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In multi-attribute choice, people use heuristics to simplify decision problems. We studied
the use of heuristic and rational strategies and their electrophysiological correlates. Since
previous work linked the P3 ERP component to attention and decision making, we
were interested whether the amplitude of this component is associated with decision
strategy use. To this end, we recorded EEG when participants performed a two-
alternative choice task, where they could acquire decision cues in a sequential manner
and use them to make choices. We classified participants’ choices as consistent with
a rational Weighted Additive rule (WADD) or a simple heuristic Take The Best (TTB).
Participants differed in their preference for WADD and TTB. Using a permutation-based
single trial approach, we analyzed EEG responses to consecutive decision cues and
their relation to the individual strategy preference. The preference for WADD over TTB
was associated with overall higher signal amplitudes to decision cues in the P3 time
window. Moreover, the preference for WADD was associated with similar P3 amplitudes
to consecutive cues, whereas the preference for TTB was associated with substantial
decreases in P3 amplitudes to consecutive cues. We also found that the preference for
TTB was associated with enhanced N1 component to cues that discriminated decision
alternatives, suggesting very early attention allocation to such cues by TTB users. Our
results suggest that preference for either WADD or TTB has an early neural signature
reflecting differences in attentional weighting of decision cues. In light of recent findings
and hypotheses regarding P3, we interpret these results as indicating the involvement
of catecholamine arousal systems in shaping predecisional information processing and
strategy selection.

Keywords: decision making, heuristics, strategy selection, P3, EEG/ERP

INTRODUCTION

When making choices, decision makers must process information, with some choices requiring
information integration and others allowing for one-reason decision making. In order to decide,
people have to infer the future state of the world on the basis of probabilistic cues (e.g., Rieskamp
and Hoffrage, 1999). A popular theory explaining how they do it is that people have a repertoire
of strategies and select them adaptively, depending on task conditions and their own dispositions
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(Payne et al., 1993; Gigerenzer et al., 1999). The strategies differ
in how many decision cues they require and how the cues are
utilized. A normative, compensatory Weighted Additive strategy
(WADD) integrates all available information; it computes the
sum of all cue values multiplied by their cue validities for each
alternative, and selects the alternative with the largest sum (Payne
et al., 1993). In contrast, a simple, non-compensatory heuristic
Take The Best (TTB; Gigerenzer and Goldstein, 1996) assumes
that when comparing different alternatives, the one with the
highest cue value for the most valid cue is selected as the one
with the highest criterion value. Together, TTB and WADD
explain a high proportion of people’s multi-attribute choices in
preference and inference based tasks (Payne et al., 1993; Bröder,
2000, 2003; Rieskamp and Otto, 2006; Mata et al., 2007; Rieskamp
and Hoffrage, 2008; Wichary et al., 2016). In comparison to
WADD users, individuals preferring TTB process information in
a more selective manner, spending a greater amount of time on
the analysis of the most important cue (Wichary et al., 2016). This
suggest that differences in attention allocation and differential cue
weighting might lead to the eventual reliance on WADD or TTB.

Do choice strategies have their distinct neural signatures?
Individuals vary in the use of strategies, and several fMRI
studies attempted to identify the neural sources of this variability.
Venkatraman et al. (2009a), studying choices under risk, showed
that individual variability in strategy use could be predicted
by BOLD activity in ventral striatum, suggesting that high
activity in the dopaminergic reward system might underlie
the use of simplifying non-compensatory strategies. Moreover,
Venkatraman et al. (2009b) provided evidence that strategic
control of decisions is associated with the activity of anterior
dorsomedial prefrontal cortex (DMPFC). The involvement of
medial prefrontal cortex is also supported by Schuck et al. (2015),
who showed that adaptive strategy switches in a perceptual
decision task were associated with activity in this region. Also,
Gluth et al. (2013), studying inference-based multi-attribute
choice, showed the association between strategy selection and the
activity of ventral striatum, the ventromedial prefrontal cortex
and the anterior cingulate cortex (ACC). Khader et al. (2011),
using a training paradigm in memory-based multi-attribute
choice, showed that the activity of the left dorsolateral prefrontal
cortex (DLPFC) reflects the number of cues required for a
decision, and modulates the activity in posterior areas that store
these cues.

The abovementioned studies show that several brain areas – of
different functional properties – are involved in decision strategy
use. However, because these studies employed fMRI which has
high spatial resolution but lacks temporal precision, they were
unable to track the fine grained temporal dynamics of pre-
decisional brain activation. In contrast, electroencephalography
(EEG) offers an opportunity to track temporal patterns of brain
activity and to find early neural signatures of choice processes.
One EEG signal relevant in this area is the classic P3 component
of the event related potential (ERP; Picton, 1992; Verleger et al.,
2005; Polich, 2007). P3 starts about 250 ms after detection of
a target stimulus and is linked to attention allocation, so that
motivationally significant stimuli that attract attention elicit high
P3 amplitudes at parietal electrodes. Moreover, stimuli that elicit

high P3 amplitudes are better encoded, suggesting that this
component reflects the role of attention in memory updating and
subsequent retrieval (Polich, 2014). Mechanistic explanations
suggest that although P3 is generated at multiple sites in the
cortex (Bledowski et al., 2004), it is modulated by the activity
of dopaminergic and noradrenergic neuromodulatory systems
originating in midbrain and pons, respectively. In this vein,
P3 has been proposed as a reward-related electrophysiological
marker (Goldstein et al., 2006; Pfabigan et al., 2014). Similarly,
Nieuwenhuis et al. (2005) proposed P3 as a signal reflecting
the activity of locus coeruleus-norepinephrine system (LC-NE)
associated with arousal and information processing.

