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Previous studies have revealed that greater neural pattern similarity across repetitions is
associated with better subsequent memory. In this study, we used an artificial language
training paradigm and representational similarity analysis to examine whether neural
pattern similarity across repetitions before training was associated with post-training
behavioral performance. Twenty-four native Chinese speakers were trained to learn a
logographic artificial language for 12 days and behavioral performance was recorded
using the word naming and picture naming tasks. Participants were scanned while
performing a passive viewing task before training, after 4-day training and after 12-day
training. Results showed that pattern similarity in the left pars opercularis (PO) and
fusiform gyrus (FG) before training was negatively associated with reaction time (RT)
in both word naming and picture naming tasks after training. These results suggest that
neural pattern similarity is an effective neurofunctional predictor of novel word learning in
addition to word memory.
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INTRODUCTION

Cognitive neuroscientists are generally interested in identifying effective neural predictors of
individuals’ learning ability. Up to now, a number of previous studies have found that preexisting
individual differences in neural activity might serve as neurofunctional predictors of learning
(Xue et al., 2006a; Chen et al., 2007; Wong et al., 2007; Asaridou et al., 2015; Chai et al., 2016;
Kepinska et al., 2017). For example, in visual language learning, Xue et al. (2006a) revealed that
interindividual variability in fusiform asymmetry before training was associated with visual word
learning after 2-week training. In addition, Mei et al. (2008) found that preexisting individual
differences in neural activity in the left posterior superior temporal sulcus predicted the efficiency
in learning auditory words in a new language. These results suggest that preexisting individual
differences in neural responses predict subsequent learning performance.

Nevertheless, previous studies mainly focused on the relation between activation intensity
of brain regions and learning performance by using univariate analysis which may lose
rich representational space information (Kriegeskorte and Kievit, 2013). Recently, using
representational similarity analysis (Kriegeskorte et al., 2008) that computes multivoxel neural
pattern, researchers started to investigate the relation between neural representational pattern and
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word memory and retention (Xue et al., 2010a, 2013; Davis
et al., 2014; Lu et al., 2015; Wirebring et al., 2015; Xiao et al.,
2016). Pattern similarity, indexed by the correlation in neural
responses across repetitions of the same stimuli, is a widely-used
measure for memory encoding (Xue et al., 2010a, 2013; Poh
and Chee, 2017). Pattern similarity has been shown to be
predictive of subsequentmemory and is thought to reflect pattern
reinstatement due to study-phase retrieval (Xue et al., 2010a,
2013; Lu et al., 2015). For instance, Xue et al. (2010a) found
that, compared with forgotten items, subsequently remembered
words showed greater pattern similarity across repetitions in
frontoparietal and occipitotemporal regions, including (but not
limited to) the regions whose mean activity were correlated with
subsequent memory. Therefore, pattern similarity may be an
effective marker of individuals’ memory encoding ability, and
consequently predictive of the learning outcomes.

To examine the associations of neural pattern similarity and
behavioral performance after novel word learning, the present
study trained 24 Chinese college students to learn a logographic
artificial language (created based on Korean Hangul) for 12 days.
Participants were scanned while performing a widely used
reading task (i.e., passive viewing) before training, after 4-day
training and after 12-day training. The predictive role of neural
pattern similarity was examined by correlating neural pattern
similarity before training and reading performance after training.
The left inferior frontal gyrus and fusiform gyrus (FG) were
predefined as regions of interest (ROI) because of their crucial
involvement in visual word processing and learning (Cohen and
Dehaene, 2004; Dehaene and Cohen, 2011; Price and Devlin,
2011; Pinel et al., 2014). Specifically, in word reading, the left
FG and inferior frontal gyrus are thought to be responsible for
visual form processing and high-level language processing (e.g.,
phonological and semantic processing) during word reading,
respectively (Poldrack et al., 1999; Gold et al., 2005; Dehaene and
Cohen, 2011; Price, 2012; Wimmer et al., 2016). In word learning
andmemory, those two regions have also been consistently found
to be involved in successful learning and memory of visual words
(Mei et al., 2010; Xue et al., 2010a,b). Therefore, we hypothesized
that neural pattern similarity before training was associated with
learning outcomes after artificial language training.

