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Brain parcellation divides the brain’s spatial domain into small regions, which are
represented by nodes within the network analysis framework. While template-based
parcellations are widely used, the parcels on the template do not necessarily match
individual’s functional nodes. A new method is developed to overcome the inconsistent
network analysis results by by-passing the difficulties of parcellating the brain into
functionally meaningful areas. First, roughly equal-sized parcellations are obtained.
Second, these random parcellations are applied to individual subjects multiple times
and a pseudo-bootstrap (PBS) of the network is obtained for statistical inferences. It
was found that the variation of mean global network metrics from PBS sampling is
smaller compared with inter-subject variation or within-subject variation between two
diffusion MRI scans. Using the mean global network metrics from PBS sampling, the
intra-class correlation is always higher than the average obtained from using a single
random parcellation. As one application, the PBS method was tested on the Human
Connectome Project resting state dataset to identify individuals across scan sessions
based on the mean functional connectivity (FC)—a trivial network property that has
little information about the connectivity between nodes. An accuracy rate of ∼90%
was achieved by simply finding the maximum correlation of mean FC of PBS samples
between two scan sessions.

Keywords: random parcellation, pseudo-bootstrap, network analysis, functional connectivity fingerprint,
connectomes, intra-class correlation coefficient

INTRODUCTION

Network analysis provides a complete new avenue in exploring the function and structure of the
brain from a network perspective (Brodmann, 1909). A network comprises nodes and edges. One
of the biggest challenge of network analysis in neuroimaging is defining the nodes (de Reus and
van den Heuvel, 2013; Stanley et al., 2013). The most natural way to define nodes would be to
represent individual neurons as nodes. However, even a single voxel in the brain image contains
millions of neurons. A parcellation in the microscopic level is unrealistic for MRI-based whole
brain imaging. Historically, people have attempted to divide the brain into different regions with
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similar anatomical or functional features (Brodmann, 1909;
Tzourio-Mazoyer et al., 2002; Fischl et al., 2004). Lately, the
Human Connectome Project (HCP) has become a driving force
for brain parcellation (Craddock et al., 2012; Shen et al., 2013;
Glasser et al., 2016; Gordon et al., 2016). Brain parcellation
divides the brain’s spatial domain into small regions, which serve
as nodes for network analysis. In general, a brain parcel is a
region that has greater commonality of features within the parcel
than with neighboring parcels. Many parcellation schemes have
been developed in the last decades using anatomical landmarks,
functional connectivity (FC), and multimodal approaches. For
instance, Freesurfer generates a cortical atlas based on the
curvature values of gyral and sulcal regions derived from a
T1-weighted image (Fischl et al., 2004; Desikan et al., 2006); the
AAL parcellation draws 116 regions based on the brain sulci
of a MNI MRI Single-Subject (Tzourio-Mazoyer et al., 2002).
Craddock et al. (2012) developed an algorithm to parcellate the
whole brain into spatially coherent regions of homogeneous FC.
A similar idea was further developed by incorporating graph
theory and groupwise clustering of a group of subjects (Shen
et al., 2013). Lately, multi-modal MRI images from the HCP have
been used for parcellation (Glasser et al., 2016). The images from
210 healthy young adults were precisely aligned. One hundred
and eighty areas per hemisphere were obtained from group
averaging of multi-modal information in cortical architecture,
task activation, resting state FC, and/or topography. Although
more sophisticated algorithms and novel approaches have been
incorporated into brain parcellation (Glasser et al., 2016; Gordon
et al., 2016), there is no consensus as to what is the “perfect
parcellation” and limitations set by the data make the problem
even more challenging.

An alternative to feature-based parcellation is random
parcellation (Fornito et al., 2010; Zalesky et al., 2010; Echtermeyer
et al., 2011; de Reus and van den Heuvel, 2013). Instead
of parcellation based on structural or functional features of
the brain, random parcellation generates parcels with little
constraint other than contiguity in space and similar size. The
fewer constraints have the advantage of enabling the creation
of parcellations with an arbitrary number of nodes, which is
desirable to carry out multi-scale network analysis (Fornito et al.,
2010). Another advantage of random parcellation is that given a
certain number of nodes, there are many ways to parcellate the
brain, a feature that allows us to study robustness of network-
based analysis.

