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The investigation of specific white matter areas is a growing field in neurological

research and is typically achieved through the use of atlases. However, the definition of

anatomically based regions remains challenging for the white matter and thus hinders

region-specific analysis in individual subjects. In this article, we focus on creating a

whole white matter parcellation method for individual subjects where these areas can

be associated to cortex regions. This is done by combining cortex parcellation and

fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers

according to their origin, we populate a candidate image. We then derive the white

matter parcellation by classifying each white matter voxel according to the distribution

of labels in the corresponding voxel from the candidate image. The parcellation of the

white matter with the presented method is highly reliable and is not as dependent on

registration as with white matter atlases. This method allows for the parcellation of

the whole white matter into individual cortex region associated areas and, therefore,

associates white matter alterations to cortex regions. In addition, we compare the results

from the presented method to existing atlases. The areas generated by the presented

method are not as sharply defined as the areas in most existing atlases; however, they

are computed directly in the DWI space of the subject and, therefore, do not suffer from

distortion caused by registration. The presented approach might be a promising tool for

clinical and basic research to investigate modalities or system specific micro structural

alterations of white matter areas in a quantitative manner.

Keywords: white matter parcellation, diffusion tensor imaging, diffusion weighted imaging, fiber tracking,

FreeSurfer, brain anatomy

1. INTRODUCTION

The analysis of micro structural white matter properties has become increasingly important,
especially in multiple sclerosis research (Deppe et al., 2007, 2014, 2016). There are several
techniques such as diffusion-weighted magnet resonance imaging (DWI) that are sensitive to white
matter alterations that cannot be assessed by conventional MRI.

Korbinian Brodmann introduced the first parcellation method for the cortex in 1909 by
classifying cortex areas by their cytoarchitecture (Brodmann, 1909). Through the rise of structural
MRI in brain imaging, in vivo cortex parcellation became possible (Rademacher et al., 1992) by
classifying the cortex on the basis of cortical gyri and sulci, thus providing a way to associate
cortex alterations to brain functions. Automatic parcellation of the cortex was then introduced
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(Fischl et al., 2002, 2004; Glasser et al., 2016) and is since a
heavily used tool in clinical and basic research for region specific
analysis of the cortex. Further cortex parcellations were created
which seek to provide a higher resolution through defining more
cortex labels (Desikan et al., 2006; Destrieux et al., 2010), or
to classify the cortex from functional networks derived from
functional MRI (Craddock et al., 2012; Blumensath et al., 2013;
Shen et al., 2013; Moreno-Dominguez et al., 2014; Thirion et al.,
2014; Parisot et al., 2016).

While the parcellation of the human cortex into functionally
differentiable areas can be easily performed on the basis of
cortical gyri and sulci, there are no macro-anatomical landmarks
that permit direct classification of the white matter. Several white
matter atlases were created to overcome this problem bymapping
regions directly onto images under investigation (Wakana et al.,
2004, 2007; Mori et al., 2005; Hua et al., 2008; Mori et al., 2008;
Oishi et al., 2008). However, the registration of these atlases relies
on mapping to gray matter landmarks, as the structure of the
white matter alone is insufficient.

The parcellation of white matter is usually performed by
mapping a white matter atlas onto the image under investigation.
These atlases are typically created by parcellating the white
matter manually or semi-automatically in a group of subjects
by investigating diffusion-weighted images, structural images,
or fiber tracking results. For example, specialists map the fiber
tracking results onto diffusion-weighted or structural images and
label each white matter voxel (Mori et al., 2005). The created
parcellations are then mapped into the same space where an atlas
is derived from these overlaying parcellations. Generally, there
are two types of atlases. Deterministic atlases like the ICBM-
DTI-81 (Mori et al., 2005; Wakana et al., 2007) assign a label
to each white matter voxel that indicates the white matter area.
Probabilistic atlases on the other hand, like the JHU white-matter
tractography atlas (Hua et al., 2008) assign each white matter
voxel a probability that indicates how likely a voxel belongs to
a certain white matter area. These atlases are typically applied
in two steps. A template, which is either a single subject or a
group average, is mapped onto the image under investigation.
The resulting mapping is then applied to the white matter atlas,
which is in the same space as the template, tomap the parcellation
onto the image under investigation. However, as Bloy et al. (2012)
already pointed out and Rohlfing (2013) demonstrated as an
example, mapping a white matter atlas into the desired image can
be error-prone since the accuracy of the white mater parcellation
heavily relies on the registration to the template. Our approach
aims to overcome this strong dependency on registration by
parcellating the whitematter directly in the space of the diffusion-
weighted image. There are already approaches such as FreeSurfer
white matter parcellation (Salat et al., 2009) that do not describe
a white matter atlas, but a method that is applied in every
individual subject to parcellate the white matter. However, this
is a rather basic approach since it just classifies the white matter
according to the nearest cortex region.