MATERIALS AND METHODS

Participants
Twenty-four native Chinese college students from South
China Normal University (11 males and 13 females; mean
age = 19.46 ± 0.93; range from 18 to 22) who have learned
English as their second language and have no prior experience
of Korean language were recruited for the study. Participants
in the study had normal or corrected-to-normal vision, had
no history of head injury or any diagnosis of psychiatric
or neurological disorders, and were strongly right-handed as
judged by Snyder and Harris’s handedness inventory (Snyder
and Harris, 1993). The study was conducted according to the
latest version of Declaration of Helsinki. Before the experiments,
written informed consent was obtained for all participants. The

FIGURE 1 | Experiment design and examples of the stimuli. Participants
received the artificial language training (A) for 12 days (1 h per day). The
passive viewing task (B) was administered three times.

present study was approved by the IRB of School of Psychology
at South China Normal University.

Materials
Thirty English words, thirty Chinese words and thirty artificial
language words were used in the study. All English words were
presented in gray-scale with 340× 226 pixels in size, and Chinese
words and the artificial language words were 226 × 151 pixels in
size.

Chinese words were medium- to high-frequency single-
character words according to a database of Chinese word and
character frequencies (Cai and Brysbaert, 2010). On average,
they occurred at the rate of 57 per million words. The
words consist of 2–9 stokes. English words were selected from
the MRC Psycholinguistic Database1. They were medium- to
high-frequency words (mean = 54.63 per million, SD = 33.53),
3–6 letters (mean = 4.5, SD = 1.11) in length. The artificial
language words were matched with Chinese words in visual
complexity. The sounds of the artificial language words were
recorded by a native Korean female speaker. All the sounds
were denoised and normalized to the same length (600 ms) and
loudness using Audacity 1.32.

Training Procedure
We trained participants in 12 learning sessions with one
session (roughly 1 h) per day. Participants were asked to
learn the associations of visual forms, sounds and semantics of
30 artificial language words using a computerized program. The
artificial language was created by adopting the visual forms and
sounds of 30 Korean Hangul characters, which were assigned
arbitrary meanings through pictures of 30 different objects (see
Figure 1A).

We used a combination of tasks to facilitate efficient learning.
The tasks included character learning (associating each artificial
language visual word with its sound and meaning), phonological
choice task (choosing the correct sound out of four to match
the target word), semantic choice task (choosing the correct
meaning out of four to match the target word), free learning
(re-learning any words with which participants had difficulties in

1http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
2http://www.audacity.sourceforge.net/
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the phonological/semantic choice tasks), naming with feedback
(reading a word aloud followed by a feedback with its correct
pronunciation), fast matching (matching 10 visual words with
10 pictures as fast and accurately as possible) and fast naming
(reading 10 words or naming 10 pictures as fast and accurately as
possible).

Behavioral Tasks
At the end of each training day, word naming and picture naming
tasks were used to test the learning results. In both tasks, each
artificial language word (in the word naming task) or each picture
(in the picture naming task) was presented for 4 s (Days 1–4) or
3 s (after Day 4), followed by a 1 s blank. Participants were asked
to read the artificial language word or to name the object on the
picture aloud in the artificial language as fast and accurately as
possible. The oral responses in those two tasks were recorded and
each response’s accuracy was evaluated by a research assistant by
comparing the participants’ responses with the pronunciations
used for training.

To quantify the rate of learning, a learning curve was fitted
to each participant’s naming speed data for the 12 learning
sessions. To improve the stability of behavioral data, naming
speed for each day was the average of the reaction times (RT)
of the two naming tasks (i.e., word naming and picture naming
tasks). A power function (y = a∗x−b) was then used to fit the
non-linear learning curve of RT for each participant, where
a represents initial performance and b represents the rate of
learning (Anderson, 1983; Logan et al., 1988). Larger b indicates
faster learning. The goodness-of-fit was determined by the
coefficient of determination.

fMRI Task
Participants were scanned three times, one before training,
one after 4-day training and one after 12-day training. A
passive viewing task was performed in all three scans. Rapid
event-related design was used for the passive viewing task. It
consisted of three types of stimuli: English, Chinese and artificial
language words. English materials were included to address other
research questions, and thus excluded from data analysis in
this article. Each type of materials contained 30 items and each
item was presented twice. The two presentations of the same
item were spaced by 4–8 other items (mean = 5.99). Stimulus
presentation and response collection were programmed using
Matlab (Mathworks) and the Psychtoolbox3 on a computer. Trial
sequences were optimized with OPTSEQ4 (Dale, 1999).

