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FROM ENDOCASTS TO BRAINS

Since brain does not fossilize, brain endocast (i.e., replica of the inner surface of the braincase,
Figure 1) constitutes the only direct evidence for reconstructing hominin brain evolution
(Holloway, 1978; Holloway et al., 2004a). In this context, paleoneurology has suffered from
strong limitations due to the fragmentary nature of the fossil record and the absence of any
information regarding subcortical elements in extinct taxa. Additionally, variation in brain
shape and organization (and in the corresponding endocast) is technically difficult to capture,
as stated by Bruner (2017a, p. 64): “[...] the smooth and blurred geometry of the brain, its
complex and complicated mechanisms, and its noticeable individual variability make any research
associated with its morphology very entangled and difficult to develop within fixed methodological
approaches.” An emblematic example might be the reluctance of paleoneurologists to consider
the sulcal imprints visible on the endocranial surface because of the substantial uncertainties in
describing such features in fossil specimens and related debates (e.g., the lunate sulcus in the Taung
child’s endocast; Falk, 1980a, 2009, 2014; Holloway, 1981a; Holloway et al., 2004b). In 1987, Tobias
even came to the conclusion that “The recognition of specific cerebral gyri and sulci from their
impressions on an endocast is a taxing, often subjective and even invidious undertaking which
arouses much argumentation” (p. 748). However, in conjunction with a conceptual shift toward a
more comprehensive overview of hominin brain evolution (e.g., reconsideration of the “cerebral
rubicon” characterizing the human brain, Falk, 1980b; Holloway, 1983), continuous discoveries of
new fossil material and recent analytical developments are progressively improving and refining
our knowledge about the human neural evolutionary history. In particular, paleoneurology is
producing new evidence for reconstructing the timing and mode of the emergence of crucial
functions, such as language.

WHAT FOSSIL ENDOCASTS CAN TELL US: CORTICAL
ORGANIZATION AND SHAPE

When the neurocranium is filled with sediment during the fossilization process, information about
brain morphology and organization may be recorded as a natural endocast (e.g., Figure 1D). For
fossil specimens not preserving a natural endocast, it is possible to generate a virtual imprint of the
endocranial surface (Figures 1A–C). Within the limitations discussed above, the endocast provides
evidence for tracking both structural and morphological changes in brain within the hominin
lineage (Holloway, 1978; Holloway et al., 2004a; Zollikofer and Ponce de León, 2013). In this
context, fossil endocasts can potentially deliver critical data for identifying cerebral reorganization
with implications for speech capacity. In particular, the frontal lobe is involved in crucial functions
suggested to be specific to extant humans. Among them, language has been invariably linked to the
Broca’s cap configuration and the lateral aspect of the frontal lobes has been consequently largely

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2017.00427
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00427&domain=pdf&date_stamp=2017-08-23
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:beaudet.amelie@gmail.com
https://doi.org/10.3389/fnhum.2017.00427
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00427/full
http://loop.frontiersin.org/people/462025/overview


Beaudet Emergence of Language and Hominin Endocasts

FIGURE 1 | Oblique views of the endocasts of an extant human (A), an extant chimpanzee (B), and of the Australopithecus africanus specimens Sts 5 (C), and Sts

60 (D) from Sterkfontein (South Africa). Sts 60 is a natural endocast associated to the fragmented cranium TM 1511. The braincase is rendered semi-transparent.

Scale bars: 2 cm.

explored in the hominin fossil record. The human-like
configuration of the Broca’s area has long been acknowledged to
emerge concomitantly with the genus Homo (Falk, 1983; Tobias,
1987; see also the earliest descriptions of the Broca’s cap in
fossil humans, e.g., Kappers, 1929; Connolly, 1950). However,
besides being largely questioned in the extant primate taxa (rev.
in Bruner, 2017b), recent reinvestigation of the fossil record has
revealed a more complex history of the reorganization of the
frontal lobes, and more particularly of the inferior frontal gyrus
and Broca’s cap, deeply rooted in the early representatives of the
hominin lineage.