We extended this line of theorizing and proposed that the
LC-NE activity is linked to strategy selection in multi-attribute
choice. Our theoretical model (Bottom Up Model of Strategy
Selection, BUMSS; Wichary and Smolen, 2016) proposes that the
process of strategy selection is shaped in a bottom up manner by
brain-wide gain modulation mediated by LC-NE. According to
the model gain modulation coupled with lateral inhibition in the
cortex, is responsible for attentional selection of some decision
cues over others (Eldar et al., 2013; Warren et al., 2015; Mather
et al., 2016). Following Nieuwenhuis et al. (2005) and Murphy
et al. (2011), our model assumes that the physiological markers
of LC-NE activity, such as P3, should be linked to pre-decisional
information processing and strategy use in multi-attribute choice,
because they index attention that can be preferentially allocated
to relevant decision cues.

Besides P3, other EEG indices have been linked to attention
allocation, at even earlier stages of information processing.
The ERP component N1, a negative deflection peaking around
100 ms post-stimulus onset, has been linked to modality specific
attention allocation. Particularly, N1 was proposed to reflect an
early attentional mechanism employed when two stimuli must be
discriminated (Vogel and Luck, 2000). It is important to note that
this component features prominently in studies on perception
and attention, but has not been linked to complex decision
making before. However, given its links to attention allocation,
it is possible that such an early EEG signal preceding P3 can
also be associated with pre-decisional information processing and
strategy use in multi-attribute choice.

Electroencephalography/event related potential, with the
focus on P3 has been employed in studies of decision making.
In studies on perceptual decision making, P3 emerged as
a supramodal decision signal indexing the accumulation of
perceptual evidence (O’Connell et al., 2012; Kelly and O’Connell,
2015; Twomey et al., 2015), which is consistent with Nieuwenhuis
et al. (2005) hypothesis linking P3 with activity of the LC-NE
system mediating cortical gain modulation (Warren et al., 2015).
EEG has also been used in other decision making studies, e.g.,
in the context of risk taking, where P3 was found to correlate
with decision making under risk and uncertainty (Zhang et al.,
2014; Wang et al., 2015). In the context of heuristic strategy
use in value-based effortful decision making, Achtziger et al.
(2014) studied the use of the representativeness heuristic in a
decision-making task and found its association with N2 and P3
amplitudes. As for multi-attribute choice based on probabilistic
inference, up to date, there was only one study that employed
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EEG to look for neural correlates of decision strategy use in
probabilistic inference tasks. Studying the use of recognition
heuristic in a two-alternative choice, Rosburg et al. (2011) showed
that P3 amplitude is larger to recognized decision alternatives and
predicts participants’ actual choices.

In the current work, we aimed to analyze EEG/ERP correlates
of the preference for simple and complex decision strategies
in inference-based multi-attribute choice. We analyzed the
relationships between spontaneous decision strategy use and the
EEG signal amplitude to consecutive decision cues. Based on
the literature linking P3 with attention allocation and based on
our theoretical model of strategy selection (Wichary and Smolen,
2016), we expected that the use of the simple heuristic TTB would
be associated with high P3 amplitudes to the most important
decision cues and low P3 amplitudes to less important cues. In
contrast, the use of WADD strategy should be associated with
similar P3 amplitudes to all decision cues. Given that differences
in attention processes might be indexed by earlier components,
we hypothesized that earlier components indexing attention
allocation, such as the N1, might be also related to predecisional
information processing.

In order to study this process, we used the probabilistic
inference task (Gigerenzer et al., 1991), modified from its earlier
versions (Mata et al., 2007; Wichary et al., 2016) to allow
for EEG recording. In terms of behavioral data, we analyzed
spontaneous use of decision strategies in this task, as inferred
from participants’ actual choices. In the EEG analysis, we looked
for differences in the signal amplitude in response to consecutive
decision cues that were associated with preference for a particular
strategy. We performed this analysis in a relatively novel way,
by applying non-parametric cluster based permutation statistics
(Maris and Oostenveld, 2007) to single trial analysis with a linear
mixed-effects model (Aarts et al., 2014). This approach allowed
us to disentangle the contributions of strategy preference and
task-related predictors to changes in EEG signal (see Materials
and Methods for details) and precisely localize these effects
temporally and topographically.