Diffusion tensor imaging (DTI) provides a base for the
reconstruction of fiber tracts in the human brain. Here, we
present an approach called cortex associated individual white
matter parcellation that combines parcellation of the gray matter

and fiber tracking in DTI images to permit cortex parcellation-
associated whole white matter parcellation in individual subjects.
The general idea of combining fiber tracking and gray matter
parcellation was already outlined previously (Park et al., 2004).
However, the focus of our article lies on the classification of
each white matter voxel and thus the differentiation between the
generated white matter areas.

2. METHODS

This paper presents an automatic method for parcellating
the whole white matter into cortex region associated areas.
Therefore, cortex parcellation and deterministic fiber tracking in
DTI are combined.

2.1. Diffusion-Weighted Imaging
Diffusion-weighted imaging measures the diffusion of water
molecules inside the tissue in a specific direction. This is achieved
through a certain parametrization of the MRI sequence. By
performing multiple measurements of the diffusion in multiple
directions, the general diffusion can be estimated. A detailed
explanation of DWI can be found in Mori (2007).

In equally constituted tissue such as gray matter, the diffusion
of water molecules is nearly isotropic. However, in the white
matter, this diffusion is partially inhibited perpendicular to
the fiber tracts, which leads to anisotropic diffusion. This
characteristic allows for conclusions to be drawn about the
orientation of the nerve fibers.

Published for the first time in 1994 (Basser et al., 1994), DTI
relies on a mathematical model that describes the measured
diffusion in every voxel and has been established as a common
standard in neurological research. The model regards diffusion
as a second order tensor that can be visualized as an ellipsoid.
For undirected diffusion, this tensor consists of six parameters
that can be derived from the DWI images. The linearized
diffusion tensor is described by three orthogonal eigenvectors
that determine the ellipsoids location and circumference. The
longest of these vectors is usually called the main diffusion
direction. If the diffusion tensor mainly describes isotropic
diffusion, it takes the shape of a sphere, whereas for anisotropic
diffusion, the tensor can take the shape of a cigar or a coin. A
detailed explanation of DTI can be found in Mori (2007).

In DTI images of the human brain, spherically-shaped tensors
are mainly located in the gray matter or the cerebrospinal fluid
(CSF), whereas cigar-shaped tensors occur mainly in the white
matter.

2.2. Cortex parcellation
There are several different strategies for parcellations of the
cortex. Two of the parcellations commonly used in the FreeSurfer
software package (Dale et al., 1999; Fischl et al., 1999, 2004)
are the Desikan-Killiany Atlas (Desikan et al., 2006) and
the Destrieux Atlas (Destrieux et al., 2010). Both atlases are
developed for automated cortex labeling based on the gyri of
the cortex and they are both anatomically valid and reliable
(Desikan et al., 2006; Destrieux et al., 2010). Desikan et al.
published the Desikan-Killiany Atlas in 2006 and Destrieux et
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al. published the Destrieux Atlas in 2010. Through employing
the Desikan-Killiany Atlas, the cortex of each hemisphere is
parcellated into 34 regions of interest. The Destrieux Atlas
provides a finer granulated parcellation as it parcellates each
hemisphere into 74 regions of interest. To use these parcellations,
the recon-all script from the FreeSurfer software collection
(Dale et al., 1999; Fischl et al., 1999, 2004) is employed on the
structural (T1) MRI image. Its output includes the parcellation
with the Desikan-Killiany Atlas, with the Destrieux Atlas, as
well as a segmentation of the subcortical areas (nuclei). This
procedure as well as the pre-processing of the structural images
was already performed in the provided datasets. Both atlases
were chosen for testing the presented method because they are
widely used as part of FreeSurfer and were already included in
the provided datasets. Furthermore, in the provided datasets,
both the Desikan-Killiany Atlas as well as the Destrieux Atlas
were already mapped into the space of the diffusion-weighted
images.