During the scan, each stimulus was presented for 600ms, with
a jittered inter-stimulus interval varying randomly from 1 s to
5 s (mean = 2 s) to improve the design efficiency (Figure 1B;
Dale, 1999). Participants were asked to carefully view the stimuli.
To ensure that participants were awake and attentive, they were
instructed to press a key whenever they noticed that the visual
word was underlined (fillers). Participants correctly responded
to 8.63 ± 0.65 of nine underlined words at the pre-training
stage, 8.17 ± 1.61 at the mid-training stage (after Day 4) and

3www.psychtoolbox.org
4http://surfer.nmr.mgh.harvard.edu/optseq/

8.67 ± 1.43 at the post-training stage (after Day 12), suggesting
participants were attentive to the stimuli during the passive
viewing task. In total, the passive viewing task consisted of
189 trials (180 words and 9 fillers) and lasted for 9 min 26 s
(283 TRs).

MRI Data Acquisition
MRI image data were acquired with a 3.0 T Siemens MRI
scanner in the MRI Center at South China Normal University. A
single-shot T2∗-weighted gradient-echo EPI sequence was used
for functional imaging acquisition with the following parameters:
TR/TE/θ = 2000 ms/25 ms/90◦, FOV = 192 × 192 mm,
matrix = 64 × 64 and slice thickness = 3.5 mm. Thirty-five
contiguous axial slices parallel to the AC-PC line were obtained
to cover the whole cerebrum and partial cerebellum. Anatomical
MRI was acquired using a T1-weighted, three-dimensional,
gradient-echo pulse-sequence. Parameters for this sequence
were: TR/TE/θ = 2300 ms/3.24 ms/9◦, FOV = 256∗256 mm,
matrix = 256∗256, and slice thickness = 1 mm. One-hundred
and seventy-six sagittal slices were acquired to provide a
high-resolution structural image of the whole brain.

Image Preprocessing and Statistical
Analysis
Initial analysis was carried out using tools from the FMRIB’s
software library5 version 4.1.2. The first three volumes in each
time series were automatically discarded by the scanner to allow
for T1 equilibrium effects. The remaining images were then
realigned to compensate for small head movements (Jenkinson
and Smith, 2001). Translational movement parameters never
exceeded 1 voxel in any direction for any participant or learning
session. All data were spatially smoothed using a 5-mm full-
width-half-maximum Gaussian kernel. The smoothed data were
then filtered in the temporal domain using a nonlinear high-pass
filter with a 60-s cutoff. A 2-step registration procedure was
used whereby EPI images were first registered to the MPRAGE
structural image, and then into standard (Montreal Neurological
Institute [MNI]) space, using affine transformations with
FLIRT (Jenkinson and Smith, 2001) to the avg152 T1 MNI
template.

At the first level, the data were fitted with a general linear
model within the FILM module of FSL for each participant
and each learning session. Events were modeled at the time
of the stimulus presentation. The events’ onsets and durations
were convolved with the canonical hemodynamic response
function (double-gamma) to generate the regressors used in the
general linear model. Temporal derivatives and the six motion
parameters were included as covariates of no interest to improve
statistical sensitivity. Null events (i.e., fixation) were not explicitly
modeled, and therefore constituted an implicit baseline. The
underlined words and English words were modeled as nuisance
variables to avoid potential confounding effects. In total, four
conditions of interest (i.e., the two repetitions of Chinese words
and two repetitions of artificial language words) were modeled.
The contrast image of each condition and of each repetition

5www.fmrib.ox.ac.uk/fsl
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was computed separately for each learning session and for each
participant.