When comparing networks between subjects, a widely used
approach is to obtain a parcellation template and apply it
to all subjects. The parcellation template can be derived with
any of the above schemes including random parcellation.
The widely used parcellation templates include AAL (Tzourio-
Mazoyer et al., 2002), Shen atlas (Shen et al., 2013), Craddock
atlas (Craddock et al., 2012), etc. Template-based parcellation
provides a common framework in comparing networks from
different subjects as it offers a one-to-one map between node-
level measures and, it allows direct comparison of global-network
measures, given that the magnitude of most network metrics
are highly dependent on network size (van Wijk et al., 2010;
Zalesky et al., 2010). However, challenges remain in comparing

networks between subjects because of the variability across
individuals and internal heterogeneity in multiple levels such
as columnar organization and subcellular/cellular structures
(Glasser et al., 2016). For template-based parcellations, the
parcels on the template do not necessarily match individual’s
functional nodes, which are supposed to be homogeneous in
performing functional tasks. In addition, different functional task
might evoke different brain regions. In other words, the nodes
should not be considered fixed at the macroscopic level (Gordon
et al., 2016). The majority of the parcellation scheme can be
regarded as a coarse sampling of the nodes with some constraints
such as that the voxels are contiguous and coherent in time
course.

Taking a slightly different view, parcellation is a sampling of
millions of neurons with some constraints. Then we need to take
into account the ambiguity of this sampling at the microscopic
level. We propose to use multiple random parcellation as a
pseudo-bootstrap (PBS) sampling scheme. For each subject, a set
of networks can be obtained from multiple random parcellations,
which is essentially a resample of the same data, a technique
often used in statistics (Efron and Tibshirani, 1994). Of course,
there must be some constraints on the set of randomly generated
parcellations that conform the sampling set, such as number
of nodes, node size, etc. These constraints are implemented
through the appropriate choice of algorithm that generates
the parcellations. Therefore, this method is considered a PBS
approach. An important benefit of this method is that it gives the
probability of parcellation-related distribution of global network
metrics. A striking difference of this method from conventional
bootstrap method is that the number of samples is much smaller
than the actual data points. Given that there is no golden standard
for brain parcellation at the macroscopic level, PBS sampling can
be an appealing approach.

A requirement of the PBS network analysis method is to
consider random parcellations with roughly equal parcel size
(de Reus and van den Heuvel, 2013). The roughly equal parcel
size ensures the consistency of the multiple sampling so that the
variation of network properties comes solely from resampling
rather than size differences. It is challenging to generate equal-
sized parcels because of the irregularity of the cortical surface.
Previous random parcellation algorithms achieved the inter-
quartile range to median ratio of 0.77 (Fornito et al., 2010) and
0.52 (Echtermeyer et al., 2011), which is not satisfactory for this
purpose. We have developed a new algorithm to improve the
homogeneity of parcel size by taking account of the geodesic
distance between voxels and variation of voxel density across the
cortical area.

PBS network analysis using 400 random parcellation
generated from our new algorithm was exerted on the structural
network derived from diffusion MRI (dMRI). Basic statistical
properties were evaluated on some global network metrics.
The intra-class correlation coefficients (ICCs) were computed
accordingly and compared with template-based parcellations.
As one application, the PBS network analysis was employed
on the HCP resting state dataset to identify individuals
across scan sessions based on the mean FC (Finn et al.,
2015).
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MATERIALS AND METHODS

Random Parcellation
Segmentation was performed on a T1-weighted anatomical image
from the HCP with the FSL tool FAST (Zhang et al., 2001;
Smith et al., 2004). The gray matter mask was obtained by
setting the threshold of 0.5 on the probabilistic gray matter map.
Then random parcellation was performed on the gray matter
mask based on the algorithm described in (Zalesky et al., 2010).
The algorithm produces random parcellations by growing voxel
neighborhoods around a set of randomly selected voxel-seeds.
After randomly placing the first voxel-seed, all subsequent seeds
are placed in a deterministic manner by the distance measure
before growing neighborhoods iteratively. However, the distance
of the seeds in the original algorithm was computed based on
Euclidean distance. Because the cortical surface is very irregular,
using Euclidean distance as a measure to ensure that seeds are
evenly placed throughout the cortical surface results in large
parcel-size variation.

