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Functional brain connectivity networks exhibit “small-world” characteristics and some

of these networks follow a “rich-club” organization, whereby a few nodes of high

connectivity (hubs) tend to connect more densely among themselves than to nodes

of lower connectivity. The Current study followed an “attack strategy” to compare the

rich-club and small-world network organization models using Magnetoencephalographic

(MEG) recordings from mild traumatic brain injury (mTBI) patients and neurologically

healthy controls to identify the topology that describes the underlying intrinsic brain

network organization. We hypothesized that the reduction in global efficiency caused

by an attack targeting a model’s hubs would reveal the “true” underlying topological

organization. Connectivity networks were estimated using mutual information as

the basis for cross-frequency coupling. Our results revealed a prominent rich-club

network organization for both groups. In particular, mTBI patients demonstrated hyper-

synchronization among rich-club hubs compared to controls in the δ band and the

δ-γ1, θ-γ1, and β-γ2 frequency pairs. Moreover, rich-club hubs in mTBI patients

were overrepresented in right frontal brain areas, from θ to γ1 frequencies, and

underrepresented in left occipital regions in the δ-β, δ-γ1, θ-β, and β-γ2 frequency pairs.

These findings indicate that the rich-club organization of resting-state MEG, considering

its role in information integration and its vulnerability to various disorders like mTBI, may

have a significant predictive value in the development of reliable biomarkers to help the

validation of the recovery frommTBI. Furthermore, the proposed approachmight be used

as a validation tool to assess patient recovery.

Keywords: magnetoencephalography (MEG), mild traumatic brain injury, network resilience, cross-frequency

coupling, intrinsic networks
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INTRODUCTION

Mild traumatic brain injury (mTBI) is a significant cause
of brain insult (Len and Neary, 2011; Huang et al., 2014)
representing close to 90% of all brain injuries (Len and
Neary, 2011). Approximately 5–20% of the irremediable patients
(Bharath et al., 2015) still suffer from post-concussion symptoms
several months after the initial injury (Huang et al., 2014).
These symptoms are often characterized by physical, emotional,
cognitive, and sleep disturbances and may take many months
to return to the baseline (Huang et al., 2014). Several
neuropsychological studies have reported reduced cognitive
efficiency, especially in tests measuring executive function,
processing speed, attention, connectivity, and memory in mTBI
patients with persistent symptoms (Huang et al., 2014; Pang et al.,
2016). Management of mTBI is crucial due to its deleterious
effects on certain brain functions, including attention (De Monte
et al., 2006), working memory (Vanderploeg et al., 2005), and
verbal learning (De Monte et al., 2006).

The human brain can be viewed as a neurophysiological
network of brain areas that are structurally and functionally
interconnected. These distinct networks are temporally and
spatially distributed and exist in a range of spatiotemporal
scales. Spatially, they extend from microscopic networks of
single neurons and local synaptic interactions to large-scale brain
networks interconnected via long white-matter tracts (Eierud
et al., 2014). The time domain scales vary from milliseconds
to seconds (Dimitriadis et al., 2013a, 2015a; Hansen et al.,
2015; Betzel et al., 2016). Considering that interactions among
large-scale networks are significant for high-level cognitive
functions, most recent functional connectivity (FC) studies of
mTBI focus on large-scale intrinsic connectivity networks (ICNs)
aiming at identifying the changes they undergo as a result
of injury. FC is reflected in the neurophysiological activity
of neural populations that mediate cortical communication
and information integration (Wang, 2010). Clinically, FC has
been shown useful in the study of several neurological and
neuropsychiatric disorders and their symptoms (Tewarie et al.,
2013, for a review see Eierud et al., 2014).

During the past several years, numerous studies, including
ours, have attempted to develop reliable biomarkers of mTBI
based on resting state MEG. While other imaging modalities
measure brain activation indirectly, such as functional Magnetic
Resonance Imaging (fMRI) which relies on hemodynamic events,
MEG measures neuronal activity directly. MEG possesses most
of the highly desired neuroimaging properties, including high
sensitivity and efficient handling of environmental noise, and
combines very good spatial details with excellent temporal
resolution (Dimitriadis et al., 2013b; Antonakakis et al., 2015,
2016). Numerous analysis techniques applied to EEG and
MEG recordings have clearly demonstrated altered functional
connectivity in TBI that is closely correlated with disease
severity (Castellanos et al., 2010). Zouridakis et al. (2012) using
Granger causality showed that mTBI patients exhibited a sparsely
distributed network of long-range connections compared to
controls during the first few weeks after mTBI. Tarapore et al.
(2013) found that resting state MEG could detect abnormal

connectivity in TBI, while Da Costa et al. (2015) suggested that
MEG could detect subtle neural changes associated with cognitive
dysfunction in mTBI. Huang et al. (2014) uncovered anatomical
and functional correlations between abnormal slow waves and
mild axonal injury. Dunkley et al. (2015) found increased
connectivity in mTBI that was limited to slow wave amplitude
coupling. Dimitriadis et al. (2015b) used phase-locking value
estimates to quantify intra-frequency couplings and showed
that this pattern was mostly seen in the delta band, whereas
Antonakakis et al. (2015, 2016), in a follow-up analysis based on
inter-frequency couplings, showed that controls formed a dense
network of stronger local and global connections in agreement
with other studies (Rapp et al., 2015).

Among the various procedures to estimate FC networks,
also known as FC graphs (FCG), intra-frequency measures,
such as mutual information (MI) (Bullmore and Bassett, 2011;
Tsiaras et al., 2011), and inter-frequency measures, such as
cross-frequency coupling (CFC) (Antonakakis et al., 2015, 2016;
Dimitriadis et al., 2015c; Florin and Baillet, 2015), are of special
interest in the topological analysis of FCGs.