In terms of structural organization, the identification of two
differential patterns in the extant ape and human frontal lobes,
characterized, respectively, by the presence of the fronto-orbital
sulcus and of the horizontal and ascending branches of the
lateral fissure, was previously considered as an effective trait
for identifying the derived condition of the Broca’s cap in the
fossil record (rev. in Falk, 2014). In extant humans, even if the
correspondence between the sulcal pattern and cytoarchitectonic
areas is questioned (Amunts et al., 1999), the two rami of the
lateral fissure delineate the Brodmann’s areas 44 and 45 involved
in language production and comprehension (Falk, 2014). Within
this framework, while the ape-like pattern was described in the
South African Australopithecus hypodigm, the endocasts of the
earliest human representatives were suggested to be closer to
the extant human condition (Falk, 1983, 2014; Tobias, 1987).
However, this structural feature turned out to be more complex
than previously thought. In particular, the high-resolution virtual
investigation of the Australopithecus sediba endocast (MH 1)
adds further complexity to this purported dichotomy since
this specimen combines a chimpanzee-like sulcal pattern with
evidence of shape reorganization (Carlson et al., 2011). Similarly,
Holloway et al. (2004a) thoroughly explored the fossil hominin
record and reported occurrences of shape frontal asymmetries
at the level of the Broca’s cap in early hominins (e.g., Sts 5),
confirming that this configuration is not confined to Homo
(Tobias, 1987). A leftward asymmetry of the Broca’s cap is
commonly reported in extant humans and considered to be
functionally relevant for speech capacities, even if still largely
debated (rev. in Keller et al., 2009). Imaging techniques and
3D modeling of the virtual endocast supported the assumption
of the presence of frontal asymmetries in non-human fossil
hominins by mapping shape asymmetries (Braga and Thackeray,

2007; Beaudet et al., 2014). Moreover, landmark-based analyses
of the asymmetries of the third frontal convolution in fossil
and extant hominids demonstrated a gradual increase in the
degree of expression of asymmetries in the human lineage and
emphasize the need of not only describing the occurrence but
also quantifying the “magnitude” of endocranial asymmetries
(Balzeau et al., 2014).

Given that the latest studies challenged our previous thoughts
on the emergence of the human-like configuration of the
frontal lobes (see also Beaudet and Bruner, in press), the next
step would be to reconsider the available evidence from a
new perspective, notably by overcoming current limitations in
paleoneurology. The development of new imaging techniques,
such as phase contrast X-ray synchrotron microtomography
(e.g., Carlson et al., 2011) or neutron microtomography (e.g.,
Beaudet et al., 2016a; Zanolli et al., 2017), pushes further
the practical limits inherent to the non-invasive investigation
of endostructural features in fossil specimens. The major
difficulty in discussing the sulcal pattern in endocasts, and
the configuration of critical cortical areas such as the Broca’s
cap, lies in the absence of reliable protocols for automatically
identifying the furrows on the fossil endocranial surface, as
currently performed on the MRIs of extant human brains
(e.g., Fischer et al., 2012). However, recent efforts in applying
computer-assisted approaches for automatic sulci detection
in fossil primate endocasts have paved the way for future
methodological developments (Beaudet et al., 2016b). Similarly,
the successful application of landmark-free deformation-based
models for exploring fossil primate endocranial surfaces (e.g.,
Durrleman et al., 2012; Beaudet et al., 2016b; Beaudet and Bruner,
in press) and assessing endocranial asymmetries (Kitchell, 2017)
are providing encouraging perspectives for applications in
paleoneurology. As a concrete example of future applications,
since the extant human Broca’s cap is characterized by a
particular morphoarchitecture (i.e., combination of specific
sulcal organization and pattern of shape asymmetries of the
inferior frontal gyrus), the construction of a statistical model
(e.g., atlas) reporting 3D variations of the sulcal pattern (as
previously performed in 2D by Connolly, 1950) and external
morphology of this area in extant hominids would allow
to automatically characterize the fossil condition and test
critical hypothesis (e.g., reorganization of the inferior frontal
gyrus in Australopithecus). By integrating the intra-specific
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morphological variability and provide objective data, such a
protocol would represent a valuable tentative for overcoming
serious limitations in paleoneurology. Consequently, we might
predict that fresh evidence will certainly emerge from the
systematic reinvestigation of the fossil record with the assistance
of imaging techniques and 3D modeling methods.

