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Proportion representation is an emerging subdomain in numerical cognition. However,
its nature and its correlation with simple number representation remain elusive, especially
at the theoretical level. To fill this gap, we propose a gain-field model of proportion
representation to shed light on the neural and computational basis of proportion
representation. The model is based on two well-supported neuroscientific findings. The
first, gain modulation, is a general mechanism for information integration in the brain;
the second relevant finding is how simple quantity is neurally represented. Based on
these principles, the model accounts for recent relevant proportion representation data
at both behavioral and neural levels. The model further addresses two key computational
problems for the cognitive processing of proportions: invariance and generalization.
Finally, the model provides pointers for future empirical testing.

Keywords: numerical cognition, numerical proportion representation, computational modeling, gain-field model,
invariance and generalization

INTRODUCTION

Numerical processing is an important cognitive capacity across a variety of animal species.
Accordingly, it is a topic of great interest in recent cognitive neuroscience and psychology, studied
with methodologies as diverse as single-cell recording (Nieder and Miller, 2004), neuroimaging
(Piazza et al., 2004), and developmental paradigms (Xu et al., 2005). Many studies focus on simple
(i.e., single-variable) quantity representation, for example the number of objects in a set (Nieder
and Miller, 2003) or the length of a line (Tudusciuc and Nieder, 2007). However, ratios of quantities
(proportions, where two variables are combined) are an important and emerging field of study
(Kallai and Tzelgov, 2009; Ganor-Stern et al., 2011; Holmin and Norman, 2012; Siegler et al.,
2013). One recurring finding here is that the classical distance effect from numerical cognition
(Moyer and Landauer, 1967) is also robustly observed for proportions (Schneider and Siegler,
2010). Another relevant finding is that this distance effect tends to be approximately symmetrical
(Vallentin and Nieder, 2008). However, the mechanistic interpretation of these data has remained
unclear. Computational model can help us integrate these data in a computational framework and
make novel experimental predictions. Unfortunately, there are as yet no computational proposals
on how such ratios are processed. Such a proposal is the content of the current paper.

On a computational level, learning and representing proportions (either non-symbolic or
symbolic) involve two core computational properties. The first is the invariance property
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(Salinas and Abbott, 1997). This means that both humans and
non-human animals can represent abstract length proportions,
and ignore the exact length of two lines. For example, they can
represent the proportion 1:4 for different combinations of line
length (e.g., 1 cm vs. 4 cm and 2 cm vs. 8 cm). Using fMRI
adaptation paradigm with healthy subjects, Jacob and Nieder
(2009) found clear evidence to support this invariance property
of proportion representation. The second is the generalization
property. This means that after learning, both humans and
non-human animals can generalize learned proportions to novel
proportions. In a recent study (Vallentin and Nieder, 2008),
macaques were trained on length proportions between two lines
(1:4, 2:4, 3:4, and 4:4). Remarkably, precision was the same
for the trained proportions (e.g., 1:4, 2:4, 3:4, and 4:4) and
transfer proportions (e.g., 3:8 and 5:8). As noted by the authors
of that study, this suggests that the animals had a conceptual
understanding of abstract proportions.

A series of recent studies (for review, see Jacob et al.,
2012; Siegler et al., 2013) begin to shed light on the neural
basis of proportion representation and these two computational
problems. To investigate the neuronal code of proportions,
Vallentin and Nieder (2008, 2010) recorded electrophysiological
data from cells in the frontal and parietal cortex of behaving
rhesus monkeys in a delayed match-to-sample task, in which
monkeys matched sample and test proportions, defined by
the ratio of the length of two lines. Approximately, 30%
of the prefrontal cortex (PFC) neurons and approximately
16% of inferior parietal cortex neurons encoded one of the
trained proportions. These neurons code magnitude proportion
information with unimodal tuning curves, characterized by a
maximum firing rate for a specific proportion and decreasing
as the distance from this preferred ratio increased. This coding
mechanism, called place code (Verguts and Fias, 2004) or labeled
line code (Nieder and Merten, 2007) is also used for simple
magnitude representation (Nieder and Miller, 2003).