Here, we introduce a geodesic distance G(i,j), which is the
topological shortest path between voxels i and j, where such path
is restricted to traversing voxels within the gray matter surface.
The computation of geodesic distance can be converted to a
problem of calculating the path length of a weighted network, of
which each node is represented by a gray matter voxel and is only
connected to its spatially contiguous neighbors. The connection
weights between adjacent voxels are defined as follows: wij = 1
if voxels i and j share a face; wij =

√
2 if i and j share one side;

wij =
√

3 if i and j share a vertex. Hence, it is straightforward to
obtain the geodesic distance G(i,j) between any voxels by simply
calculating the corresponding path lengths between all node pairs
(voxels) of the network.

To minimize the variation in parcel size, we further weighted
the geodesic distance by local density of the voxels because higher
local density means less hindrance in growing the volume. Thus,
the distance in D(i,j) is finally defined as

D(i, j) =
2G(i, j)

L(i)+ L(j)
(1)

where L(i) is the sum of shortest-path lengths between voxel
i and its M nearest neighbors, and M is the expected
number of voxels within a parcel, given a specified number of
parcels N.

The parcellation algorithm was implemented in Matlab (The
Mathworks, Inc., Natick, MA, United States). To evaluate
the homogeneity of parcel size and compare with previous
random parcellation results, the algorithm was tested a
large range of number of nodes N = 125, 250, 500, and
1000. Two hundred repetitions were run for each value
of N, except for N = 250 nodes, where 600 repetitions
were run.

In addition, 400 random parcellation with 278 ROIs on
the MNI template were obtained for the network analysis in
Sections “Structural Network” and “Finger Printing of Functional
Network.” The parcellations were obtained from the same
cortical region of the Shen atlas fconn_atlas_150_2mm.

Structural Network
Forty-six subjects received two dMRI scans with one week apart.
The dMRI data were acquired on a 3.0 T TIM Trio scanner
using a 12-channel head coil. The imaging parameters were
as following: TR/TE = 8300/77 ms; 68 transversal slices with
isotropic 2 mm resolution; 48 diffusion directions with gradients
b= 1000 s/mm2, and eight samplings at b= 0. A high resolution
T1-weighted image was acquired with the MP-RAGE pulse
sequence (1 mm isotropic resolution, TR/TE = 2300/2.91 ms,
TI= 900 ms, FA= 9).

The dMRI data were processed with FSL and tractography was
computed using the FACT algorithm (Mori et al., 1999) using
Diffusion Toolkit1 as described previously in more detail (Cheng
et al., 2012).

The parcellation on the MNI template was warped to the
diffusion space with the help of the T1-weighted anatomical
image. As a result, the parcellation and the tractography were
coregistered. The structural network was constructed by defining
the weight of edges as the number the fibers connecting a pair of
nodes normalized by the mean volume of the two ROIs and the
mean fiber length between the two ROIs (Hagmann et al., 2007),
as described in Eq. 2:

wij =
2

ni + nj

∑
m

1
Lmij

(2)

where ni denotes the number of voxels in ROIi, Lmij denotes
the length of the mth fiber between ROIi and ROIj. To reduce
the effect of spurious fibers, a threshold of 10 fibers is set that
two nodes are not connected if the number of fibers between
them is smaller than 10. Four hundred networks were obtained
from random parcellation along with one network constructed
using the template-based parcellation. Six global network metrics
were computed including the average degree, mean strength,
mean clustering coefficient, global efficiency, modularity, and
mean diversity. We computed the variation of global network
metrics associated with the set of random parcellations, dMRI
scans, and subjects. The variation of global network metrics
from parcellation was simply the standard deviation of the
global metrics across 400 networks generated from the random
parcellations. The between scan variation was computed as

σBS =

√√√√ 1
M

M∑
i=1

(G1i − G2i)2 (3)

where M is the number of subjects, and
−

G
1i

is the mean global

metric of subject i from scan 1. The variation from inter-subject
difference was calculated as the standard deviation of the mean
global metrics across all subjects at scan 1.

We also used the ICC (Shrout and Fleiss, 1979) as an index
to compare PBS parcellation and template-based parcellation.
The ICC is a measure of how much between-subject variation
contributes to the total variance. For PBS analysis, there are two
ways to compute the ICC. The first method uses the mean value

1http://trackvis.org/
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of the global metrics for each subject/measurement; the second
method computes the ICC of each parcellation and then calculate
the mean ICC value. A tailed t-test was performed to compare
PBS using the mean and template-based parcellation using one
random parcellation. The ICC was also computed for the Shen
atlas.