A second-level analysis was performed on the three scans
to compute the training effects for each participant, using a
fixed-effects model. The training effects were computed by using
three contrasts: [artificial language words—Chinese words] after
4 days of training—[artificial language words—Chinese words]
before training, [artificial language words—Chinese words] after
12 days of training—[artificial language words—Chinese words]
before training, and [artificial language words—Chinese
words] after 12 days of training—[artificial language
words—Chinese words] after 4 days of training. Then, the
data from the second-level analyses were averaged across the
participants in the third-level analysis, using a random-effects
model (treating participants as a random effect) with FLAME
stage 1 only (Beckmann et al., 2003; Woolrich et al., 2004;
Woolrich, 2008). Unless otherwise indicated, group images
were thresholded with a height threshold of z > 2.3 and a
cluster probability, p < 0.05, corrected for whole-brain multiple
comparisons using the Gaussian random field (GRF) theory
(Worsley, 2001).

Representational Similarity Analysis and
Region of Interest Analysis
In this analysis, we first re-estimated the above mentioned first-
level models with unsmoothed data. As mentioned above, four
conditions (i.e., the two repetitions of Chinese words and two
repetitions of artificial language words) were modeled. Then
we extracted the contrast of parameter estimates (COPE) value
from each voxel within the pre-defined ROIs using the fslmeants
command, separately for each condition (Xue et al., 2010a).
In other words, we extracted averaged voxel-wise activation
across all stimuli for each condition. As noted in ‘‘Introduction’’
Section, four regions (the left pars opercularis (PO) and pars
triangularis (PT) and two regions in the occipitotemporal areas;
the bilateral FG) were defined as ROIs because of their critical
role in visual word processing and encoding (Cohen and
Dehaene, 2004; Mei et al., 2010; Xue et al., 2010a,b; Dehaene and
Cohen, 2011; Weber et al., 2016). The ROIs were anatomically
defined based on Harvard-Oxford probabilistic atlas (Maximal
Probability Threshold: 25%) within FSL. Following previous
studies (Xue et al., 2010a; Wirebring et al., 2015; Poh and
Chee, 2017), we used Pearson correlation to compute pattern
similarity across the two repetitions on the averaged activation
patterns separately for Chinese and artificial language words.
These correlation coefficients were transformed into Fisher’s
z-scores. Correlational analysis was conducted to examine
the association between pattern similarity before training and
behavioral performance after training.

The associations between pattern similarity and behavioral
performance were further tested by using between-subject and
within-subject permutation tests, separately for each ROI and
for each naming task (i.e., word naming and picture naming
tasks). In the between-subject permutation test, pattern similarity
of artificial language words in each ROI was shuffled across
the 24 participants. In the within-subject permutation test,
we shuffled pattern similarity for each ROI between the two

conditions (i.e., Chinese words and artificial language words) for
each participant. The permutated data were then correlated with
the subjects’ behavioral performance on the two naming tasks
(i.e., word naming and picture naming tasks). The permutation
test was conducted 5000 times to obtain the distribution
of correlation coefficients for each ROI and each task. The
maximum number of possible combinations of two variables
for the between-subject permutation of 24 participants was
24 factorial (24!), whereas the maximum number of possible
combinations for the within-subject permutation test was 224.

Second, to confirm the robustness of our results, we examined
the pattern similarity of artificial language words after dividing
them into high- and low-RT groups. Specifically, we divided the
30 artificial language words into two groups via median split on
averaged RT fromDay 5 to Day 12. The grouping was done twice,
once using the RT from the word naming task, and the other
time using RTs from the picture naming task. The two repetitions
for the two groups of artificial language words were separately
modeled. Unsmoothed data were used. All other parameters were
the same as the above-mentioned first-level models. We then
separately computed the pattern similarity for artificial language
words with faster naming speed and for those with slower naming
speed in the four ROIs using the same procedure as above.
All similarity scores were Fisher-transformed. The differences
between the groups of artificial language words were examined
by using paired T tests.

Finally, we extracted the activation level (percent signal
change) for the four ROIs. The percent signal changes in the four
ROIs were calculated by extracting parameter estimates (betas)
of each event type from the fitted model and averaging them
across all voxels in the cluster for each participant. Percent signal
changes were calculated using the following formula: [contrast
image/(mean of run)] × ppheight × 100%, where ppheight was
the peak height of the hemodynamic response vs. the baseline
level of activity (Mumford, 2007).