Whereas there are several computational models about
simple quantity representation (Dehaene and Changeux, 1993;
Grossberg and Repin, 2003; Stoianov and Zorzi, 2012), no
attempts have been made to exploring ratios of quantities
(proportions and fractions) computationally. To fill this gap,
here we propose a gain-field model for proportions. This
model is based on two recent neuroscientific findings. The
first is gain modulation, which is a ubiquitous mechanism for
information integration in the mammalian brain (Salinas and
Bentley, 2009). Salinas and colleagues (Salinas and Thier, 2000;
Abbott, 2005) have pointed out that different types of information
can be integrated by multiplicative gain modulation, which is
implemented by radial basis function neurons, at the neural level.
A well-known example is that different spatial representations
are mapped on radial basis function neurons in parietal cortex,
and transformation on the original spatial representations is
implemented by projections from the radial basis function
neurons to different spatial representations. This theory is
supported by much neurophysiological evidence (Pouget and
Snyder, 2000). An example is the transformation from visual
information in eye-centered coordinates to head-centered
coordinates, which is useful for correctly turning the head toward

a seen object. For this spatial transformation, the response
profile of radial basis function neurons in parietal cortex can be
modeled by a product of retinotopic position and eye position
receptive fields (Pouget and Sejnowski, 1997). Modeling studies
have shown that gain modulation can also support many other
cognitive tasks, including: arbitrary sensory-motor remapping
(Salinas, 2004), generation of motor sequences (Salinas, 2009),
serial order representation (Botvinick and Watanabe, 2007),
and elementary arithmetic (Chen and Verguts, 2012). In this
study, we apply this well-motivated and ubiquitous framework
to proportion representation.

The second relevant neuroscientific finding on which our
model is based, is how simple quantity is represented. Recent
studies in non-human animals and humans using diverse
methodologies have provided detailed answers to this problem
(for review, see Nieder and Dehaene, 2009). Representation
of simple quantity is instantiated by a distinct set of place
coding neurons in regions of the prefrontal and posterior lobes,
each tuned maximally to a specific number, with approximately
Gaussian tuning curves when plotted on a logarithmic axis
(Nieder and Miller, 2003). Importantly, neuronal population
coding of continuous quantity (line length) in the primate
posterior parietal cortex uses the same coding mechanism
(Tudusciuc and Nieder, 2007).

In the present study, we integrate these two findings into a
model for proportion representation. In the following, we first
describe the model in detail, then report a series of simulation
studies, and conclude by a General Discussion.

MATERIALS AND METHODS

Network Architecture
The model architecture is shown in Figure 1. Its core is a three-
layer feedforward structure, consisting of 60 input, 900 hidden,
and 8 output neurons.

There are two groups of 30 input neurons, one for the
length of each line (Vallentin and Nieder, 2008). Presentation
of a line to such an input layer results in a logarithmically
compressed Gaussian activation curve (Tudusciuc and Nieder,
2007). In particular, each input neuron is maximally activated
by a preferred length, p, and the activation value of each
input neuron is based on the logarithmic distance between this
preferred length and the actual length, s, according to a Gaussian
function (see Figure 1):

Rp(s) = exp
(
−

(ln s− ln p)2

2σ2

)
(1)

where Rp(s) is the activation of the neuron with preferred
length p for a target length s (Botvinick and Watanabe, 2007).
Note that ln s− ln p = ln(s/p), so even at the simple number
representation level a ratio is calculated, although its calculation
is different from neurons in the hidden layer.

Each neuron in the hidden layer receives input from a unique
combination of one neuron from each of the two layers of
input neurons, so the hidden layer comprises 900 basis function
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FIGURE 1 | Schematic diagram and operation of the gain-field model of proportion representation. The two operands of a proportion problem, the length of two
lines, are mapped onto two length magnitude representation layers. The basis function layer combines these two inputs and sends activation to the proportion
representation layer.

neurons. The activation value of a hidden layer neuron equals the
product of its input neurons’ activation values:

Hj = Rx(s)Ry(s) (2)

where Hj is the activation of the hidden unit receiving input from
two input neurons from the two groups, with preferred length x
and y, respectively.