Several brain connectivity studies using fMRI and electro-
(EEG) and magneto- (MEG) encephalography have suggested
that FCGs exhibit properties of a “small world” (SW) network
organization (or simple organization) (Micheloyannis et al., 2006;
Palva and Palva, 2011; Dimitriadis et al., 2015a; Vértes and
Bullmore, 2015). SW is a special type of mathematical graph in
which the majority of the nodes are not direct neighbors; yet,
most nodes can be reached from any other node within a small
number of steps. Thus, SW networks are simultaneously highly
clustered and highly efficient. In particular, when considered
as nodes that are connected to each other, SW networks are
likely to have many first degree neighbors in common, and the
average path length between a pair of nodes is short (Vértes and
Bullmore, 2015).

An additional property often seen in SW organization is
the formation of certain nodes (termed “hubs”) that are more
densely connected to each other than the rest of the nodes
(Van den Heuvel and Sporns, 2011). Hubs with the highest
interconnectivity values follow what is known as “rich club”
(RC) organization and appear to be the most relevant nodes
in a network in terms of global information processing (Van
den Heuvel and Sporns, 2011; Van den Heuvel et al., 2013;
Schroeter et al., 2015; Vértes and Bullmore, 2015). Thus, the
RC organization can be seen as a variation of the SW network
organization, with different topological properties (Mišić et al.,
2014) featuring disproportionately dense interconnections (Van
den Heuvel and Sporns, 2011; Bullmore and Sporns, 2012; Mišić
et al., 2014). These hubs support more traffic than the ordinary
SW nodes (Mišić et al., 2014), and effectively define the top-
level structure of a network, its hierarchical ordering, and node
specialization (Van den Heuvel and Sporns, 2011).

Typically, the largest amount of information flow between
pairs of nodes in human brain networks passes through RC
and SW hubs (Palva and Palva, 2011; Van den Heuvel and
Sporns, 2011; Vértes and Bullmore, 2015). As a consequence,
the SW organization has been studied in several brain disorders,
including schizophrenia (Micheloyannis et al., 2006), Alzheimer’s
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disease (Stam et al., 2007), autism (Rubinov and Sporns, 2010;
Tsiaras et al., 2011), and epilepsy (Bharath et al., 2016). The
RC networks have been explored in brain ischemia (Van den
Heuvel et al., 2013; Watanabe and Rees, 2015; Crossley et al.,
2016), in healthy subjects using diffusion tensor imaging
MRI (Van den Heuvel and Sporns, 2011) and recently in
studies of brain activation (Van den Heuvel and Sporns, 2011;
Bullmore and Sporns, 2012; Mišić et al., 2014; Antonakakis et al.,
2015) whereby RC hubs were shown to play a pivotal role in
information integration.

Given our previous use of connectivity analysis to study
mTBI using Granger causality (Zouridakis et al., 2012), phase
synchronization (Dimitriadis et al., 2015b), and cross-frequency
coupling (Antonakakis et al., 2015, 2016) of spontaneous MEG,
as well as brain activation patterns of both EEG and MEG at the
sensor (Li et al., 2015) and source (Zouridakis et al., 2016; Li et al.,
2017) levels, an obvious question is whether the possible presence
of an RC organization could provide some complementary
features to the SW organization that is typically seen in mTBI
FCGs. Thus, in the present study, we hypothesize that exploring
brain connectivity network models derived from spontaneous
MEG activity using estimators for both intra and cross-frequency
couplings (Buzsáki and Watson, 2012) would help identify
meaningful network topological features in compromised mTBI
brain networks that could be used as guideline biomarkers
for validating the recovery from mTBI (Bharath et al., 2015).
For a better understanding of network topologies linked to
mTBI, we followed an attack strategy to reveal the key network
model, either small-world or rich-club, that best describes mTBI
functional brain networks. Our network analysis was based on
intra- inter-frequency, and integrated functional brain networks
to cover the different aspects of the multiplexity of brain rhythms
via brain connectivity.

The SW and RC organizations, however, are not mutually
exclusive, considering that an RC network may also present SW
characteristics in a subnetwork (Bullmore and Sporns, 2012).
In particular, subareas of an RC network can simultaneously
be part of a SW network featuring SW behavior. Thus, to
identify the network organization that explains best the network
topology of intra-frequency and inter-frequency FCGs, for both
normal controls and mTBI patients, we implemented an “attack
strategy” (Van den Heuvel and Sporns, 2011; Antonakakis et al.,
2015) on SW and RC nodes to reveal their relative importance
in information transfer and neural communication within the
entire brain network. The present study is an extension of our
recent short report (Antonakakis et al., 2015) which compared
the RC and SW organizations only in the δ-β cross-frequency
pair and found that resting state MEG FCGs followed a rich-club
organization.

MATERIALS AND METHODS

Participants and Recording Procedure
Thirty right-handed individuals (29.33 ± 9.2 years of age) with
mTBI (Levin, 2009; Dimitriadis et al., 2015b) and fifty age-
and gender-matched neurologically intact controls (29.25 ± 9.1
years of age) were analyzed. The appropriate review boards at
participating institutions approved all procedures and all subjects

provided informed consent and they had agreed verbally and
writtenly. This work was approved by the Institutional Review
Boards (IRBs) and the Human Research Protections Official’s
(HRPO) Review of Research and Protocols for the Department
of Defense. All procedures were compliant with the Health
Insurance Portability and Accountability Act (HIPAA). A subject
was identified as mTBI based on clinical evaluation and head
injury occurring within 24 h. Furthermore, exclusion criteria
included existence of previous disease, high blood alcohol level,
and score on the Abbreviated Injury Scale and other parameters
that are described in Section 8 of the Supplementary Material.