RESULTS

Training Improved the Behavioral
Performance during Training
As shown in Figure 2, RT for the picture naming and the
word naming tasks significantly decreased as a result of training

FIGURE 2 | Reaction time (RT; A) and accuracy (B) on the word naming and
picture naming tasks. D, Day.

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 424

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Qu et al. Neural Predictors of Novel Word Learning

(the picture naming task: F(11,253) = 65.377, p < 0.001; the
word naming task: F(11,253) = 78.274, p < 0.001). Training
also resulted in increased accuracy in both the picture naming
task (F(11,253) = 60.084, p < 0.001) and the word naming task
(F(11,253) = 78.274, p < 0.001). These results suggest that our
training was effective.

Training Enhanced Activations in the Left
Inferior Frontal Gyrus
The whole brain analysis revealed that the typical reading
network, including the bilateral prefrontal cortex, the
occipitoparietal cortex and the occipitotemporal cortex, was

involved in the processing of both Chinese and artificial language
words (see Figure 3).

We then examined the training effects by comparing the
brain activation across the three scans. Results showed that
there was stronger activation in the left inferior frontal gyrus
for the mid-training (Day 4) scan and post-training (Day 12)
scan than for the pre-training scan (Figures 4A,B). In addition,
greater activation in the superior parietal cortex was found
for the mid-training scan than for the pre-training scan. No
region showed more activation for the pre-training scan than
for the mid-training or the post-training scan. Because the
GRF-based cluster statistics used in this study might have
inflated false positive rates (Eklunda et al., 2016), we performed

FIGURE 3 | Brain maps of Chinese and artificial language word processing in the three scans. The upper three panels show brain activations for Chinese word
processing before training (A), after 4-day training (B) and after 12-day training (C). The lower three panels show brain activations for artificial language word
processing before training (D), after 4-day training (E) and after 12-day training (F). R, right.
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FIGURE 4 | Training effects for the artificial language words. The upper two
panels show brain maps corrected using the Gaussian random field (GRF)
theory, while the lower two panels show brain maps corrected using
non-parametric permutation test, There was greater activation in the left
inferior frontal gyrus and superior parietal cortex for the mid-training scan than
for the pre-training scan (A,C) and greater activation in the left inferior frontal
cortex for the post-training scan than for the pre-training scan (B,D). R, right.

an additional analysis by using a randomization procedure
(FSL’s randomize, non-parametric permutation test) repeated
5000 times to examine the training effects (corrected, p < 0.05).
The results of GRF-based cluster statistics were confirmed by the
non-parametric permutation test (Figures 4C,D).

Pattern Similarity before Training Was
Positively Associated with Naming Speed
We further conducted several analyses to examine whether
pattern similarity of artificial language words across the two
repetitions before training was associated with behavioral
performance after training. For both the word naming and
picture naming tasks, the behavioral performance was calculated
by averaging the last 8 days’ RT (i.e., Day 5–12), because the

learning curves became smooth after Day 5 for both RT and
accuracy in both tasks (Figure 2). Accuracy was excluded in this
analysis because of its smaller variances (i.e., the ceiling effect).

First, we correlated the pattern similarity in the four
ROIs (i.e., the left PO, PT and bilateral FG) before training
with behavioral performance, respectively. As expected, for
both word naming and picture naming tasks, we found that
pattern similarity of artificial language words before training
was associated with RT after training. Significant negative
correlations were found in the left PO and bilateral FG (see
Figure 5 and Table 1). No regions showed significant correlation
between pattern similarity of Chinese words and artificial
language’s naming speed (Table 1). The differences in correlation
coefficients of the two types of words were further examined
by using Fisher’s r-to-z transformation test with one variable
in common (Lee and Preacher, 2013). Results showed that the
correlation coefficients were significantly greater for artificial
language words than for Chinese words in the left PO (z =−1.83,
p < 0.05, one-tailed) and bilateral FG (left: z = −2.93, p < 0.01;
right: z = −2.46, p < 0.01, one-tailed) in the word naming
task and in the bilateral FG in the picture naming task (left:
z = −2.98, p = 0.001; right: z = −1.70, p < 0.05, one-tailed).
In addition, we examined the correlations between pattern
similarity after training and behavioral performance. Similar to
the results before training, pattern similarity in the left fusiform
cortex after training was negatively correlated with behavioral
performance, although the correlations of pattern similarity after
12-day training were not statistically significant (Table 2).