MATERIALS AND METHODS

Participants
Participants were 21 young adult volunteers from Warsaw area.
The data of five participants had to be discarded due to artifacts
in the EEG signal, therefore the final sample consisted of 16
participants (9 women, age M = 23, SD = 2.54). Participants
provided written informed consent in accordance with the
Declaration of Helsinki, under a protocol approved by the
Ethics Committee of the Faculty of Psychology, University of
Warsaw.

Apparatus and Materials
Decision Task
The computerized probabilistic inference task consisted
of making decisions about, which of two diamonds was
more expensive. The diamonds were described with the six
following cues: size, overall proportions of the diamond, crown

proportions, pavilion proportions, size of table and color. The
cue values were coded as numbers 0 and 1, with 0 indicating
a low value of the cue and 1 indicating a high value. The
corresponding cue validities were 0.706, 0.688, 0.667, 0.647,
0.625, 0.6, thus representing a compensatory environment
structure (Martignon and Hoffrage, 1999). The cue validities
were conditional probabilities of making a correct choice
given that the cue discriminated between the alternatives
(Rieskamp and Hoffrage, 1999). The cue validities and the
cue values for each trial (i.e., the items) were generated by a
permutation-based computer simulation using custom made
scripts in MATLAB, with the goal to create a stimuli set with
a compensatory distribution of cue validities, that maximized
the number of discriminative items, that is the items where
the choices made WADD and TTB strategies were different.
In consequence, this simulation allowed to determine which
individual choices were consistent with the WADD rule and the
TTB heuristic.

The cue validities were presented in the instruction, together
with the information that the cues have to be acquired
sequentially in the descending order of the validities, from the
best cue to the worst. During task performance, participants
acquired the cues by pressing the space button on the keyboard
with their left hand. SOA between this button press and
the cue presentation was 900–1500 ms. After pressing the
button, the cue values for both alternatives appeared on the
screen for 2s, followed by arrows prompting the participants
to either acquire another cue or make the choice. Participants
made choices by pressing “arrow left” or “arrow right” buttons
on the keyboard with the right hand (Figure 1). The task
consisted of an instruction phase, a training phase of 3 decisions,
and a test phase of 48 decisions. Participants were tested
in a separate, dimly lit room. After entering the laboratory,
participants were seated ca. 70 cm from the screen, signed
an informed consent and provided their demographic data.
Afterward, the EEG cap was mounted, participants read the
instructions and performed the training and test trials of the
choice task.

EEG Recording and Preprocessing
EEG was recorded using 64-Channel EGI HydroCelTM Geodesic
Sensor Net, NetStation software and an EGI Electrical Geodesic
EEG System 300 amplifier (Electrical Geodesics, Eugene, OR,
United States) with Cz as the reference channel. Input
impedance was set below 40 k� before the recordings. EEG
data were processed using EEGlab (Delorme and Makeig,
2004), Fieldtrip (Oostenveld et al., 2011) and custom-made
scripts in MATLAB (Mathworks, Natick, MA, United States).
First, EEG signal was high-pass filtered with 1 Hz default
EEGlab filter (pop_eegfiltnew function in EEGlab) and cut
into consecutive 1-s long windows. Windows further than 1 s
away from relevant experimental events (cue presentations)
were automatically removed. The remaining windows were
visually inspected and those containing strong or non-stereotypic
artifacts were removed. Surviving windows were submitted
to Independent Component Analysis (ICA). Bad channels
(M = 1.94; SD = 1.68) were not included in the ICA and
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FIGURE 1 | Task presentation. In each trial, participants could either request a cue or make a choice, by pressing the down arrow button (next cue) or left or right
arrow buttons (choice). On a given trial, a cue either discriminated between the alternatives (one alternative had a “0” value and the other had a “1” value) or did not
discriminate (both alternatives had the same cue value).

were later interpolated (see second step below). Independent
Components (ICs) representing unambiguous artifacts such as
eye movement, eye blinks, heart, or muscle activity were marked
for removal.

In the second step the raw unfiltered data were 1 Hz high-
pass filtered, the IC weights obtained in the first step were
applied to the data and components marked for rejection
in the previous step were removed. After clearing the signal
from artifacts with ICA, bad channels were interpolated and
the signal was 35 Hz low-pass filtered and re-referenced to
average. The choice of average reference was motivated by
the fact that it reflects well the basic principle that all ERP
components are bipolar with both a positive and a negative pole
(Dien, 2017). The data were then epoched with respect to cue
onsets, yielding epochs starting 250 ms before cue onset and
ending 700 ms after cue-onset. Epochs overlapping with data
segments that were rejected in the first step of preprocessing
were rejected in the second step as well. This procedure –
performing ICA on more data than actual epochs was chosen
to increase the quality of the decomposition and thus the
quality of ICA artifact removal. This two-step approach was
implemented in a custom-made, EEGLAB-based toolbox (eegDb
toolbox1).