Finger Printing of Functional Network
Resting state functional data from 87 subjects were downloaded
from the data release of the HCP (Q1 through Q3). Each
subject has two sessions of resting state fMRI scans: REST1
and REST2, which are one day apart. The dataset have been
preprocessed and normalized to the MNI template via non-
linear transformation. Using the random parcellation obtained
in Section “Random Parcellation” that shared the same cortical
space as the Shen atlas, FC was computed as the Pearson
pair-wise correlation between the time series of the nodes
after regressing motion parameters as well as signal from the
white matter and CSF, resulting a 278 × 278 matrix for each
parcellation. A template-based FC network constructed from
the Shen atlas was also obtained. The functional finger print
predicts a subject i in REST1 with ID 1i to be one of the
subjects in REST2 with ID 2k if the similarity between the
FC of ID1i and ID2j was maximized among all subjects in
REST2,

ID1i = ID2k, where k = arg max
k

similarity (ID1i, ID2k) (4)

The accuracy for the subject i in REST1 was calculated as
1 if ID1i = ID2i and 0 otherwise. Identifying individuals of
REST2 from REST1 is vice versa. In the work by Finn et al.
(2015), a correlation of the template-based FC matrices was
used as the measure of similarity. We propose a new measure
of similarity to take advantage of the PBS parcellation. Each
subject has 400 such FC matrices per session, and the mean
of the FC forms a vector of 400 elements. This vector was
named as the mean FC vector (mFCV). To use the FC as
a fingerprint to identify subjects across resting state fMRI
scans, we define the similarity as the cross-correlation of
the mFCV between subjects. As a comparison, we also used
the cross-correlation as similarity to calculate fingerprinting
accuracy with Shen atlas and single parcellation of PBS
sampling.

RESULTS

Random Parcellation
An example of a 250-node random parcellation generated with
our algorithm and the corresponding parcel-size distribution are
shown in Figure 1. The ratio of standard deviation to the mean
parcel size is 8.4%. Across all 600 trials, 95% of the parcel-sizes
are between 291 voxels and 413 voxels, and 99% of the parcel-
sizes are between 257 voxels and 434 voxels. If we define the
normalized maximum variation (NMV) as the biggest difference
in size of a parcellation, divided by the smallest parcel size, the

FIGURE 1 | An example of a random parcellation of 250 nodes generated
with our algorithm (inset) and the corresponding parcel-size distribution.

mean value is 79.3% across 600 repetitions, with the smallest
NMV of 38.8 and 87.7% of the trials resulting in NMV < 100%.
Table 1 summarizes some features of the distributions obtained
for different values of N. The inter-quartile range to median ratio
is 10% for 500 parcels and 12% for 1000 parcels, much smaller
compared to previous reported values of random parcellation
with 0.77 for 890 parcels (Fornito et al., 2010) and 0.52 for 813
parcels (Echtermeyer et al., 2011).

Structural Network
Statistical Distribution of the Global Metrics
The distributions of some network metrics from 400 trials of
the random parcellations with N = 278 are shown in Figure 2.
A Lilliefors test showed that the distributions are not significantly
different from a normal distribution. Table 2 listed variations
of six global network metrics associated with parcellation, along
with those between MRI scans, and those induced by inter-
subject variability. The parcellation-related variations are much
smaller for five of the six global metrics compared with within
subject differences and between subject differences.

Intra-Class Correlation Coefficient
The computed ICC results and statistics are listed in Table 3,
comparing different methods for six global network metrics.
For all global metrics, the ICC of the mean of global network

TABLE 1 | Characteristics of the random parcellation generated with our
algorithm.

Number of Parcel size Standard deviation Inter-quartile range

nodes (voxels) to mean ratio (%) to median ratio

125 725.7 ± 65.1 8.97 0.11

250 362.9 ± 30.6 8.43 0.10

500 181.4 ± 15.7 8.68 0.10

1000 90.7 ± 8.4 9.28 0.12
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FIGURE 2 | Example of the distribution of six global metrics from the PBS network analysis of one subject. The results were from 400 random parcellation networks.

TABLE 2 | Variation of six global network metrics associated with parcellation,
between MRI scans, and between subjects.

Parcellation Between scans Between subjects

Degree 0.274 0.934 0.975

Strength 9.12e-3 36.7e-3 42.3e-3

Clustering coefficient 0.328e-3 0.899e-3 1.07e-3

Global efficiency 0.451e-3 1.20e-3 1.38e-3

Diversity 18.2e-3 57.2e-3 55.5e-3

Modularity 10.5e-3 11.4e-3 9.78e-3

TABLE 3 | Comparison of ICC of different methods for six global network metrics.