To simulate the target data from Vallentin and Nieder (2008)
where eight proportions were used, our output layer also has
eight neurons. At this output layer, there is one neuron for each
proportion (1:8, 2:8, 3:8, 4:8, 5:8, 6:8, 7:8, and 8:8). Every output
neuron receives inputs from all hidden neurons as follows:

Oi =
∑
j

wijHj (3)

where wij represents the synaptic connection weight from hidden
neuron j to output neuron i.

Simulation
The weights between the hidden layer and the output layer
are trained such that they minimize the average squared error
between intended and actual responses. These weights are
initially set to random values. Input pairs with corresponding
targets are presented in random order, and after each
training trial the weights are updated by the delta learning
rule:

1wij = α(Ti − Oi)Hj (4)

where α is the learning rate, and Ti is the target value for
output neuron i. We define the target T as a Gaussian function
curve across the output layer (with standard deviation 0.3). One
motivation for this target setting is the fact that the neuronal
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FIGURE 2 | The neural tuning curve properties for proportions 1:4, 2:4, 3:4, and 4:4. Each curve is for neurons tuned to a specific proportion, and the labels on the
X-axis are for specific proportions that are presented. Observed data (A, from Vallentin and Nieder, 2008) and simulated data (B). The normalized tuning functions
are plotted relative to the preferred proportion. Bottom panels show the standard deviation values (Tuning width) for each tuning curve.

population tuning curve can be fitted with a Gaussian function
with standard deviation about 0.3 (reported in Vallentin and
Nieder, 2008; Figure 2A). See a recent study (Weisswange
et al., 2011) for a similar approach in their model of Bayesian
cue integration and causal inference. To mimic the setting of
Vallentin and Nieder (2008), four proportions are trained: 1:4,
2:4, 3:4, and 4:4. Each is specified by three concrete training
examples (different line length combinations) so there are 12
training pairs. The learning rate is 0.01 for all simulations.
The model was tested 10 times, with 20000 training trials
in each replication. The results are averaged across the 10
replications.

We follow the method of Vallentin and Nieder (2008) and fit
the neuronal population tuning curve with a Gaussian function.
For all proportions, the goodness of fit (r2) of the Gaussian
function is determined, and the tuning curves’ standard deviation
value (the half-bandwidth of the fitted Gaussian function) is
derived.

To test the model’s performance for the delayed match-to-
sample task, we transform the neuronal population response
(Figure 2B) into behavioral performance (Figure 3B). The
macaques are trained to perform a delayed match-to-sample task,
in which they matched sample and test proportions, defined
by the ratio of the length of two lines, in order to obtain
reward. For simplicity, here we use an intuitive way to calculate

the probability of responding ‘same’ [for a more elaborate and
complex expression based on Signal Detection Theory and
Bayesian decision, see (Dehaene, 2007); for a more detailed neural
model, see Engel and Wang, 2011]. It is given by

Psame(n1, n2) =
on2(n1)

on1(n1)
(5)

where on2(n1) is the activation of the neuron with preferred
proportion n2 when a proportion n1 and on1(n1) is the activation
of the neuron with preferred proportion n1 when a proportion n1.
Furthermore, we use this equation for calculating the probability
of responding ‘same,’ and evaluate the goodness of fit of a
Gaussian function. The goodness (r2) is determined, and the
standard deviation (the half-bandwidth of the fitted Gaussian
function) is derived. Note that Eq. (5) is just the simplest way to
create a probability Psame(n1, n2) that is a monotonic function of
the distance |n1 − n2| based on the model output; future work
should also consider whether the model can capture trial-to-trial
variability in this task.