EEG Data Analysis
To compare EEG signal amplitude across all electrodes and in
all time samples, we performed a data-driven analysis that does
not focus a priori on any time-segment or channel group. We

1https://github.com/mmagnuski/eegDb

used a Monte Carlo based cluster-correction method (Maris
and Oostenveld, 2007; Maris, 2012). This approach allows
for testing experimental hypotheses at the level of spatio-
temporal clusters rather than separate electrodes and provides
relevant correction for multiple comparisons. We investigated
spatiotemporal patterns of dependency of single-trial EEG
signal on the parameters of experimental procedure. To this
end, we estimated a linear mixed effects model (LMM) for
each time sample and electrode. LMMs take into account
the nested structure of the data (like single trials are nested
within participants) therefore allowing to include single trials
in group analysis. This analysis is less prone to errors of
the first and second kind than the traditionally used methods
(Aarts et al., 2014). In this model, the following experimental
parameters were treated as predictors: (1) cue number (1–6),
(2) cue discrimination value (1: cue discriminates vs. 0: cue
does not discriminate between the alternatives), (3) relative
strategy preference (a continuous variable: the proportion of
choices consistent with WADD minus the proportion of choices
consistent with TTB). The model also included interaction terms
of strategy preference by cue number and strategy preference by
cue discrimination value. Participants were entered as random
effects, assuming random intercepts, which allowed to account
for each participant’s deviation from the average intercept
in the model. EEG voltage (standardized within participants’
electrodes) in a time window starting from 200 ms before cue
onset and ending at 700 ms after cue onset was treated as the
dependent variable. A separate LMM was estimated for each
combination of channel and time sample. The model for a
specific channel and time sample was captured by the following

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 401

https://github.com/mmagnuski/eegDb
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00401 August 16, 2017 Time: 15:58 # 5

Wichary et al. Neural Signatures of Choice Strategies

equation:

EEG= β0+ b0i+ β1 cue number+ β2 discriminative value+ β3

strategy preference+ β4 cue number ∗ strategy preference

+ β5 discriminative value ∗ strategy preference+ ε

where the EEG signal voltage (at specific channel and time
point) is a function of (a) the intercept (β0), (b) deviation
of given participant from the intercept (b0i), (c) the cue
number (β1), (d) the discrimination value of the cue (β2), (e)
strategy preference (β3), (f) interaction of strategy preference
and cue number (β4), (g) interaction of strategy preference
and discrimination value of the cue (β5), and (h) the error
term ε.

To correct for multiple comparisons, we performed non-
parametric cluster-based correction (Maris and Oostenveld,
2007). Cluster correction groups adjacent significant effects (e.g.,
adjacent time samples on one channel or same time samples
on adjacent channels) into continuous clusters. The probability
of obtaining stronger effect clusters is evaluated by comparing
actual cluster-level statistic (sum of t-values within each cluster)
to the null distribution of the maximum cluster-level statistic.
This null distribution was simulated by permuting the data
multiple times and calculating the cluster-level statistics each
time. Here, because our model included multiple predictors,
each permutation consisted in randomly shuffling predictors
between trials within each participant. Subject-level predictor
(strategy preference) was shuffled between participants. We
performed 1000 permutations where t-values for each predictor
were clustered separately. Cluster membership threshold was set
to >2 t and <−2 t (negative and positive effects were always
clustered separately). Time samples that passed this threshold
but did not have a corresponding time sample passing the
threshold on any of the neighboring channels were removed
from each cluster. This ‘cluster pruning’ was performed to
reduce the probability of topographically separate effects being
clustered together due to weak single-channel links existing
between. Clusters with probability lower than 0.05 (two-tailed)
were considered significant. In the second step of the analysis,
we focused on P3 and N1 ERP components and showed the
differences in these components between participants preferring
the complex WADD rule and participants preferring the simple
TTB heuristic. EEG data analyses were performed in Julia
(Bezanson et al., 2012) with MixedModels.jl package (Bates et al.,
2016) and MATLAB (Mathworks, Inc., Natick, MA, United
States) with custom-made scripts.

RESULTS

Strategy Use and Information Acquisition
First, we determined the percentages of choices consistent
with each of the two strategies, the Weighted Additive rule
(WADD) and the lexicographic heuristic TTB. Across all
participants and all trials, WADD predicted 80% of choices and
TTB predicted 71.4% choices. Thus, both strategies performed

better than chance (50%) in identifying participants’ choices.
On discriminating trials (i.e., trials where WADD and TTB
made opposite predictions, which constituted 39% of all trials),
WADD predicted 60% and TTB predicted 40% of choices, thus
WADD was better in explaining participants’ choices. For each
participant, we subtracted the proportion of choices consistent
with TTB from the proportion of choices consistent with WADD
(Figure 2). We used this single continuous variable (the relative
preference of WADD over TTB) in the subsequent analysis. To
characterize participants’ pre-choice behavior, we quantified their
information search by counting how many cues a participant
requested before each choice. On average participants acquired
4.7 cues (out of 6), and there was no correlation between
individual preference for strategy and the number of acquisitions
(r = 0.28, p = 0.34). This is in contrast to some behavioral
studies on decision strategy use (e.g., Rieskamp and Hoffrage,
2008; Wichary et al., 2016), however, it can be explained by the
fact that cue acquisition in our task was costless and easy, and the
compensatory structure of the task environment (the cues had
similar validities) favored the acquisition of all the available cues
(see Newell and Shanks, 2003 for similar results). Participants’
total decision time was on average 4540 ms (SD = 2023 ms),
and it did not significantly correlate with individual strategy
preference (r = −0.44, p = 0.09; see Supplementary Material for
the performance of individual participants).