2.3. Fiber Tractography
One field of application for DWI is the reconstruction of nerve
fibers in the human brain. These fibers are located in the white
matter and cannot be assessed through structural MRI images.
It can be assumed that the cigar shape of the tensor inside
the white matter is caused by the inhibition of water molecule
diffusion by the myelinated axons (Assaf and Pasternak, 2008).
As a result, the fibers in the human brain can be reconstructed
by following the main diffusion direction of the tensors (Conturo
et al., 1999).

To overcome noise and artifacts in the DTI images, several
more complex fiber tracking approaches were developed (see
Feigl et al., 2014 for review) like the class of probabilistic fiber
tracking algorithms (Parker et al., 2002; Behrens et al., 2003,
2007). These algorithms choose the propagation direction for the
fibers with a probability derived from the underlying diffusion
model, which makes them robust against noise. Through their
probabilistic nature, the results of these fiber tracking algorithms
are not exactly reproducible and therefore can include a degree
of uncertainty into the test of the presented method. Hence,
for the purpose of white matter parcellation, we use the Fiber
Assignment Continuous Tracking (FACT) method (Mori et al.,
1999) that is included in the Diffusion Toolkit (Wang et al.,
2007) and is established as a common standard for deterministic
fiber tracking. FACT was employed on the datasets with the
default parametrization of the Diffusion Toolkit, which is an
automatic mask threshold and an angle threshold of 35◦ as
stopping criteria.

2.4. White Matter Parcellation
For achieving a parcellation of the whole white matter into cortex
region associated areas, cortex parcellation and fiber tracking are
combined. An example for the registered cortex parcellation into
the tract space is shown in Figure 1. Due to the fact that the fiber
tracts are mainly symmetrical, it is possible to imagine how the
reconstructed fibers connect the different gray matter regions,
especially the cortex areas.

FIGURE 1 | Example visualization of the cortex parcellation mapped onto the

fiber tracking results. Only the main fibers are shown. These data are the input

for the actual white matter parcellation.

For the actual white matter parcellation, the fibers are tracked
out of every cortex region and labeled. Each part of the fiber
that lies in the white matter is labeled with the same label that
the cortex parcellation assigned to the start voxel. After the
fiber labeling is done, a list is generated that contains the label
count for every voxel of the white matter. In the next step,
every fiber is tracked a second time. While a fiber is tracked,
the label it received in the previous step is written into a list
that is associated to the voxel where the fiber section is present.
A single voxel usually contains numerous fibers and, therefore,
these lists contain a count for every possible cortex label that
can be written into this voxels associated list. A probability is
then assigned to every label a list contains. The label with the
highest probability then determines the chosen label for a specific
voxel.

In detail, let L be the list of labels and Li the quantity of the
label at position i of the list. Since the probability is computed
for every cortex label, all lists have the same length |L| and
additionally a label has the same position in every list. The local
probability pLi for a specific label is then

pLi =
Li

|L|
∑

j=0
Lj

(1)

In addition to this local label probability, the label probabilities
of the neighboring voxels are also taken into account for
determining which label is assigned to the specific voxel. To
cover this, Equation 1 is extended as follows. Let N =