ICC of mean Mean ICC p-Value ICC template

Degree 0.533 0.508 1.3e-23 0.322

Strength 0.657 0.639 1.8e-30 0.656

Clustering coefficient 0.630 0.585 1.2e-58 0.571

Global efficiency 0.639 0.594 6.6e-59 0.630

Diversity 0.383 0.360 1.0e-29 0.464

Modularity 0.175 0.094 1.1e-30 −0.049

ICC of mean is the ICC value when taking the mean value of global network metrics
from PBS for each subject. Mean ICC is the average ICC values of the network
metrics from individual parcellation. The p-value of the hypothesis that ICC of mean
is greater than the ICC with a template of random parcellation was calculated from
400 trials. ICC template is the ICC value from the Shen atlas.

metrics from PBS is always higher than the mean ICC computed
when taking each PBS sampling as one template. Five of the six
global metrics show higher ICC from PBS than using the Shen
atlas.

Fingerprint of Functional Network
Samples of 400 PBS were obtained for each subject per resting
session. Each PBS random parcellation generates a FC matrix
and the corresponding mean FC, an example of the distribution
of the mean FC from 400 PBS samples is shown in Figure 3A.
The standard deviation of this distribution for all subjects is
(2.05 ± 0.67) × 10−3 for REST1 and (1.89 ± 0.58) × 10−3

for REST2. The mean FC values of all subjects in REST1 and
REST2 along with their differences are plotted in Figure 3B.
Figure 3B shows that for some subjects, the mean FC value can
be dramatically different between REST1 and REST2, compared
with the mean standard deviation. Figure 4 displays the
correlation matrix of the inter-subject mFCV. This correlation
matrix represents the likelihood between subjects in terms of the
coherence of change of mean FC with parcellation. By searching
for the maximum value corresponding to row index or column
index, prediction accuracy is 0.885 from 1 to 2 and 0.897 from
2 to 1. The prediction accuracy is a function of the sampling
number as shown in Figure 5. As the number of samples is
decreased from 400 to 110, the accuracy drops to around 0.8.
This accuracy is comparable to the method directly comparing
network matrix from a single parcellation, as shown in Figure 6.
Using the Shen atlas, the prediction rate is 82.6% from REST2 to
REST1 and 83.7% from REST1 to REST2.

DISCUSSION

A new framework for network analysis is proposed based
on PBS sampling, implemented as the generation of multiple
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FIGURE 3 | Each pseudo-bootstrap random parcellation gives rise to a FC
matrix and a mean FC, an example of the distribution of the mean FC from
400 samples is shown in (A). The mean FC values of all subjects in REST1
and REST2 along with their differences are plot in (B).

FIGURE 4 | Correlation matrix of the inter-subject mean FC derived from the
Pearson pair-wise cross-correlation between the vectors of 400 mean FC
from Pseudo-Bootstrap samples. This correlation matrix represents the
likelihood between subjects in terms of the coherence of change of mean FC
with parcellation.

random parcellations on a single MRI volume. Because small
parcel-size variation across different samples (instances of a
random parcellation) is critical to ensure comparable network

FIGURE 5 | The prediction accuracy rate as a function of number of
pseudo-bootstrap samples.

FIGURE 6 | FC fingerprinting prediction accuracy rate based on the
correlation of FC from template-based parcellation. The template was drawn
from the PBS samples.

metrics across several parcellation trials, we propose a random
parcellation algorithm that can produce sets of random
parcellations with a given number of parcels with a small parcel-
size variability. The inter-quartile range to median ratio is around
0.10, significantly smaller than previous results: 0.77 (Smith et al.,
2004) and 0.52 (Echtermeyer et al., 2011). Another advantage of
this algorithm is that it generates the number of nodes exactly as
specified.

The impact of PBS on structural network highlights a lot of
information about the effect of parcellation on network metrics.
The PBS sampling resulted in a Gaussian-like distribution of the
global metrics, indicating that different parcellation can lead to
similar global metric values. Nonetheless, it is worth noting that
such values do vary. On the other hand, while the global network
properties of the structural brain network vary across different
repetitions of the equally sized random parcellations, we find
that the variability is small and comparable with inter-subject
variability and within-subject variations between dMRI scans.
Our results show that parcellation is only one source to variation
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of network properties. It is more critical to reduce variances
from measurements, fiber tracking, etc. The ICC shows that the
mean value of global metrics from PBS tests is larger than the
mean value of template-based parcellation. Although it does not
give the best ICC in general, it is better than a template-based
parcellation overall. Given the lack of a standard parcellation
scheme, the PBS sampling with random parcellation may be a
plausible method to perform network analysis.