EEG Results
We analyzed EEG signal amplitude in response to consecutive
decision cues, to determine whether strategy preference was
associated with EEG signal amplitude. As mentioned earlier,
we estimated a LMM for each time sample and electrode
with the following predictors: (1) cue number (1–6), (2) cue
discrimination value (1: cue discriminates vs. 0: cue does
not discriminate between the alternatives), (3) relative strategy
preference (a continuous variable: the proportion of choices
consistent with WADD minus the proportion of choices
consistent with TTB), and EEG voltage in a time window starting
from 200 ms before cue onset and ending at 700 ms after cue onset
was treated as the dependent variable.

First, we observed main effects of cue number on the EEG
signal amplitude. Figure 3A shows that the effects were located
in two electrode clusters – a midline fronto-central cluster and a
posterior, parieto-occipital cluster, within the time window 250–
700 ms. EEG signal amplitude on frontal and central electrodes
within that window increased with cue number (p < 0.001,
cluster-corrected). Given our interest in P3, we focus here on the
posterior cluster, where this component is most often located and
where we also observed it in the current study (Figure 3B). At
this cluster, the signal amplitude was negatively related to the cue
number – it was highest to the first (most important) cue and
decreased with each consecutive cue (P < 0.0001; Table 1 and
Figure 3C). In addition, topographical plots of the EEG voltage
within the P3 time window showed a changing scalp topography
of this component (Figure 3D).

Importantly, we observed a main effect of strategy preference.
This positive effect was located on the frontal, central and some
parietal electrodes on the left side of the scalp. Higher preference
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FIGURE 2 | Preference for WADD and TTB strategy across participants.

for the WADD strategy was associated with higher signal
amplitude to decision cues in this cluster, within the time window
from 300 to 470 ms (P = 0.008; Table 1 and Figures 4A,B).
We also observed an interaction effect of strategy preference
and cue number, indicating that individuals preferring WADD
and TTB strategies processed the consecutive cues differently.
Figure 4C shows that this effect was located at two electrode
clusters – a negative effect on left frontal electrodes (P < 0.001)
and a positive effect on right parietal electrodes (P = 0.01).
Given our interest in the P3 component, we focus here on the
parietal cluster, where this component is usually observed and
where we also observed it in our study (Figure 3B). Although the
analysis was performed with strategy preference as a continuous
predictor, for illustration purposes, we divided the participants
into tertile groups and plotted the ERPs and their averages
separately for two extreme groups: the “TTB users” and the
“extreme WADD users.” For the TTB users, the majority of their
choices were made with the TTB heuristic, whereas for WADD
users, the majority of their choices was made with the WADD
rule. For TTB users, the signal amplitudes to the consecutive cues
within the P3 time window decreased with each consecutive cue,
while for the extreme WADD users, the amplitudes were similar
(Figures 4D,E).

We also observed effects involving the discrimination value
of the cue. First, on average, EEG signal amplitude differed in
response to discriminating cues than in response to the non-
discriminating cues (the main effect of the discriminative value
of the cue; Figure 5 and Table 1). Figure 5A shows the statistical
cluster plot of these effects, a positive effect (P < 0.0001) at a
parietal cluster, two negative effects (P = 0.004, P = 0.018), at
a frontal and central cluster in the time window between 300
and 650 ms. On the parietal cluster within the P3 window, which
is our main focus, signal amplitude was higher in response to
discriminating cues than in response to the non-discriminating
cues.

We also observed interaction effects of the discriminative
value of the cues and strategy preference, indicating that strategy

preference modulated the processing of discriminating and non-
discriminating cues. These effects were present at four electrode
clusters, two within an early time window of 120–220 ms and two
within a later window of 400–600 ms (Figure 5B).

In the 400–600 ms time window corresponding to P3, a
negative effect (P = 0.012) was present at central and parietal
electrodes on the left side and a positive effect (P = 0.002)
was present at central and parietal electrodes on the right side.
Focusing on the right central and parietal electrode cluster,
we found that high preference for WADD was associated with
higher EEG amplitudes to discriminating cues than to non-
discriminating cues, and high preference for TTB was associated
with lower amplitudes to discriminating cues than to non-
discriminating cues (Figure 5C).