{
(

x y z
)T
}\

(

0 0 0
)T

with−1 ≤ x, y, z ≤ 1 the set of the relative
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positions to the neighboring voxels and therefore L
N the label

list for these voxels. The probabilities of the neighboring voxels
for a given list element at index i are weightily taken into account
with:

pNi =
∑

n∈N

‖n‖−1
2

L
n
i

|L|
∑

j=0
L
n
j

(2)

The overall probability for a label to get assigned to a specific
voxel is therefore:

pi = wL ∗ pLi + wN ∗ pNi (3)

with 0 ≤ wL,wN ≤ 1 and wL + wN = 1.
To explain this equation, the local probability for a specific

label to be chosen is the number of occurrences of the label

divided by the aggregated number of label occurrences in the
current voxel. For the neighboring voxels that are also considered
for the label assignment, the probability is computed in the
same way. However, these probabilities are not evenly taken into
account since the neighboring voxels have different distances to
the local voxel. Therefore, the neighboring voxels are weighted
through their distance to the local voxel. Finally the two parts,
the local probability and the aggregated probability of the
neighboring voxels, are weighted with two parameters (wL and
wN) to adjust the influence of the two parts.

Therefore, the expansion of pi yields the computation in every
voxel as:

pi = wL ∗
Li

|L|
∑

j=0
Lj

+ wN ∗
∑

n∈N

L
n
i

‖n‖2
|L|
∑

j=0
L
n
j

(4)

FIGURE 2 | Flow chart that shows the population of the candidate image as well as the selection of the white matter labels.
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FIGURE 3 | Comparison of cortex parcellation with the Desikan-Killiany Atlas, gray matter segmentation, and the resulting individual white matter parcellation shown

in an axial and a coronal slice of a single subject. Column one: Cortex parcellation and gray matter segmentation mapped into the structural image which was used to

generate the parcellation and segmentation. Column two: Resulting white matter parcellation of the developed method mapped into the same structural image as in

column one. Column three: Images of column one and two mapped into one image. The black lines indicate the boundaries between the cortex areas and the white

matter areas.

FIGURE 4 | Comparison of cortex parcellation with the Destrieux Atlas, gray matter segmentation, and the resulting individual white matter parcellation shown in an

axial and a coronal slice of a single subject. Column one: Cortex parcellation and gray matter segmentation mapped into the structural image which was used to

generate the parcellation and segmentation. Column two: Resulting white matter parcellation of the developed method mapped into the same structural image as in

column one. Column three: Images of column one and two mapped into one image. The black lines indicate the boundaries between the cortex areas and the white

matter areas.
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The label with the highest probability in a specific voxel is then
assigned to this voxel. By performing this procedure for every
white matter voxel, the cortex associated individual white matter
parcellation is generated. Figure 2 demonstrates the method
schematically as a flow chart. The actual implementation of the
algorithm is written in Rust (www.rust-lang.org) (Schiffler et al.,
2016) and is freely available for download on our GitHub page
(neuro.github.io).

2.5. Data
We employed the method on 78 datasets from the freely available
WU-Minn Human Connectome Project (HCP) collective
(Van Essen et al., 2013). The HCP data release includes high-
resolution 3T MR scans from young healthy adult twins and
non-twin siblings (ages 22–35) as structural images (T1w and
T2w) (Milchenko andMarcus, 2013) and high angular resolution
diffusion images (dMRI) (Sotiropoulos et al., 2013). The diffusion
data were already preprocessed with the HCP diffusion pipeline
(Jenkinson et al., 2002, 2012; Andersson et al., 2003; Fischl,
2012; Glasser et al., 2013; Andersson and Sotiropoulos, 2015,
2016) (updated with EDDY 5.0.10). The datasets further include
structural preprocessed data with the HCP structural pipeline
(Jenkinson et al., 2002, 2012; Fischl, 2012; Glasser et al., 2013),
including FreeSurfer and PostFreeSurfer pipeline outputs.

All used diffusion data have a voxel size of 1.25mm ×

1.25mm × 1.25mm and a FOV of 210mm. Diffusion weighting
consisted of 3 shells of b = 1000 s

mm2 , b = 2000 s
mm2 , and

b = 3000 s
mm2 with approximately 90 diffusion directions plus

6 b = 0 images on each shell. Additionally, an inverted phase
encoding direction for each shell was acquired.