Approximately 3–5 minutes of eyes-closed, resting-state MEG
activity was recorded from each subject, using a 248-channel
Magnes WH3600 system (4D Neuroimaging Inc., San Diego,
CA). Data were collected at a sampling rate of 1,017.25 Hz. Axial
gradiometer recordings were transformed to planar gradiometer
field approximations using the “sincos” method of Fieldtrip
(Oostenveld et al., 2011). The raw MEG data were preprocessed
by means of ICA (see Section 1 of Supplementary Material).

ELEMENTS OF GRAPH THEORY

Types of Functional Connectivity
Graphs—FCG
To investigate different types of networks, artifact-free
multidimensional arrays of time series X were filtered in
several frequency bands (f), namely δ (0.5–4 Hz), θ (4–8 Hz),
α (8–15 Hz), β (15–30 Hz), γ1(30–45 Hz), and γ2(45–80 Hz),
creating a single multidimensional array Xf for each subject.

We also explored intra-frequency connectivity graphs
(undirected IFCGs), cross-frequency connectivity graphs
(directed CFCGs), and a combination of both IFCGs and CFCGs,
which we called intra-cross-frequency connectivity graphs
(ICFCG). The IFCG were constructed using Mutual Information
(MI), a nonlinear metric that can reveal synchronization between
time series from different sensors in a particular frequency band.
Therefore, MI uncovers the interdependence among the MEG
sensors and simultaneously expresses the intra-frequency
content between two time series within a brain rhythm. In
addition, we explored CFCGs using cross-frequency interactions
and phase-to-amplitude couplings (PACs), whereby the phase
of a low-frequency rhythm could modulate the amplitude
of a higher-frequency oscillation (Antonakakis et al., 2016).
Cross-frequency coupling (CFC) is thought to represent a basic
mechanism of functional integration of neural networks across
distant brain regions (i.e., the inter-frequency content of brain
rhythms). Moreover, the ICFCG, the new type of FCG, was
designed to quantify the maximum interaction between the
two types of FCG and was constructed by the most dominant
connections (either IFCG or CFCG) among the frequency pairs
and frequency bands for each pair of MEG sensors.

Intra-Frequency Connectivity
Graphs—IFCG
IFCG were constructed based on mutual Information (MI),
which measures the interdependence of two time series Xf ,i and
Xf ,j, with i,j = 1 ... 248, that are part of the multidimensional
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array Xf. MI stems from information theory and offers several
advantages compared to othermeasures, such as sensitivity to any
type of dependence between the time series, including nonlinear
relations and generalized synchronization, robustness to outliers,
and measurement in information bits. The mathematical
definition of MI between two artifact-free sensor datasets Xf,i and
Xf,j, filtered in the specific frequency bands fi and fj, is given by

IFCGf

(

i, j
)

= I
(

Xf ,i;Xf ,j

)

=
∑

y∈Y

∑

z∈Z

p
(

z, y
)

log

(

p
(

z, y
)

pz (z) py
(

y
)

)

(1)
whereZ=Xf ,i,Y =Xf ,j, p(z,y) is the joint probability distribution
function of Z and Y, respectively, and pz (z) =

∑

y∈Y p(z, y)

and [py
(

y
)

=
∑

z∈Z p(z, y)] are the marginal probability
distribution functions of Z and Y, respectively (Tsiaras et al.,
2011; Antonakakis et al., 2015, 2016).

Cross-Frequency Connectivity
Graph—CFCG
In the case of CFCG with fc = (δ, θ), ..., (γ1, γ2), we explored
cross-frequency interactions using PAC, whereby the phase of a
low-frequency (fl) rhythm modulated the amplitude of a higher-
frequency (fh) oscillation (Tsiaras et al., 2011; Antonakakis et al.,
2015, 2016). Furthermore, for each pair of time series stremming
from sensors {i,j}, we estimated intra- and inter-frequency
coupling using MI. Based on surrogate data analysis and on
false discovery rate (FDR) correction to account for multiple
comparisons (Benjamini and Hochberg, 1995), we assigned one
dominant type of interaction for each pair of sensors (Dimitriadis
et al., 2016). The mathematical aspects of PAC estimation, the
surrogate data analysis that we followed for estimating intra- and
inter-frequency couplings, and the estimation of the dominant
type of coupling are described in Section 2 of Supplementary
Material.

Intra-Cross-Frequency Connectivity
Graphs—ICFCG
Beyond the above FCGs, an additional FCG type was estimated
to quantify combined intra- and inter-frequency couplings. The
ICFCGs were estimated by combining all frequency pairs (15
frequency pairs) and frequencies (6 frequencies) for each pair of
sensors. The mathematical definition of this type of FCG is given
by the following equation,

ICFCG
(

i, j
)

= max
fc = (δ, θ) , . . . , (γ1, γ2)

f = (δ, . . . , γ1)

{

IFCGf

(

i, j
)

,CFCGfc

(

i, j
)

}

∀

i, j = 1, . . . , 248 (2)

The detailed description of how ICFCGs were defined is given
in Section 3 of Supplementary Material. Briefly, we employed
surrogate data analysis to identify significant intra- and cross-
frequency interactions that were estimated for all predefined
frequency bands and frequency pairs, within and between all 248
MEG sensors.

Topological Filtering of FCG
After applying surrogate analysis to IFCGs, CFCGs, and ICFCGs
to extract the significant connections, we employed a data-driven
topological filtering approach to uncover the connections that
optimized the global information flow constrained to the cost
of the selected connections (see Section 4 of Supplementary
Material).