Interestingly, in the 120–220 ms range, corresponding to the
N1 component, a negative effect (P = 0.038) was present at
frontal, central and parietal electrodes on the left side and a
positive effect (P = 0.04) at the analogous electrodes on the
right side (Figure 5B). High preference for TTB was associated
with lower EEG amplitudes (i.e., with more pronounced N1)
to discriminating cues than to the non-discriminating cues
(Figure 5C). This was evident at the right central electrode
cluster.

In sum, our analysis provided evidence that the individual
variability in the use of WADD and TTB strategies is associated
with differences in EEG signal amplitudes to decision cues, most
prominently within the time range of the P3 component, with
additional effects on the N1 component.

DISCUSSION

What are the neural correlates of normative and heuristic
decision strategies? To answer this question, we conducted
an EEG study where participants performed multi-attribute
probabilistic inference task and could use different decision
strategies to utilize the available information. Most participants
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FIGURE 3 | Main effects of cue number. (A) Statistical cluster plot for the cue number effect with significant electrodes, scalp and time location. (B) Topographical
plot of the P3 component (time window 300–400 ms), averaged across participants, trials and cues. (C) Event related potentials in response to each decision cue, at
the frontal cluster (Upper) and at the parietal cluster (Lower). (D) Topographical plots of P3 responses (time window 300–400 ms) to consecutive decision cues,
averaged across participants and trials.

integrated the acquired the pieces of information into the
decision process by using the normative Weighted Additive
rule on the majority of the trials, as indicated by their choice
outcomes. Some participants, however, did not integrate the
acquired cues into the final choice, relying instead on a simple
heuristic TTB on most of the trials.

We found that, on average, the relative preference for the
WADD strategy was associated with higher P3 amplitudes

to decision cues on the left frontal, central and parietal
electrodes. From the perspective of P3 as an index of endogenous
attention, this result suggests that participants preferring the
complex WADD strategy could better mobilize attentional
resources in response to the decision cues than the participants
preferring the simple heuristic TTB. Another possible, and
not mutually exclusive interpretation of this result is that
participants preferring WADD had higher processing capacity,
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TABLE 1 | Model estimates for the effects of task characteristics and individual strategy preference on EEG amplitude.

Effect Electrode cluster Time range
(post-stimulus)

Estimate (cluster
level sum of t-values)

P (permutation-based,
cluster-corrected)

Cue number (1–6) Positive 276–696 ms 6171.99 <0.001

Negative 1 240–556 ms −4585.34 <0.001

Negative 2 616–696 ms −621.02 0.034

Cue discriminates (ref: 0) Positive 316–600 ms 2878.66 <0.001

Negative 1 332–476 ms −1320.00 0.004

Negative 2 548–680 ms −780.01 0.018

Strategy preference (WADD-TTB) Positive 304–472 ms 1131.88 0.008

Strategy preference:cue number Positive 336–480 ms 1158.71 0.010

Negative 336–528 ms −1762.52 <0.001

Strategy preference:cue discriminates Positive 1 404–580 ms 1253.00 0.002

Negative 1 408–500 ms −836.68 0.012

Positive 2 124–224 ms 589.99 0.04

Negative 2 120–192 ms −523.80 0.038

WADD (TTB) – proportion of choices consistent with Weighted Additive strategy. (Take The Best heuristic). The estimate we provide (cluster-level sum of t-values) depends
both on cluster size and cluster strength.

manifested in higher P3 amplitudes. This is consistent with
findings by Nittono et al. (1999) and Gevins and Smith (2000)
who showed that individuals with high working memory span
exhibit larger P3 responses to stimuli in working memory
tasks. Also, the scalp location of this effect suggests that
the observed differences might originate from differences in
working memory capacity. For example, Öztekin et al. (2009)
and Polanía et al. (2012a) showed the involvement of left
frontal and parietal regions in working memory, and Polanía
et al. (2012b) showed that transcranial alternating current brain
stimulation at left frontal and parietal sites improves working
memory functioning. In this perspective, our findings suggest
that the preference for the complex WADD strategy might
originate from the high ability to hold the incoming decision
cues in working memory and combine them into the final
choice.

We also found that the signal amplitude in the P3
window differed for each consecutive cue. At midline frontal
cluster, the signal amplitude increased with each consecutive
cue. This might reflect the effects of increasing cognitive
load, similar to those reported in other EEG studies, where
ERP and time-frequency analyses showed the effects of load
(Onton et al., 2005; Gomarus et al., 2006). At the posterior
cluster, overlapping the parietal electrodes where we located
the P3 component and where it is analyzed in many other
studies, the signal amplitude to consecutive cues decreased,
possibly indexing decreasing orienting response toward the
incoming cues. Also, topographical plots of the voltage in
the P3 time window indicated that with each consecutive
cue, the maximum voltage of this component was located
more frontally. This changing topography of the ERP could
at least partially explain both its decreases at the parietal
electrodes and the increases at the frontal electrodes. These
results together might reflect the interplay between the
executive network vs. salience network changing with increasing
working memory load (e.g., Seeley et al., 2007; Menon and
Uddin, 2010), however, given the lack of source analyses

in our current results, we cannot provide definitive answers
here.