3. RESULTS

Figures 3, 4 show the results of the cortex parcellation, the gray
matter segmentation, as well as the results for the developed
individual white matter parcellation method. An axial slice and
a coronal slice are shown in both figures. The images in the first
column show the resulting cortex parcellation as well as the gray
matter segmentation overlaid over the structural MRI image; the
white matter is faded out. The images in the second column
show the actual result of the developed white matter parcellation
method. Notice that the images in the second column look
similar to the images in column one, but here with colored
regions contained within the white matter. These regions are
distinguished through the same colors as the cortex regions and
are, furthermore, associated to the cortex regions through these
colors. However, the resulting white matter regions are partially
not as sharply defined as the cortex regions. The third column
of Figures 3, 4 shows how the resulting white matter regions
are associated to the cortex regions. Column three shows the
overlay of the structural image, the cortex parcellation, the gray
matter segmentation, and the resulting individual white matter
parcellation. It can be seen that a white matter area next to a

FIGURE 5 | Comparison of the presented white matter parcellation method with the Desikan-Killiany Atlas for cortex parcellation, the Destrieux Atlas for cortex

parcellation, and the white matter parcellation of FreeSurfer in a single subject. All parcellations are mapped into the structural image which was used to generate the

parcellation. Column one: Parcellation with Desikan-Killiany Atlas for cortex parcellation. Column two: Parcellation with Destrieux Atlas for cortex parcellation. Column

three: White matter parcellation of FreeSurfer.
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specific cortex area has the same color as the cortex area. This
means the white matter area is associated to this cortex area.

Figure 5 shows a comparison of the results of the white
matter parcellation with both cortex parcellations to the white
matter parcellation produced by FreeSurfer. The FreeSurfer white
matter parcellation is already included in the provided data
and classifies each white matter voxel according to its nearest
cortex area. Therefore, it is not a white matter atlas, but like
our presented method, it describes a white matter parcellation
that is computed in every individual subject. Since FreeSurfer’s
white matter parcellation uses the Desikan-Killiany Atlas for
determining the white matter labels, it does look similar to the
parcellation from our presented method, which also uses the
Desikan-Killiany Atlas. However, the developedmethod does not
classify the white matter based on the distance to cortex regions,
but on the originating cortex region of the fiber tracking results.

Figure 6 shows an averaged white matter parcellation with
both cortex parcellations compared to the ICBM-DTI-81 white
matter atlas. Therefore, all 78 subjects were mapped into the
space of the atlas. The averaging was done over all 78 subjects
through majority voting which simply counts for every voxel
the appearance of every label and choses the label with most
appearances. The ICBM-DTI-81 atlas was produced by hand
segmentation of a standard-space average of diffusionMRI tensor
maps from 81 subjects and contains 48 white matter tract labels.
The comparison shows that the parcellations of the presented

method and the ICBM-DTI-81 atlas divide the white matter in
partially congruent areas. The parcellation using the Desikan-
Killiany Atlas for cortex parcellation looks similar to the ICBM-
DTI-81 atlas although the white matter regions the presented
method produces are not as sharply defined as the regions in
the ICBM-DTI-81 atlas. The parcellation with the Destrieux Atlas
contains more different regions (74) in comparison to the ICBM-
DTI-81 atlas and therefore offers a finer granulated parcellation.
The ICBM-DTI-81 atlas only parcellates the main white matter
tract, whereas the presented method generates a whole white
matter parcellation.

4. DISCUSSION

The developed method can be used to parcellate the whole white
matter into individual cortex region associated areas. This allows
for the association of white matter alterations to the originating
cortex regions.