Classification of Functional Connectivity
Patterns
To evaluate whether the ICFCG defined a characteristic graph
for each of the two groups, we examined the prediction power
of these graph structures and developed a classification scheme
similar to our previous studies (Antonakakis et al., 2015, 2016;
Dimitriadis et al., 2015b). Specifically, classification of ICFCGs
from individual subjects started by performing tensor space
analysis (TSA)1 (Dimitriadis et al., 2015b), which was followed
by comparison with FCGs of known labels. We adopted three
different classification schemes, namely TSA with k nearest
neighbor (kNN) classification (TSA+kNN), TSA with ensemble
classification (TSA+ENS), and TSA with extreme learning
machine (ELM) classification (TSA+ELM). In particular, the
number of neighbors, k, was selected based on the best accuracy
obtained by iterating the TSA+kNN classification scheme with
k varying from 5 to 20. To compare the performance of the
ICFCGs, we also created a multilayer graph that included IFCGs
and CFCGs and evaluated the same classification schemes. The
description of these schemes and their performance evaluation
is given in Section 5 of the Supplementary Material. Finally,
the edges of each FCG were filtered out to reduce the total
number of connection. The approach is described in Section 4
of Supplementary Material.

Validating Brain Models via Network
Attacks
Small World and Rich Club Organizations
We estimated SW network organization based on weighed
versions of global efficiency (GE) and local efficiency (LE)
(Latora and Marchiori, 2001) for each type of FCG, directed or
undirected (IFCG, CFCG, and ICFCG). In addition to SW, the
RC organization was computed based on the distribution of the
node degree and the weights of every type of FCG (Antonakakis
et al., 2015) (see Section 6 of Supplementary Material).

Network Attacks
The attack strategy focused on SW or RC nodes to reveal their
importance in information transfer in the whole network. RC
subnetworks as part of an overall network have a strong positive
impact on the GE of the whole structure (Van den Heuvel and
Sporns, 2011). Thus, the role of a node, or a set of nodes, in terms
of network GE could be evaluated by examining the “damage”
inflicted on that node by an attack, simulated as a decrease in
the weights of its connections (Van den Heuvel and Sporns,
2011; Antonakakis et al., 2015). In particular, two forms of attack

1http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 416

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Antonakakis et al. Altered Rich-Club and Frequency-Dependent Subnetwork in mTBI

were distinguished: “targeted attack” and “random attack” to hub
connections.

In the targeted attack, a set of connections (either 50 or 100%)
within interconnected RC (target RC or TRC) or SW (target SW
or TSW) nodes were randomly selected and attacked at two levels
of severity, inflicting 50 or 100% damage, respectively, to the
weights of all connections. In the random attack, we restricted
the damage to the subset of the connections between hub RC
(hubs, random RC or HRRC) or hub SW (hubs, random SW
or HRSW) nodes and the rest of the network. Similar to the
target attack, damage was inflicted by reducing the weights of
the connections of the selected random set (50 and 100%) by
50 or 100%. For each attack strategy, we randomly selected 50
and 100% of each type of connection and then their weights
were damaged by 50 and 100%. Each condition (2 levels of
randomly selected subsets of connections × 2 levels of damage
of weight connections = 4) was repeated 1,000 times for the
RC and SW models. Then, the two topologies were compared
assuming that the smallest reduction in global %GE was the
best fit for the “real” underlying brain network. In particular,
we estimated the effect of a reduction in %GE of the network
following a targeted attack on SW or RC connections against
the effect of a random attack to hub connections. To reduce
the bias due to the different number of nodes in the two
architectures, we selected a subset of RC nodes equal to the
number of SW nodes for all four possible attack cases. Then, to
build meaningful statistics, we considered 100 different subsets
of RC nodes. Finally, we averaged the %GE across all subsets of
RC nodes from the 1,000 iterations and across the 100 distinct
subsets and tested for statistical differences using the statistical
analysis described below that was also used in our published
studies (Dimitriadis et al., 2013b, 2015c; Antonakakis et al., 2015,
2016).

Exploration of Difference through Statistical Analysis
Statistical analysis was performed in all comparisons between
the two network organizations and between the two groups. The
statistical methods used included testing for normality as well
as parametric and non-parametric pair-wise tests (Antonakakis
et al., 2016). The threshold for significance of the p-value was
set to 95%. After FDR adjustment (Benjamini and Hochberg,
1995) the new p’ values where given by p’ = p/number of
cases, where cases was either the number of frequencies for
the IFCG or the number of frequency pairs for the IFCG.
Figure 1 summarizes the three main steps of the proposed
procedure necessary to obtain the FCGs and their topological
parameters.

Group Differences in Hub Distribution in RC and SW

Brain Network Models
We explored group differences in terms of probability
distribution of RC or SW hubs in different brain areas and
all intra- and cross-frequency cases using the Wilcoxon rank-
sum test of discrete probability (DP) to compare the two groups
(p < 0.01, Bonferroni corrected p’ = p/10, where 10 is the
number of brain areas).

Group Spatial Distribution for Network Organization
In an attempt to represent the spatial distribution of RC
and SW hubs over each group consistently, we integrated
their representation over different brain areas (frontal, central,
temporal, parietal, and occipital) in both hemispheres. In
particular, we measured the discrete probability (DP) separately
for RC and SW hubs across brain regions and independently for
each subject, as the ratio of the number of SW or RC nodes in
a specific brain area to the total number of SW or RC nodes
detected for that subject. The value of DP ranged from 0 to 1 and
the summation of all sub-probabilities for each subject was one.
RC or SWhubs were kept as 1s in a 1D vector Hub {1, 248}, where
the 248 positions were equal to the number of MEG sensors,

DPfor each subject =

∑sensorslobe

k =1 SW or RC Hub
∑sensors

k =1 SW or RC Hub
. (3)

Estimation of the Level of Synchronization within the

RC Subnetwork
The level of synchronization within an RC subnetwork was
estimated using the strength ratio (SR), which was defined as the
ratio of the strength of the within-interconnected RC nodes to
the strength of the sub-network composed of links between RC
nodes and the rest of the network.Mathematically SR was defined
as follows,

SR =

∑sensorsHubs

k =1

∑sensorsHubs

k =1 SW or RC Hubs
∑sensors

k =1

∑sensors
k =1 SW or RC Hubs

. (4)

RESULTS

Classification Performance of the ICFCG
Table 1 summarizes the classification performance of ICFCGs in
terms of accuracy, sensitivity, and specificity. The control subjects
were assigned positive labels and themTBI patients negative ones.
The TSA+kNN combination showed classification accuracy
>90%, while the TSA+ENS and TSA+ELM combinations
showed similar but somewhat lower performances. In particular,
the highest sensitivity (∼95%), specificity (∼85%), and overall
accuracy (∼92%) were obtained with the kNN algorithm,
whereas the other classification schemes showed ∼89%
sensitivity and ∼81% specificity, respectively. For the kNN
results, the best number of neighbors was k = 5, based on the
mean accuracy obtained for k= 5–20. For comparison purposes,
the alternative classification scheme using the multi-layer graph
showed lower classification accuracy (89.5%), as shown in
Table S1.