To confirm the robustness of the above associations, we
conducted between-subject and within-subject permutation
tests, separately for each ROI and for each naming task. The
between-subject permutation test revealed that the associations
in the left PO and bilateral FG were significant in both naming
tasks (all ps < 0.05; Figure 6A). Similar results were found for
the within-subject permutation test. Specifically, the correlations
in the bilateral FG were significant in both naming tasks. The
correlation in the left PO was additionally significant in the word
naming task (Figure 6B).

We also tested the predictive power of pattern similarity
before training on behavioral performance by using leave-
one-out cross-validation. In this analysis, the brain-behavior
regression model was estimated based on 23 subjects and tested
on the remaining one subject. The prediction error was calculated
by using the formula of (predicted RT − observed RT)/observed
RT, which represents the deviation percentage of the predicted
RT from observed RT. Results showed that the prediction errors
were less than 0.33 for the pattern similarity in the left PO
(word naming: 0.004–0.305; picture naming: 0.002–0.311) and
fusiform cortex (word naming: 0.007–0.328; picture naming:
0.004–0.326; Figure 7A). The predictive power was a little lower
in the right fusiform cortex, whose maximum prediction errors
reached 0.406 (word naming: 0.016–0.406; picture naming:
0.007–0.400).

The results of between-subject brain-behavior correlations
were further confirmed by within-subject analysis by comparing
pattern similarity of artificial language words with high-
and low-RTs. Consistent with the brain-behavior correlational
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FIGURE 5 | Pattern similarity before training predicted RT in the word naming (A) and picture naming (B) tasks. Results showed that pattern similarity in the left pars
opercularis (PO) and bilateral fusiform gyrus (FG) predicted RT in both naming tasks.

TABLE 1 | Correlations between pattern similarity before training and reaction
time (RT) in the two naming tasks (∗p < 0.05 and ∗∗p < 0.01).

ROI Word naming Picture naming
r p r p

Artificial language word
Left fusiform −0.533 0.007∗∗ -0.585 0.003∗∗

Right fusiform −0.463 0.023∗ -0.447 0.029∗

Left pars opercularis −0.543 0.006∗∗ -0.536 0.007∗∗

Left pars triangularis −0.346 0.097 -0.277 0.190
Chinese word
Left fusiform −0.106 0.623 -0.165 0.442
Right fusiform −0.010 0.962 -0.133 0.536
Left pars opercularis −0.224 0.293 -0.308 0.143
Left pars triangularis −0.026 0.903 0.076 0.725

TABLE 2 | Correlations between pattern similarity at Day 4 and Day 12 and RT in
the two naming tasks (∗p < 0.05).

ROI Word naming Picture naming
r p r p

Day 4
Left fusiform −0.488 0.016∗

−0.434 0.034∗

Right fusiform −0.270 0.201 −0.362 0.082
Left pars opercularis −0.281 0.183 −0.338 0.106
Left pars triangularis −0.344 0.100 −0.450 0.027∗

Day 12
Left fusiform −0.375 0.071 −0.388 0.061
Right fusiform −0.381 0.066 −0.460 0.024∗

Left pars opercularis −0.186 0.383 −0.283 0.180
Left pars triangularis −0.244 0.251 0.461 0.023∗

analysis reported above, pattern similarity in the bilateral
fusiform cortex significantly differed between the two groups
of words divided based on RT for the word naming task
(Figure 7B). Specifically, pattern similarity was greater for
artificial language words with faster naming speed than those
with slower naming speed (left fusiform: t(23) = 3.05, p < 0.01;

right fusiform: t(23) = 2.27, p < 0.05). There was a similar
trend for pattern similarity in the left PO (t(23) = 1.89,
p = 0.071). Similar results were found for the two groups
of words divided based on RT in the picture naming task
(Figure 7C). Specifically, words with shorter RT in the picture
naming task showed marginally greater pattern similarity in
the bilateral fusiform cortex than words with longer RT (left
fusiform: t(23) = 1.96, p = 0.062; right fusiform: t(23) = 1.99,
p = 0.059).