RESULTS

After training, our model can produce correct proportion
representation. Representative simulated neural tuning curves
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FIGURE 3 | Behavioral performance for proportions 1:4, 2:4, 3:4, and 4:4. Observed data (A, from Vallentin and Nieder, 2008) and simulated data (B). These curves
show the percentage of trials in which one judged sample and test displays containing the same proportion, and the curves refer to the preferred proportions.
Bottom panels show half bandwidth (Sigma of Gaussian fits) of the Gaussian functions fitted to behavioral performance curves.

are shown in Figure 2B. The goodness of fit of a Gaussian
function is approximately 1. These neurons code proportion
information with unimodal tuning curves, characterized by a
maximum firing rate for a specific proportion independent of
the particular numbers making up the proportion (invariance
property). This is consistent with single-cell data (Figure 2A,
Vallentin and Nieder, 2008). The simulated tuning curves’
standard deviation (tuning width) is about 0.3. The tuning width
changes with different ratios, although this effect is subtle (as in
the empirical data). One departure from observed data is that
in the simulation there is no clearly narrower tuning for 1:4
than for the other proportions. Also the simulated behavioral
performance is comparable to macaques’ performance (compare
Figures 3A and 3B, the mean goodness of fit of a Gaussian
function is again approximately 1). Furthermore, our model
clearly shows a distance effect (see Figure 3B). For example, the
percentage of trials in which 2:4 is judged the same as sample 3:4
is higher than the percentage of trials in which 1:4 is judged the
same as sample 3:4.

To check whether our model can generalize from learned
to novel proportions, we test our model on 3:8 and 5:8. Like
macaques (Figure 4A), our model can respond appropriately to
3:8 and 5:8, as shown in Figure 4B (mean r2

= 0.99). Thus,
our model is able to generalize based on its basis function layer
and place coding representation. These two properties entail that
similar representations are trained similarly, so training target
proportions (e.g., 1:4, 2:4, 3:4, and 4:4) implicitly also trains
similar proportions (e.g., 3:8 and 5:8).

DISCUSSION

Based on two well-evidenced neuroscientific findings (gain
modulation coding and neural coding of simple number),
we proposed a novel model to account for recent findings of
proportion representation. The model also provides a minimal
computational framework to solve two key computational
problems for proportion representation: invariance and
generalization. Our model is of the connectionist variety. The
connectionist approach is to model cognition based on the idea
that the knowledge underlying cognitive activity is stored in
the connections (weights) among neurons (McClelland et al.,
2010). In particular, we used the basis function framework,
in which input-to-hidden connections are fixed, and hidden
units respond to a restricted part of the two input spaces. This
allows constructing a powerful model, in combination with a
simple (hidden-to-output, delta) learning rule. We have used this
computational framework in earlier work to model elementary
arithmetic (Chen and Verguts, 2012), where two numerical
representations are combined together. The current study can
thus be considered an extension of our previous work (Chen
and Verguts, 2012). The study is consistent with our general
approach to instantiate core computational principles as simply
as possible, thus to investigate which principles are sufficient to
account for numerical cognition.

One possible departure from neurobiology is that the hidden
layer was much bigger than the input layers. However, this
simplification is well-motivated. First, the current input layer
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FIGURE 4 | Behavioral performance for proportions 3:8 and 5:8. Observed data (A, from Vallentin and Nieder, 2008) and simulated data (B). These curves show the
percentage of trials in which one judged sample and test displays containing the same proportion. Bottom panels show half bandwidth of the Gaussian functions
fitted to behavioral performance curves.

only represents a simplified approximation to the actual input.
Second, in reality the hidden layer probably approximates the
required input-output function with a less extensive set of
basis function (Botvinick and Watanabe, 2007). We performed
additional simulations with less basis functions. This led to very
similar results.