Group Spatial Distribution for Network
Organization
The average discrete probability (DP) distributions obtained are
depicted in Figure 2 for both FCG types (IFCG or CFCG), groups
(Control or mTBI), and network organization (SW or RC).
Statistical analysis was performed for each network organization
and type of FCG to reveal differences between the two groups.

In the IFCG-SW distribution of controls (Figure 2A, upper
part), most of the SW nodes were located in frontal and central
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FIGURE 1 | A brief outline of the proposed analysis procedure.

TABLE 1 | Summary of ICFCGs classification performance based on 10-fold

cross-validation of TSA for feature selection and kNN, ENS, ELM for classification.

Classification scheme Accuracy (%) Sensitivity (%) Specificity (%)

TSA+kNN 91.5 ± 2.2 95.4 ± 3 85 ± 2.4

TSA+ENS 84.5 ± 3.64 89.64 ± 3.58 82.95 ± 4.76

TSA+ELM 83.69 ± 3.84 88.45 ± 4.58 80.99 ± 4.66

areas for all frequency bands and in right temporal region
for the γ1 and γ2 bands. Apart from a higher probability
seen in the δ band, the rest of the bands, θ to γ2, showed
low probabilities, indicating that the SW organization involved
a small number of nodes. In the mTBI group, the IFCG-
SW distribution included the left frontal, right temporal, and
central brain regions which showed the highest probabilities
in all bands, from α to γ1(Figure 2A, upper part). Significant
differences between the two groups based on the SW topology
were observed in most of areas expect temporal areas in δ

frequency band (Figure 2A, upper part). The IFCG-RC topology
showed hubsmostly in temporal areas bilaterally for all frequency
bands (Figure 2A, lower part) in both groups. The IFCG-RC
distribution showed significant differences in the left temporal,
left parietal, and right frontal regions in the δ band and the θ to
γ1 frequencies, respectively (Figure 2A, lower part).

On the other hand, the CFCG-SW organization revealed a
tendency for cross-frequency differences (Figure 2B, upper part)
with higher probabilities over central areas in all frequency
pairs but without any statistically significant differences between
the two groups. When comparing the CFCG-SW organization
(Figure 2B, upper part) with its intra-frequency counterpart
(Figure 2A, upper part), the observed tendency seemed to be
due to the obvious differences in central areas among different

bands observed in the IFCG-SW distributions for both groups
(Figure 2A, upper part).

Finally, we compared RC distribution within and between
frequency bands. The CFCG-RC distributionmostly followed the
distribution structure of the IFCG-RC with the highest values
mainly in the temporal areas. Finally, the statistically significant
group-differences based on CFCG-RC were mostly located in
left occipital regions for all frequency pairs except for the θ-γ1
frequency couple; which was localized in the left temporal areas
for δ-γ1 and θ-γ1 and in the left parietal areas for θ-β (Figure 2B,
lower part).

Differences on Network Properties
In addition to the average distributions, the average number
of the RC nodes was significantly higher than the SW nodes
(Figure 3), indicating a stronger DP for the RC organization, for
each type of FCG. Following the statistical analysis presented in
the main text and elsewhere (Antonakakis et al., 2015, 2016), we
investigated whether, and under what conditions, the number of
SW and RC nodes were significantly different. Figure 3 illustrates
the average number of nodes for both network organizations
and all types of FCGs, groups, frequency bands, and frequency
pairs. Most cases showed a significantly higher number of RC
nodes than SW. Moreover, a significantly higher number of SW
nodes existed for the control group in most frequency bands, but
the number of RC nodes for controls was only higher in the δ

band for IFCGs (Figure 3A). In all other cases, the number of
both SW and RC nodes was significantly higher in the mTBI
group compared to the control group. For CFCGs (Figure 3B),
statistical differences were observed between the number of SW
and RC nodes in the mTBI group for frequency pairs (δ, β), (δ,
γ1), (θ, β), and (θ, γ1), but in the case of controls, significant
differences were observed in all frequency pairs. However, the
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FIGURE 2 | Average distribution of SW and RC nodes on the head surface for control and mTBI subjects showing (A) intra-frequency (MI-IFCG) and (B)

inter-frequency (CFC-CFCG) connections for each FCG type. In (B) only the top five cross-frequency pairs with the highest classification accuracy are shown. The

colorbar is common type of FCG and network organization represents discrete probability (DP).

number of RC nodes was significantly higher in the control group
compared to mTBI. Finally, in the case of ICFCGs (Figure 3C),
the number of hubs in both network organizations was different
between and within the two groups, with the number of RC
nodes and their differences across groups being higher than the
corresponding SW values.