The method tends to label voxels close to the cortex with the
same label as the closest cortex region. Since the fibers protrude
out of the cortex, it is clear that a large number pass through the
voxels that are closer to the cortical region of origin. Additionally,
the greater the distance from the cortex, the more unsharp the
resulting parcellation becomes. This is due to the fact that more
distant areas are typically crisscrossed by a lot of fibers with
different origins, and that all of these fibers have to be taken

FIGURE 6 | Average white matter parcellation derived from all 78 subjects with the Desikan-Killiany Atlas for cortex parcellation and the Destrieux Atlas for cortex

parcellation compared to the ICBM-DTI-81 white matter atlas. Column one: Average parcellation with Desikan-Killiany Atlas for cortex parcellation. Column two:

Average parcellation with Destrieux Atlas for cortex parcellation. Column three: ICBM-DTI-81 white matter atlas.
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FIGURE 7 | Cortex parcellation, gray matter segmentation and resulting white

matter parcellation mapped into one image. The region that outlines the

pre-central cortex associated white matter is highlighted. This region connects

the pre-central cortex (dark blue) and the thalamus (dark green) which is

known as an actual fiber pathway (Sommer, 2003; Drenckhahn, 2004).

into account for choosing the resulting label. Hence, it could be
useful to adapt the presented method in the future to generate a
probabilistic parcellation.

Compared to the FreeSurfer white matter parcellation,
the results of the presented method look similar in areas
that are close to the cortex. This is because FreeSurfer’s
parcellation classifies each white matter voxel based on the
closest cortex region. Furthermore, the FreeSurfer parcellation
uses the Desikan-Killiany Atlas for determining the white
matter labels that we, among other atlases, also included for
generating the white matter parcellation. However, in deeper
white matter areas, the presented method shows a much higher
resolution of parcellation compared to the FreeSurfer white
matter parcellation. This is because it labels the white matter
according to the origins of the fiber tracts that are not necessarily
the closest cortex regions, especially in the deeper white
matter.

The presented method can be applied even in diffusion-
weighted images with larger voxel size. However, an increase
in voxel size can lead to an increased number of fibers
with different origins per voxel and, therefore, to a higher
number of candidate labels in a single voxel. A high
number of candidate labels in a voxel in turn can bring
uncertainty to the label voting since the method choses
the label with the highest probability, even if there are
multiple candidate labels with a probability close to the
highest.

Since diffusion tensor imaging is a rather basic approach
to model diffusion, especially in areas with crossing fibers,
it could be useful to implement other diffusion models like

HARDI (high angular resolution diffusion-weighted imaging)
or higher-order tractography models like CSD (constrained
spherical deconvolution) into the method that can model
crossing fibers more accurately than DTI. As the presented
method relies heavily on fiber tracking, which in turn relies
on the underlying diffusion model, it is expected that using
better diffusion models can lead to a more accurate white matter
parcellation.

Validation of the presented method remains difficult, but one
approach could be a MRI scan of an ex vivo brain followed
by a histological analysis of the white matter fiber tracts to
compare the results of the presented method to those obtained
by histological investigation. However, the presented results
show several properties that match with published data. For
example, it is known that specific fiber pathways connect the
pre-central gyrus (blue in Figure 3) with the thalamus (dark
green in Figure 3) (Sommer, 2003; Drenckhahn, 2004). Using
the presented method, we show in Figure 3 that these fiber
pathways lead to a specific region (blue in Figure 3). This finding
is also highlighted in Figure 4. Thus, the generated white matter
parcellation permits a region specific analysis in structural or
diffusion-weighted MRI within the white matter.

The presented method shows significant less dependency on
registration than white matter atlases. Since the method uses
registration just for defining seed regions in the cortex and
parcellates the white matter directly in the DWI space, the
resulting white matter regions do not suffer from distortion
through registration.

Recent studies on patients with multiple sclerosis
demonstrated thalamic atrophy even in the earliest stage of
the disease (Krämer et al., 2015; Deppe et al., 2016). However,
until now it remained unclear to which degree the thalamic
volume loss is associated with modality specific white matter
alterations. The presented approach might be a promising tool
for clinical and basic research to investigate modalities or system
specific micro structural alterations of white matter areas in a
quantitative manner.
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