed, see Figure 3. We conjecture that this
generality is achieved because the scalp EEG largely represents
aggregated activity from the whole cortex and therefore the
paradigm specific activation has only a minor effect. Second,
the stability of the predictor over time was studied based
on a 13-h recording, in which the subject went through an
uncontrolled variety of states. The prediction performance
remained largely stable over the time course, demonstrating
that the prediction model was stable across both time and
states, see Figure 4. Third, estimates of ERPs from both the
predicted andmeasured EEG revealed a high degree of similarity,
see Figure 6, demonstrating that the predicted EEG conveyed
cortical information. Finally, and possibly most importantly,
we show in Figure 7 that not only is the information within
ear-EEG to a large extent contained within the scalp-EEG; a
respectable portion of the scalp-EEG can also be reconstructed
from ear-EEG. We believe that the results presented in this
paper provide evidence in support of the keyhole hypothesis
and highlight the future perspectives of ear-EEG, especially
the possibilities regarding development of combined paradigms
in which ear-EEG data is combined with prior knowledge
gained through more traditional methods with greater spatial
resolution.

We note that both the linear map itself and the quality
of predictions depend on multiple factors and thus is to be
quantified experimentally. The geometry of the head plays an
important role, e.g., the proximity of natural holes in the skull
which may influence the result as discussed in Torre et al. (1999)
and Heasman et al. (2002).

In summary there is generally a high mutual information
between signal monitored at the scalp and in ear-EEG.
The high correlations observed between predictions and
measurements (Figure 1) are remarkably stable within several
metrics (Figures 3–5).

Our objectives and methods are related to a number of
previous works. Investigations of wearable EEG are already
numerous, see e.g., Lin et al. (2009), Juhl et al. (2010), Chi
et al. (2013), Stopczynski et al. (2014), Debener et al. (2015),
and Wang et al. (2015), for studies discussing mobile EEG and
demonstrating the detection of signals with portable, wearable
and keyhole like EEG devices. The observation that volume
conduction leads to wide distribution of signals is often used
to interpolate the spatial EEG signal after removal of individual
electrodes, see e.g., Junghöfer et al. (2000). A similar idea is
used to propose a denoising mechanism for scalp EEG signals in
De Cheveigné and Simon (2008b) and for removal of artifacts by
the same authors in De Cheveigné and Simon (2008a).

Finally, returning to the keyhole hypothesis: Ear-EEG offers
poorer spatial resolution of the underlying processes compared
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to scalp EEG, but the high mutual information between scalp
and ear channels indicate that the time courses of a broad
set of processes—characterized using scalp EEG under lab
conditions—may later be detected “in the wild” using ear-EEG.
Thus, we believe that the results presented in this paper highlight
the future possibilities of ear-EEG, especially the possibilities
regarding development of combined paradigms in which ear-
EEG data is used together with prior knowledge gained through
traditional brain scanning modalities. One example of this, as
hinted at in this work, is to use scalp-based predictions when
planning ear-EEG experiments, viz. Figure 6. This could reveal
ahead of time whether results would be likely to be obtained
in a full-scale experiment. One thing to keep in mind in this
regard, however, is that we have found that the predictive models
are sensitive to the placement of the scalp electrodes. Thus,
a model trained on measurements from 1 day may not be

accurate when used to predict ear-EEG data based on scalp

measurements the next day, since the cap placement could likely
be different.
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