The bar graphs in Figure 4 show the average degree and
strength values of RC/SW subnetworks in two connectivity
configurations: (a) connections of RC/SW hubs to the rest of the

network nodes and (b) connections within the RC/SW structure.
The above analysis was performed for every FCG type and
every frequency band or pair of frequency bands. In the case
of IFCGs (Figure 4A), both the degree and strength of RC were
significantly higher than the corresponding SW values in both
groups, in all bands, and all types of network (RC/SW). In
addition, both network properties were higher in the control
group compared to the mTBI group in both types of network
(RC/SW). In particular, the mean value of degree and strength
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FIGURE 3 | Average number of SW and RC nodes for (A) IFCG; (B) CFCG, and (C) ICFCG. Statistical comparisons between SW and RC nodes for each group

(SWC: SW Control, RCC: RC Control, SWM: SW mTBI, and RCM: RC mTBI) and between groups for each network organization (SWC vs. SWM and RCC vs. RCM).

All comparisons (paired test linked by *) reach statistical significance (p-value: * < 0.05; ** < 0.01, and *** < 0.001).

were significantly higher in the control group compared to mTBI
in the RC topology and the δ band.

Regarding CFCGs (Figure 4B), the average values of degree
and strength in RC were higher than in SW, for both groups.
Apart from the first frequency pair (δ, β), significant differences

were observed between the two groups in both network

topologies, in terms of network metrics (strength, degree) and

connectivity for the rest of frequency pairs. In both the CFCG

and ICFCG cases, statistical differences are found in both
groups between the RC and SW topologies in terms of degree

and strength (Figure 4C). However, no statistically significant
differences were detected between the groups in both network

metrics and conditions for the SW topology (Figure 5C).
Overall, the SW organization showed stronger activation

mostly in frontal and central regions for the normal control
group in all frequency bands except for the beta band (Figure 2).
Similarly, the RC organization showed stronger activations in

left temporal areas for all frequency pairs examined {fc=(fl,fh)=
[(δ,β), (δ,γ1), (θ,β), (θ,γ1) and (β,γ2)]}. However, in the mTBI
group activation was stronger in right frontal and temporal areas
(Figure 2). Finally, the control group showed significantly higher
degree and strength than the mTBI group in all frequency bands
and frequency pairs for each FCG type (Figure 4).

The Relation between Rich-Club and
Small-World Organizations
To verify that RC network organization presents complementary
information to the SW form, we superimposed both structures
on the upper parts of Figures 5A–C, for three cost values,
respectively. The SW network organization is shown with black
nodes connected by the outflow edges, while the RC network
organization is shown with red nodes, proving that RC nodes
can be found within an SW network. The nodal strength of each
FCG type is illustrated in the lower part of Figures 5A–C, to
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FIGURE 4 | Representation of the averaged degree and strength of the RC/SW hubs (i) with the rest of nodes networks and (ii) within RC/SW nodes across each

group (acronyms follow the definition in capture of Figure 3). For (A) IFCG, (B) CFCG, and (C) ICFCG. All comparisons (paired test linked by *) reach statistical

significance (p-value: * < 0.05; ** < 0.01, and *** < 0.001).

show the hub nodes in specific frequency bands and pairs of
frequencies. The first observation associated with Figure 5 is that
most RC nodes are part of the SW network, since in each sub-
image some nodes belong simultaneously to both organizations,
demonstrating that a node can be simultaneously an SW and
an RC node. Furthermore, the spatial distribution of the upper
and lower topography in each figure indicates that the RC nodes
appear to have higher nodal strength than the SW nodes (upper
and lower Figures 5A–C) for all cases. Therefore, the RC network
organization reveals a higher information flow within an FCG.

RESULTS OF NETWORK ATTACKS ON
BRAIN MODELS

Attacks on Intra-FCG Brain Models
Attack strategies on the RC and SW organizations are presented
in terms of percentage of GE reduction as shown in Figure 6. For

each iteration, we randomly chose 50% of the links within the SW
or RC nodes (TSW and TRC), or the interconnections between
RC/SW nodes and the rest of the network (HRSW and HRRC).
Statistical analysis were performed between SW and RC network
topologies in all the aforementioned scenarios. In most cases,
the RC organization showed significantly higher %GE reduction.
After each attack, both the SW and RC organizations changed
compared to their initial structure.

First, the average %GE reduction of TRC and HRRC for all

cases [NTRC – mTRC and NHRRC – mHRRC, (here the prefixes

“N” and “m” denote the normal control and mTBI groups,

respectively)] and across all iterations was significantly higher

(p-value < 0.001) compared to the TSW and HRSW, with the

exception of the γ2 band for controls and the α band for mTBI

patients, in the case of IFCGs (Figure 6A). The %GE reduction
did not exceed 4% in any case for the target attack, but in the case
of the hub, the rest of the network attacks demonstrated a much
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FIGURE 5 | Representation of the SW network (colored edged + black-washed SW nodes on top topographies for each sub-image) simultaneously with the RC

topology (red nodes on top topographies for each sub-image) and the corresponding nodal strengths (colored bottom topographies for each sub-image) for each

FCG type (A) IFCG (B) CFCG, and (C) ICFCG in specific frequency bands and frequency pairs. Each color bar is common to the control and mTBI groups.

larger damage in the network integration with levels close to 20%
decrease for 50% of weight reduction, and 45% decrease for 100%
weight reduction (Figure 6A).

Regarding the %GE reduction, the results based on the CFCGs
were similar to those based on IFCGs. In particular, it can be
seen (Figure 6B) that the RC organization showed a statistically
significant higher %GE reduction than the SW organization.
Overall, the %GE reduction was no more than 7% in all cases.
Finally, the %GE reduction in the case of mFCGs (Figure 6C)
also showed significantly higher %GE for the RC organization
than the SW.