As noted in ‘‘Introduction’’ Section, previous studies have
found that activation in those regions also predicts language
learning (Xue et al., 2006a; Asaridou et al., 2015). Therefore,
we also performed correlational analysis to examine whether
the activation level (percent signal change) in the four ROIs
before training was associated with behavioral performance after
training. Consistent with previous study (Asaridou et al., 2015),
we found that the activation level in the PO was negatively
associated with RT in both naming tasks (Table 3).

Finally, to rule out the possibility that the correlations found
in this study reflected the association between pattern similarity
and general naming speed, but not novel word learning, we
conducted correlational analysis on pattern similarity and the
rate of learning. Data of three participants were excluded
in this analysis because of their relatively poor goodness-
of-fit (R2 < 0.7). The goodness-of-fit was 0.87 ± 0.07 for
the remaining participants (Figure 8A). Consistent with the
results of naming speed, significant correlations between pattern
similarity and the rate of learning were found in the left PO
(r = 0.519, p < 0.05; Figure 8B) and FG (r = 0.463, p < 0.05;
Figure 8C).

DISCUSSION

Using an artificial language training paradigm and
representational similarity analysis, we examined the
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FIGURE 6 | The histogram plots of between-subject permutation test (A) and within-subject permutation test (B). The solid line indicates the actual correlation
between pattern similarity of artificial language words and behavioral performance, and the dashed line indicates the 5th percentile (0.05) of the distribution. X-axis
represents the correlation coefficients.

associations between neural pattern similarity before novel
word learning and behavioral performance after training.
Consistent with previous language learning studies (Xue
et al., 2006b; Mei et al., 2014), we found that training
increased activation in the prefrontal cortex and parietal
cortex because of increased demands of semantic and
phonological processing after training. More importantly,
using the pattern similarity analysis, we found that pattern
similarity across repetitions before training was correlated
with the learning performance after 12 days of training.
Specifically, greater pattern similarity in the left PO and FG
was associated with better learning outcomes (i.e., faster
naming speed). These results were further confirmed by the
direct comparisons of artificial language words with high and

low naming speeds. These results suggest that neural pattern
similarity is an effective neurofunctional predictor of novel word
learning.

Previous studies have identified neurofunctional predictors
by correlating activation intensity before training with learning
outcomes after training (Xue et al., 2006a; Chen et al.,
2007; Mei et al., 2008; Asaridou et al., 2015). However,
the univariate activation analysis typically uses neural
activity in one voxel or overall activation in one region,
and consequently misses the information of multi-voxel
neural pattern. Using representational similarity analysis
(Kriegeskorte et al., 2008; Xue et al., 2010a) that computes
multi-voxel pattern similarity, we found that pattern
similarity in the left inferior frontal gyrus and bilateral FG
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FIGURE 7 | The scatter plot (A) shows prediction errors for leave-one-out cross-validation. The two bar graphs show differences in pattern similarity between
artificial language words with longer RT and those with shorter RT in word naming (B) and picture naming tasks (C). LFUS, left fusiform; RFUS, right fusiform; LPO,
left pars opercularis; and LPT, left pars triangularis. ∗∗p < 0.01, ∗p < 0.05, †p < 0.10.

FIGURE 8 | The left graph (A) shows the scatter plot and fitted learning curve for each participant. The naming speed in each training day was calculated by
averaging the RTs of the word and picture naming tasks. The two scatter plots on the right show correlations between learning rate and pattern similarity of artificial
languages words in the left FG (B) and PO (C).

TABLE 3 | Correlations between activation level before training and RT in the two
naming tasks (∗p < 0.05 and ∗∗p < 0.01).