Importantly, strategy preference moderated the effect of
cue number, so that the high preference for WADD was
associated with similar P3 amplitudes to consecutive cues,
whereas preference for TTB was associated with largely different
P3 amplitudes to the consecutive cues, with substantial decreases
from the best cue to the worst. This result suggests that
individuals preferring WADD and TTB strategies differ in the
endogenous attentional weighting of the consecutive decision
cues, with TTB users highly weighting the first cue and weighting
the following cues substantially less, and WADD users weighting
all cues similarly. In this perspective, the P3 component at the
parietal electrodes can be interpreted as indexing endogenous
attentional weighting of decision cues that shapes predecisional
information processing and strategy use in multi-attribute choice.

We also found that strategy preference moderated the effect
of the discriminative value of the cues on the ERPs to the
cues. High preference for WADD was associated with higher P3
to discriminating than to non-discriminating cues. In contrast,
high TTB preference was associated with lower P3 amplitudes
to the discriminating cues than to the non-discriminating cues.
However, we also observed the association between strategy
preference and EEG responses to discriminating vs. non-
discriminating decision cues in the latency range of the N1
component. Particularly, TTB users showed a large N1 to the
discriminating cues while showing a small P3 to these cues. The
N1 is interpreted as an early attentional component, indexing
automatic allocation of sensory attention (Näätänen and Picton,
1987; Vogel and Luck, 2000). Together, these findings might
constitute evidence for the association of the preference for TTB
with an early automatic attention allocation to discriminating
cues, but also relatively low engagement of endogenous attention
processes to these cues.

To our knowledge, this is the first study that shows the
relationship of decision strategy preference in inference-based
multi-attribute choice with characteristics of the EEG signal.

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2017 | Volume 11 | Article 401

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00401 August 16, 2017 Time: 15:58 # 9

Wichary et al. Neural Signatures of Choice Strategies

FIGURE 4 | (A) Temporal and scalp distribution of the main effect of strategy preference on EEG signal amplitude. (B) Topographical plots of the standardized
voltage of the P3 component, averaged across trials and cues, for the groups of TTB users and extreme WADD users. (C) Temporal and scalp distribution of the cue
number and strategy preference interaction effect. (D) Distribution of averaged EEG amplitudes to decision cues for TTB users and extreme WADD users, at the
parietal electrode cluster within the time window 350–450 ms. (E) ERPs to decision cues plotted for the TTB users and extreme WADD users at the parietal cluster.

Earlier studies of strategy use in this paradigm (Venkatraman
et al., 2009a,b; Khader et al., 2011; Gluth et al., 2013)
employed fMRI and thus could not track the fine grained
temporal dynamics of brain activity underlying strategy use.
Here, we show that the individual variability in strategy

use is associated with differences in early processing of the
decision cues prior to making choices, which is indexed by
the amplitudes of the P3 and N1 ERP components. In one
study on strategy use in probabilistic inference that relied on
ERP analysis, Rosburg et al. (2011) showed that P3 amplitude
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FIGURE 5 | (A) Temporal and scalp distribution of the main effect of cue discrimination. Marked in black, white and gray are the spatiotemporal clusters where the
EEG amplitude differed for the discriminating and non-discriminating cue. (B) Temporal and scalp distribution of the interaction effect of discriminative value and
strategy preference. (C) ERPs to the discriminating and non-discriminating cues plotted for TTB users, and extreme WADD users. The time window where the
effects in the P3 range were observed is marked in black.

predicted the use of the simple recognition heuristic. However,
in that study no alternative strategies were analyzed. We
go beyond Rosburg’s et al. (2011) focus on the recognition
heuristic by looking at alternative strategies that represent

two extremes, the normative Weighted Additive rule and the
simple heuristic TTB, and we show that the P3 component can
be associated with strategy use even beyond the recognition
heuristic.
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The P3 component reflects phasic changes in arousal in
response to changes in the environment (Polich, 2014). It
indexes the allocation of attentional resources to relevant stimuli,
with more motivationally significant stimuli eliciting larger P3
amplitudes. Our results are in line with this interpretation. P3
recorded at parietal electrodes, where it is usually detected,
was highest to the most important cues and decreased for
each consecutive cue. Moreover, for participants preferring
the TTB heuristic this decrease was relatively large, whereas
for WADD users the P3 amplitudes to the consecutive cues
were similar. This suggests that the preference for the WADD
vs. TTB strategy can be explained, at least partially, by the
differences in the allocation of attention to decision cues.
Moreover, the preference for WADD strategy was associated,
on average, with higher P3 amplitudes to decision cues. In
line with the attention allocation argument, it suggests that
the preference for WADD is associated with a greater ability
to mobilize attentional resources in response to any cue.
Enhanced attention to stimuli and the associated high P3
amplitudes predict stimuli encoding (Polich, 2014). Together,
these findings suggest that the preference for WADD was caused
by greater attention to all cues and their better representation in
memory.