LOOKING FOR FURTHER EVIDENCE

Speech capacity cannot be appropriately inferred only from the
cerebral condition, therefore hypotheses aiming at reconstructing
the timing and mode of emergence of language in the hominin
lineage should seek to combine various lines of evidence.
The endocast is the only direct proxy for reconstructing
the fossil neural condition and cerebral capacities in extinct
species. However, additional cranial regions might contribute
to understand the development of language capacity in the
human evolution. As for instance, the petrous bone is frequently
preserved in the fossil record and imaging techniques allow non-
invasive access to the bony labyrinth and thus, to the hearing
system (Spoor, 1993). Quantitative analysis of early hominin
specimens revealed that changes are observed in the proportions
of the inner ear (notably the oval window and cochlear length)
in the hominin lineage that might be related to an increase in
low-frequency sensitivity in extant humans as compared to early
hominins (Braga et al., 2015). Similarly, the middle ear ossicles
(malleus, incus and stapes) can be virtually investigated by the
means of high-resolution imaging techniques in fossil hominin
taxa for predicting auditory sensitivity levels of the hearing
range, and more specifically in the lower frequencies (Stoessel
et al., 2016). Interestingly, the audibility of specific frequencies
is suggested to impact speech perception (e.g., high-frequencies,
Stelmachowicz et al., 2004). In this context, because of the
relationship between shape and functions in specific components
of the inner ear (e.g., cochlea; Manoussaki et al., 2008), one may
imagine possible associations between reconstruction of fossil
auditory capabilities and language development.

Additionally, through the identification of genes related to
language capacity in extinct hominin species (e.g., FOXP2;
Krause et al., 2007) and the description of bones directly involved
in speech production in the fossil record (e.g., hyoid bones;
Arensburg et al., 1989, 1990), both genetic and anatomical
studies undoubtedly constitute invaluable sources of information
for evaluating the ability to speak of extinct species (rev. in
Lieberman, 2006, 2007). Besides the hyoid bone, the length of
the neck and the cranial-base angle are critical for reconstructing
the fossil hominin vocal tract (Lieberman, 2007). Interestingly,
these structures are preserved in the early hominin fossil record,
as illustrated by the recent description of the entire cervical

column of the A. afarensis specimen DIK-1-1 (Ward et al., 2017)
or the studies of the basicranial shape and flexion in the most
complete A. africanus cranium Sts 5 (“Mrs Ples”) (e.g., Ross
and Henneberg, 1995; Spoor, 1997), and may contribute to the
discussion of the emergence of language.

Similarly, cultural, technical and social contexts certainly
played a critical role in the development of language capacities.

Indeed, experiments dealing with tool making and functional
MRIs revealed the complex pattern of neuronal stimuli in such
activities and the intimate relationship with language (Stout et al.,
2008), as anticipated by paleoneurological studies (Holloway,
1969, 1981b). Furthermore, these experiments emphasize the
importance of learning processes in stone tool manufacture and
support the potential influence of inter-individual interactions in
the emergence of language (“social brain hypothesis”; Dunbar,
1993). Finally, life history traits should also be considered when
searching for the origins of language, particularly since brain
plasticity has been revealed to play an important role in the
emergence of the human behavior and cognitive traits, including
language (rev. in Gómez-Robles and Sherwood, 2016).

Accordingly, a comprehensive approach both in terms
of practical investigation (i.e., combining quantification of
variation in organization and shape of the endocranial surface)
and theoretical background (i.e., integrating biological, social
and cultural hypotheses) is essential and unavoidable for
understanding the context of the emergence of language. As a
whole, research in paleoneurology would significantly benefit
from a “holistic” approach to the evolution of the human brain.
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