ROI Word naming Picture naming
r p r p

Left fusiform −0.265 0.211 −0.315 0.134
Right fusiform −0.280 0.185 −0.399 0.054
Left pars opercularis −0.458 0.024∗

−0.529 0.008∗∗

Left pars triangularis −0.162 0.450 −0.123 0.567

before training predicted learning outcomes after training.
Specifically, greater pattern similarity was associated with
better learning outcomes. Furthermore, these associations
were only significant for pattern similarity of artificial
language words, but not for that of words in other languages.
These results extend the previous finding of neural pattern
similarity’s association with subsequent memory (Xue et al.,
2010a, 2013; Davis et al., 2014; Xiao et al., 2016) to the
new finding of its association with long-term novel word
learning.

The associations between neural pattern similarity and
behavioral performance found in this study may involve at
least two possible mechanisms. First, pattern similarity has been
shown to be predictive of subsequent memory and is thought
to reflect pattern reinstatement due to study-phase retrieval

(Xue et al., 2010a, 2013). It benefits memory encoding through
the provision of consistent input (Xue et al., 2013; Lu et al., 2015;
Poh and Chee, 2017). Although the passive viewing task used
in this study did not require participants to explicitly memorize
the words, there is evidence that pattern reinstatement occurs
even without explicit requirement of memory (Xue et al., 2010a,
2013). From this perspective, the level of pattern similarity in this
studymight represent individuals’ ability of memorizing artificial
language words, and consequently was associated with behavioral
performance after subsequent artificial language word learning.
Nevertheless, unlike previous studies (Xue et al., 2010a, 2013),
pattern similarity was computed on averaged activation patterns
in this study because of its rapid event-related design. Averaged
activation patterns might lose unique pattern information.
Therefore, future studies should test the pattern reinstatement
account by adopting a slow event-related design to separate
the pattern similarity of individual memories. Second, pattern
similarity may be a more general marker of effective cognitive
processing. It has been shown that more reproducible neural
patterns are associated with more conscious cognitive processing
(Schurger et al., 2010). Our results seems to disconfirm the
second explanation because pattern similarity of Chinese words
was not correlated with behavioral performance of artificial
language learning.
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Our results of the predictive role of the left inferior frontal
gyrus and fusiform cortex in novel word learning are consistent
with previous findings of their crucial involvement in language
processing and learning (Dehaene et al., 2002, 2010; Dehaene and
Cohen, 2011; Asaridou et al., 2015). Particularly, the fusiform
cortex is repeatedly reported in visual word processing. It has
been proposed to be responsible for visual form processing
(Dehaene et al., 2002; Cohen and Dehaene, 2004) or integrating
low-level visuospatial features with higher-level associations
(Price and Devlin, 2011). The left inferior frontal gyrus also
plays an important role in language processing. It is thought
to be involved in a variety of language processes, such as
phonological (Poldrack et al., 1999; Taylor et al., 2013), semantic
(Poldrack et al., 1999; Price, 2012), and syntactic processing
(Henderson et al., 2016; Kuhnke et al., 2017; Matchin et al.,
2017). Furthermore, the two regions have been found to be
involved in successful memory of visual words (Wagner et al.,
1998; Mei et al., 2010; Xue et al., 2010a) and predictive of visual
word learning (Xue et al., 2006a; Chen et al., 2007; Dong et al.,
2008). Our results confirmed the crucial involvement of those
two regions in visual word processing and learning.

Two limitations should be discussed. First, the artificial
language used in this study is different from natural language
in several aspects, such as a limited vocabulary size and a
lack of morphology and syntax. Such differences might limit
the generalization of our findings to natural languages to
some extent, although researchers have found high positive
correlations between natural language learning and artificial
language learning (Ettlinger et al., 2016). Therefore, future
studies should confirm the predictive role of pattern similarity
in natural language learning. Second, pattern similarity was
computed across the two repetitions on the averaged activation
patterns for all words, because we used a rapid event-related
design which did not allow us to precisely estimate the neural

responses of single trials. Therefore, our study was not able to
separate the contributions of within-item pattern similarity and
between-item pattern similarity in novel word learning. Future
studies should use a slow event-related design like previous
studies (Xue et al., 2010a; Poh and Chee, 2017) to examine
the associations between the two types of pattern similarity and
learning outcomes.

In sum, using the artificial language training paradigm and
representational similarity analysis, this study revealed that
greater pattern similarity across repetitions before training was
associated better learning outcomes. These results suggest that
pattern similarity is an effective neurofunctional predictor for
novel word learning.
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