Synchronization within the RC Subnetwork
The results of the strength ratio SR are presented in Figure 7

for each type of FCG. All cases demonstrated a higher ratio
for the mTBI group, except in the α band for the IFCG-
RCs (Figure 7A). In addition, statistical analysis performed to
detect possible differences between the control and mTBI groups
found significant differences in the δ band in the IFCG-RC case
(Figure 7A) and the frequency pairs (δ, γ1), (θ, γ1), and (β,
γ2) in the CFCG-RC (Figure 7B) and ICFCG-RC (Figure 4C)
cases. Overall, the RC hub nodes presented higher SR values
than the simple nodes as seen in Figure 7. Additional results,
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FIGURE 6 | Percent reduction in total GE on SW and RC brain models for (A) IFCG, (B) CFCG, and (C) ICFCG after attacking targeted interconnected nodes (T) or

hubs connected to random nodes (HR). Control: NTSW and NHRSW—red; NTRC and NHRRC—green; mTBI: mTSW and mHRSW—cyan; mTRC and

mHRRC—magenta. In case of (C) the color-bars are different, Control: NTSW and NHRSW—blue and NTRC and NHRRC—yellow; mTBI: mTSW and

mHRSW—cyan and mTRC and mHRRC—red. The scale in (A,B) is the same. Network attack: select 50% of connections that intra-connect hubs within either RC or

SW backbone or 50% of connections that inter-connect hubs with the rest of the network. All comparisons reached statistical significance (p-value: *** < 0.001).

especially for the RC hubs, are presented in the Supplementary
Material.

Figure 8 further illustrates the spatial distribution of
connections from RC hubs (Figure 8: red points) to the rest
of the nodes (Figure 8: black nodes) along with the strength
of the nodes for each type of FCG. In particular, the edge-cost
(Figure 8: cost), which is the ratio of the total strength of RC
nodes to the total strength all of nodes of the corresponding
full weighted unthresholded FCGs, is higher for mTBI patients
compared to control subjects. In this case, the number of the

mTBI RC edges is significantly higher from normal control RC
edges.

In addition to the above results, an prominent relation was
revealed for the differences within each brain area between
the two groups. Namely, higher (mTBIs > Controls) and
significant (p-value < 0.05) mean probability values existed
in the left parietal lobe in the δ and β bands, right frontal
for the (θ-γ1) frequency pair in the case of IFCG, and in
left occipital areas for the (θ-β) frequency pair of the CFCG.
Additional significant differences (p-value < 0.05, Controls >
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FIGURE 7 | Strength ratio SR for (A) IFCGs, (B) CFCGs, and (C) ICFCGs. All comparisons (paired test linked by *) reached statistical significance (p-value: * < 0.05;

** < 0.01, and *** < 0.001).

mTBIs) were seen in left temporal (δ band of IFCGs), left
occipital (δ-β, δ-γ1, θ-β and β-γ2 of CFCG), left temporal (δ-
γ1 and θ-γ1 of CFCGs), and right parietal (β-γ2 of CFCGs)
areas.

DISCUSSION

In the present study, we compared the RC and SW organizations
under three different FCG representations, namely IFCG, CFCG,
and ICFCG. Our aim has been to develop reliable biomarkers
for the accurate detection of network abnormalities caused by
mTBI by analyzing functional brain connectivity profiles that
combine the RC organization with prominent MEG intrinsic
coupling modes. We assumed that the highest reduction in %GE
would reveal the organization that best described the topology
of the “true” underlying brain networks. Our results showed
that separation of the mTBI patients from the normal control
group was feasible with ∼91% accuracy based on the ICFCG
representation (Table 1).

The importance of the RC organization was first investigated
in neuroimaging brain studies (Van den Heuvel and Sporns,
2011) using diffusion tensor imaging (DTI) that emphasized
the role of RC organization in information integration and in
conferring robustness to its structural core. Since then, many
human connectomic studies have followed (Van den Heuvel
et al., 2013; Senden et al., 2014; Vértes and Bullmore, 2015;
Crossley et al., 2016) mostly using DTI or fMRI on patients and
normal control subjects. Recently, we investigated a prominent
RC organization obtained from MEG recordings of spontaneous
brain activity of mTBI patients for a specific cross-frequency pair
(Antonakakis et al., 2015). In another recent study, we presented
a promising imagingmethod for detecting network abnormalities
caused by mTBI during task-free spontaneous MEG activity
based on intra- (Dimitriadis et al., 2015b) and cross-frequency
coupling (Antonakakis et al., 2015, 2016). In this study, we
performed a thorough investigation on these issues based on
different interaction metrics, network formation approaches, and
evaluation scenarios, over all frequency bands and band pairs.

Frontiers in Human Neuroscience | www.frontiersin.org 12 August 2017 | Volume 11 | Article 416

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Antonakakis et al. Altered Rich-Club and Frequency-Dependent Subnetwork in mTBI

FIGURE 8 | Representation of the RC topology (red nodes on left topography for each sub-image) for each statistically significant case of Figure 7 with the nodal

strength (colored right topography for each sub-image) of the corresponding FCG and edge cost. Each color bar is common to the control and mTBI groups.

We observed a significant direct dominance (Figure 2) of low
frequency bands and band pairs regarding the distribution of
RC nodes (Figure 2) for both groups. More specifically, temporal
areas played a crucial role in the definition of the CFCG-RC
topology in both groups. The RC nodes for the mTBI group
were mainly seen in right temporal areas compared to controls
(Figure 2B).

In a previous analysis of the same dataset, we classified
correctly the two groups with more than 90% accuracy
(Antonakakis et al., 2015, 2016) using only the CFCG frequency

pairs. A recent study using resting state MEG (Dunkley et al.,
2015) showed slow abnormal brain activity in mTBI patients. The
trend was an increase of low frequency amplitude in patients with
mTBI, and this spectral alteration appeared most prominently in
temporal regions. In numerous studies, these findings have been
linked to brain injury (Lewine et al., 2007; Huang et al., 2014).
We found reliable evidence (Figure 2) that the highest SW and
RC distributions were mainly located over temporal areas. The
absence of significant differences in the distribution of the CFCG-
SW (Figure 2B, upper part) was also reported by a recent study
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(Athanasiou et al., in press) using the complementary modalities
of EEG/MEG and multivariate functional connectivity. Over-
representation in right frontal areas has also been found by
previous studies, suggesting that the effects of mTBI are more
prevalent in frontal regions which are more vulnerable to brain
injury (Eierud et al., 2014; Antonakakis et al., 2016). A recent
MEG study with a mixed group of mild, moderate, and severe
TBI patients showed reduced FC in frontal areas bilaterally and
increased FC in left temporo-parieto-occipital regions and in the
right thalamus (Tarapore et al., 2013).