It has been proposed that P3 is modulated by the activity
of the LC-NE (Nieuwenhuis et al., 2005). Differences in P3
amplitude are thought to be the effect of the modulation
of information processing by LC-NE controlling the gain of
activation in the cortex (e.g., Eldar et al., 2013), which is
supported by the evidence in Murphy et al. (2011, 2014).
Adopting this perspective, we suggest that the preference for
a particular choice strategy is at least partly determined by
the LC-NE gain control mechanism. Our theoretical model of
decision strategy selection (Wichary and Smolen, 2016) assumes
that phasic gain changes in response to decision cues constitute
the mechanism of differential attentional weighting of decision
cues during option evaluation, and thus shape the strategy for
pre-decisional information processing. Norepinephrine might
be one neuromodulator responsible for the observed effects,
however, P3 amplitude was also linked with activity in ventral
striatum (Pogarell et al., 2011; Pfabigan et al., 2014), suggesting
that also dopamine is involved in the modulation of this
component. This is consistent with early views by Servan-
Schreiber et al. (1990) and Arnsten (1998), suggesting similar
effects of dopamine and norepinephrine on attention and
working memory (see also Robbins and Arnsten, 2009). Thus,
a broader interpretation of our results is that the activity of
both catecholamine systems modulates information processing
in the cortex so as to prioritize content in working memory.
In the context of multi-attribute decision making, variation in
this activity leads to choices consistent with different decision
strategies.

Regarding the N1, we showed the association between
strategy preference and EEG responses to discriminating vs. non-
discriminating decision cues. A mechanistic explanation of the
observed effects could take into account that the N1 component
has been linked to mental effort invested in stimulus processing,
indexed by the activation of ACC. Mulert et al. (2008), in an

fMRI-EEG study, showed that N1 amplitude to relevant stimuli
was highly correlated with ACC activation during effortful,
perceptual decision making. In this perspective, the association of
high N1 amplitude to discriminating cues with TTB preference
suggests that individuals preferring this choice strategy invest
cognitive effort into processing such cues very early during the
decision process.

We obtained our results using a more advanced method than
the traditional ERP analysis, which allowed us to precisely localize
the effects in time and on the scalp. It is worth noting that nearly
all effects we detected follow a dipolar pattern suggesting that the
pairs of negative and positive effects were generated by spatially
distinct neural sources. However, since we did not perform source
analysis on the current data, we cannot provide answers about the
actual neural sources of the observed effects. Nevertheless, given
the topographic distribution of the ERPs, we could focus our
analysis on the electrode clusters that encompass the electrodes
usually analyzed in the context of P3 component, and we could
show the differences in the amplitude of this component in
response to decision cues that were related to decision strategy
preference, as identified on the basis of choices.

It is important to note that the strategy preference was
not related to the number of acquired decision cues in our
study. While it may seem surprising at first, and several studies
show an association of strategy preference with information
acquisition (e.g., Rieskamp and Hoffrage, 2008; Wichary et al.,
2016), others (e.g., Newell and Shanks, 2003, see Bröder and
Newell, 2008 for discussion) have shown that participants using
simple heuristic often acquire more information that is required
by the heuristic, even if the information acquisition is costly
(e.g., there is monetary cost of acquiring cues). In our study,
strategy preference was not associated with the number of
acquired cues, therefore the analysis of information acquisition
alone would not allow us to distinguish between participants
preferring WADD or TTB. In contrast, the analysis focused
on choice outcomes coupled with EEG recording, allowed us
to elucidate the fate of the acquired information that is if
it was integrated into the decision process and how it was
processed.

Although we analyzed the effects of behavioral strategy
preference as a continuous predictor, we observed its effects on
a relatively small sample and in a particular (compensatory)
task environment. Therefore, a question remains open whether
such associations will generalize to larger samples with higher
variability in strategy preference (i.e., with more choices
consistent with TTB heuristic) and in tasks with a non-
compensatory information structure. Since the current study
was aimed at finding correlates of individual differences in
spontaneous strategy use in a complex decision making task,
we focused on the compensatory task environment. However,
task information structure is an important source of variability
in strategy use and its impact on EEG correlates should be
addressed in future studies. Also, a question remains whether
these effects generalize to studies with situational factors known
to impact strategy preference, such as time pressure (Rieskamp
and Hoffrage, 2008) or emotional arousal (Wichary et al.,
2016).
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CONCLUSION

Humans use heuristics to overcome the bounds of rationality
(Gigerenzer et al., 1999). Individual variability in decision
strategy use is a central research problems in this area (Ford
et al., 1989; Pachur and Bröder, 2013) and our study helps to
understand the sources of this variability by employing EEG
as a fine grained method to analyze the dynamics of pre-
decisional information processing and choice. It provides initial
evidence that the P3 and N1 ERP components indexing attention
allocation are associated with the use of rational and heuristic
choice strategies and can be further studied as early correlates of
strategy preference.
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