Our results show that a higher prediction accuracy rate was
achieved for FC fingerprint with pseudo bootstrap parcellation
compared to template-based parcellation. The prediction rate, as
expected, is dependent on the number of samples. The results
suggest that random parcellation analysis opens a new window to
examine functional networks, which preserve some features that
are insensitive to resampling at certain scale. Each resampling can
be considered a coarse snapshot of the true FC network from
different angles. The coherences between snapshots is a unique
feature of FC fingerprinting that has never been explored before.
Only the mean FC strength was tested in this article, it does
not exclude other global network properties that are preserved
as well.

The PBS sampling with random parcellations is different from
the template-based parcellation. In fact, the parcels have neither
functional nor anatomical meanings but this lack of meaning
can be an advantage in that there is no risk of introducing false
assumptions or biases into the network model. On the other
hand, a template-based parcellation does not belong to the set
of PBS samples in general because the criteria to generate the
parcellation is completely different. An advantage of the PBS
approach is bringing rich statistical analysis on the networks
that addresses the variation of global network properties related
to parcellation. For instance, the distribution of global metrics
might be different for different subjects but similar for the same
subject. Unfortunately, the sample size was not high enough to
run any of the statistics effectively. Another advantage of PBS
over template-based parcellation is reducing the inter-subject
variability due to parcellation when comparing different subjects.
This can be clearly revealed by the fact that ICC of the mean is
higher than the mean ICC for all global networks and the p-values
of the tailed t-test that ICC from PBS using the mean is higher
than that from template-based parcellation using one random
parcellation are extremely low (Table 3).

Like most parcellation schemes, the random parcellation
algorithm proposed in this paper works in the 3D volume
space. A surface-based random parcellation has been proposed
previously in an attempt to build an atlas-free framework
for constructing and comparing connectomes (Tymofiyeva
et al., 2014). While that framework shares the same goal as
ours, a challenge of that method is the mandatory network
alignment prior to comparing connectomes. Network alignment
is a procedure to minimize the “distance” between networks
by reordering nodes. For small networks the alignment can
be achieved by simply permuting the nodes. However, this
approach is not practical when the size of network gets large
because the number of permutations is the factorial of the
number of nodes. The quality of alignment is subject to the
algorithm and computation time. In fact, the PBS concept can

be readily combined with the surface-based random parcellation
on individual level and there is no need to align the network for
comparing global network metrics.

One undesirable feature of the PBS methods is that
the computation time can be long. For individual subjects,
the computation time is a multiplication of the time to
generate each random parcellation and subsequent network
construction/analysis by the number of PBS samples. For group
analysis, one can use predefined random parcellations and the
multiple sampling only adds time in subsequent calculations. In
any case, the computation time is much longer than template-
based methods. However, with advancements in high-throughput
computing clusters and high-performance parallel computing, it
becomes less a problem in real application. In addition, more
work is needed for the optimization of PBS method. For instance,
what is he optimal parcel size? Because this method completely
ignores functional and anatomical information of the image data,
big parcels are usually not good representatives of network nodes;
but very small parcel size leads to less variability (an extreme case
is voxel-wise parcellation (Power et al., 2011)) of the network.
Moreover, the PBS sampling only varies in brain parcellation. As
shown from our data, the variation of the network metrics could
be affected more by other factors than random parcellations.
Hence, more sophisticated statistical methods are desired to
extract insights of intrinsic brain network properties from the
variation of the network metrics. The fingerprinting using the
PBS and correlation of mean FC is one example of making use
of the variations.

CONCLUSION

In summary, a new algorithm was proposed to obtain roughly
equal-sized random parcellations by considering the geodesic
distance between voxels and voxel density. By applying these
random parcellations to individual subjects multiple times, a
PBS of the network was obtained. One benefit of PBS network
analysis over conventional approaches based on template-based
parcellations is the higher ICC of global network metrics. An
application of PBS sampling on FC fingerprinting showed higher
accuracy than previous method using the correlation of the
FC matrices. While a golden rule for choosing brain network
nodes remains lacking, the results from our preliminary work
encourages a more thorough understanding of the statistical
nature of this method.
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