The model can help addressing two core questions about
proportion representation. The first is how the analog code
for proportions is constructed (Jacob et al., 2012). According
to our model, individual components of a proportion (for
example, the length of two lines) are mapped onto two
length magnitude representation layers. The basis function layer
combines these two inputs and sends activation to the proportion
representation layer. In this sense, proportions are represented
at the apex of the processing hierarchy; different neurons
encode either simple magnitude or proportions separately,
and these two kinds of neurons are linked by basis function
neurons. Both simple magnitude and proportion neurons have
been found in the same cortical regions [e.g., bilaterally in
the intraparietal sulcus (IPS) and lateral PFC (Vallentin and
Nieder, 2008, 2010)]. The model predicts that these basis
function neurons for proportion representations can also be
found in the same cortical regions. Such basis function
neurons would be maximally tuned to a specific combination
of line lengths, with approximately two-dimension Gaussian
tuning curves when plotted on a logarithmic axis (see Basis

function layer in Figure 1). Furthermore, the model also
predicts that there are both invariant and variant proportion
cells. On the one hand, in the proportion representation
layer, cells respond to any pair with one specific proportion
(e.g., 1:2). On the other hand, in the basis function layer,
cells only respond to specific pairs (e.g., 2 cm: 4 cm, only
for a particular combination of line length). In their data
analysis, Vallentin and Nieder (2008) only included invariant
cells. However, there is some suggestion that variant neurons
occur in the data. Indeed a substantial number of neurons
(16%) show a proportion × protocol interaction (Vallentin and
Nieder, 2008), suggesting that they selectively respond to some
quantitative combinations (e.g., 1:2 with quantities 1 and 2)
but not others (e.g., 1:2 with quantities 2 and 4). A followup
investigation or reanalysis of the data from (Vallentin and
Nieder, 2008) may reveal whether such variant cells (basis
function neurons) indeed exist and whether (as we predict)
the variant cells are activated slightly earlier than the invariant
ones.

The second core question concerns the componential vs.
analog (holistic) representation of proportions. Single-cell
recording from macaques (Vallentin and Nieder, 2008, 2010) and
neuroimaging studies with human adults using the adaptation
paradigm (Jacob and Nieder, 2009) strongly favor holistic
(place coding) representations of proportion. In contrast, a lot
of behavioral studies with human participants and symbolic

Frontiers in Human Neuroscience | www.frontiersin.org 6 August 2017 | Volume 11 | Article 412

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00412 August 10, 2017 Time: 16:8 # 7

Chen and Verguts A Gain-Field Model of Proportion Representation

proportions (i.e., fraction) clearly support componential
representation (Meert et al., 2010). Our model provides a unified
explanation for both componential and holistic representation of
proportion: the simple magnitude representations (Figure 1) can
be considered as the neural base for componential representation,
and place coding of proportion representation in the output layer
as neural base for holistic representation. In this sense, our model
implies that componential and holistic representations occur
simultaneously.

Until now, we applied our computational model to
continuous proportions. However, the same computational
model principle and structure can be applied to discrete
ratios (e.g., ratio of two vs. five balls). In our opinion, the
difference between continuous and discrete ratio architectures
resides in the input (to the model). For continuous ratios, the
input layer represents continuous quantities (e.g., length); for
discrete ratios, the input layer represents discrete quantities
(number of balls in the example). Furthermore, our model
can be generalized to explain symbolic proportions (fractions).
Again, the concept of fractions encounters the same key
computational problems of invariance and generalization, and
can be addressed by a similar model with different input layers.
This can partly explain why it is more difficult to deal with
fractions than natural numbers for children (Siegler et al.,
2011, 2013). To correctly name and deal with fractions, the
numerator and denominator need to be combined (Jacob et al.,
2012).

Our model resembles exemplar models of categorization
(Kruschke, 1992; Love et al., 2004) and visual object recognition
(Riesenhuber and Poggio, 1999, 2000). In particular, the hidden
layer combines and integrate different pieces of information in
a non-linear manner and sends activation to the output layer

(e.g., category or object representation layer). This similarity
is no coincidence because categorization and visual object
recognition encounter very similar challenges of invariance and
generalization, both of which are very well-handled by the basis
function model architecture.

CONCLUSION

We propose that a gain-field model accounts for extant data
concerned with proportion representation. This theory has
several advantages: it is computationally implemented, its neural
underpinnings are beginning to be known (Jacob et al., 2012), and
it provides some testable predictions.
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