Revealing a consistent over-representation of hubs in right
frontal areas inmTBI subjects across all frequency bands provides
further support that structural alterations cause these frequency
changes over the whole frequency spectrum (Dunkley et al.,
2015). The significant over-representation of hubs in left occipital
brain areas (Figure 2B, lower part) of the mTBI group may
be indicative that, unconsciously, subjects were experiencing
mental images caused by the trauma as spontaneous brain
activity. It would be interesting to explore the activity of mTBI
patients in the fusiform gyrus and compare it to controls
using neuromagnetic source reconstruction (Zhan et al., 2016).
Further analysis on the source level could reveal if there is
increased connectivity between visual system and default mode
network.

Furthermore, we found that, compared to SW, the RC
organization underwent significantly higher GE changes in both
groups, with a much larger reduction in the mTBI group. These
findings indicate that the RC organization can encode important
topological features of the underlying brain networks (Figure 6).
These findings in particular extend our previous results from
comparing the SW and RCmodels only on CFCGs and in the δ-β
frequency pair (Antonakakis et al., 2015). Through the adopted
attack strategy, the RC organization demonstrated higher levels
of %GE reduction and confirmed the damage inflicted on a
node by attack, which was simulated as a decrease in the
weights of the node’s connections (Van den Heuvel and Sporns,
2011). Mišić et al. (2014) also demonstrated that a large part
of information flows in the RC organization, suggesting that
it is better modeled by an RC organization than an SW. The
reduction of GE in mTBI could be linked to the significant
reduction of functional connectivity within the default mode
network revealed by a recent mTBI study working with MEG
resting-state on the source level (Alhourani et al., 2016). In a next
study working at the source level, we will try to reproduce our
results.

Additionally, to uncover the different role and definition of
hubs in a brain network, we explored the mean degree and
mean strength of RC and SW hubs in two conditions, namely
within their subnetworks and with the rest of the network. Our
analysis revealed significantly higher mean values in degree and
strength in the control group compared to the mTBI in RC
topology for both conditions in the δ and θ bands (Figure 4A).
Based on these findings, we conclude that the RC definition
can uncover the subset of nodes from a network that plays a
pivotal role in global information integration. A collapse of such
highly interconnected hub regions can cause communication
aberrations between different parts of the brain (Van den Heuvel

and Sporns, 2011). Thus, these brain hubs should be further
studied both structurally and functionally in various brain
diseases and disorders.

Through the examination of the strength ratio of RC nodes
(Figure 7), we found hyper synchronization in mTBI patients
compared to normal controls within RC subnetworks based
on intra- and inter-frequency intrinsic couplings in the δ, δ-
γ1, θ-γ1, and β-γ2 frequencies and frequency pairs. These
results agree with the basic findings of Hillary et al. (2014)
who showed that brain connectivity increased after TBI—
they examined the mean degree of 52 nodes and showed
significantly greater connectivity in TBI patients compared
to normal controls. Instead, the highest degree nodes (i.e.,
RC nodes in our case) were selectively observed in several
core subnetworks (either TRC or HRRC). Our analysis
further explains hyper-connectivity in mTBI patients under
the RC model and the use of both intra- and inter-frequency
coupling.

In conclusion, this study demonstrated that the RC
organization of graphs reflecting the local distribution of activity
from resting-state brain networks can encode characteristic
aspects of two types of FCG for both mTBI patients and control
subjects. RC hubs in mTBI subjects were overrepresented in right
temporal areas from θ to γ1 frequencies and underrepresented
in left occipital areas in δ-β, δ-γ1, θ-β, and β-γ2 frequency
pairs. Therefore, our analysis does not only support the
use of resting state MEG for the extraction of meaningful
features that describe abnormal brain connectivity after mTBI
(Buzsáki and Watson, 2012; Zouridakis et al., 2012; Huang
et al., 2014; Dimitriadis et al., 2015b; Dunkley et al., 2015;
Antonakakis et al., 2016) it also indicates the need to explore
the RC organization under different types of interactions (intra-
and cross-frequency) for the development of complementary
connectomic biomarkers of recovery from mTBI that can be
useful in clinical research (Buzsáki and Watson, 2012). The
potential functional implications of RC organization of MEG
intrinsic coupling modes, considering its role in network
integration and its vulnerability in various disorders like
mTBI, seem to deserve further investigation for diagnostic and
clinical purposes. Furthermore, our approach is suitable for
accessing the recovery process following mTBI using resting
state MEG (Zouridakis et al., 2016; Li et al., 2017) and focusing
not only on the strength of the couplings but also on the
dominant type of interactions (Bharath et al., 2015; Losoi et al.,
2015).

In order to provide a robust spatial mapping for brain
functions in both control subjects and mTBI patients, it
is necessary to adopt a dynamic functional connectivity
approach (Dimitriadis et al., 2012, 2013a, 2014, 2015a,c,
2016) through the definition of functional connectivity
microstates (Dimitriadis et al., 2013a) and/or network
microstates (Dimitriadis et al., 2015c). Our current studies
focus on exploring a dynamic combination of IFCGs and
CFCGs into ICFCGs (Dimitriadis et al., 2016), their related
microstates, and their symbolic dynamical signature in a
possible combination with compression methods (Luo et al.,
2013).
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