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Sleep spindles are transient oscillatory waveforms that occur during non-rapid eye
movement (NREM) sleep across widespread cortical areas. In humans, spindles can
be classified as either slow or fast, but large individual differences in spindle frequency
as well as methodological difficulties have hindered progress towards understanding
their function. Using two nights of high-density electroencephalography recordings from
28 healthy individuals, we first characterize the individual variability of NREM spectra and
demonstrate the difficulty of determining subject-specific spindle frequencies. We then
introduce a novel spatial filtering approach that can reliably separate subject-specific
spindle activity into slow and fast components that are stable across nights and across
N2 and N3 sleep. We then proceed to provide detailed analyses of the topographical
expression of individualized slow and fast spindle activity. Group-level analyses conform
to known spatial properties of spindles, but also uncover novel differences between
sleep stages and spindle classes. Moreover, subject-specific examinations reveal that
individual topographies show considerable variability that is stable across nights.
Finally, we demonstrate that topographical maps depend nontrivially on the spindle
metric employed. In sum, our findings indicate that group-level approaches mask
substantial individual variability of spindle dynamics, in both the spectral and spatial
domains. We suggest that leveraging, rather than ignoring, such differences may prove
useful to further our understanding of the physiology and functional role of sleep
spindles.
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INTRODUCTION

Sleep spindles are prominent rhythmic waveforms expressed by the mammalian brain during
non-rapid eye movement (NREM) sleep. In humans, spindles are readily visible in the
electroencephalogram (EEG) and are defined as short (∼0.5–2 s) bursts of activity in the
sigma band (9–16 Hz; but see below). While they are initiated in the thalamus (Steriade et al.,
1987), reciprocal interactions between cortex and thalamus shape their duration and amplitude
(Contreras et al., 1997; Bonjean et al., 2011). Spindles are a defining feature of light N2 sleep, but
also occur during deep N3 sleep where their occurrence is often obscured by large-amplitude∼1 Hz
slow oscillations. Moreover, spindles can be present globally or restricted to specific brain regions
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(Nir et al., 2011; Frauscher et al., 2015; Piantoni et al., 2016),
propagate across the cortex (O’Reilly and Nielsen, 2014; Souza
et al., 2016), and show complex patterns of interregional
synchronization (Cox et al., 2014b; Muller et al., 2016).
Functionally, sleep spindles are believed to be involved in
processes of plasticity and offline memory consolidation (De
Gennaro and Ferrara, 2003; Lüthi, 2013; Rasch and Born, 2013)
as evidenced from relations between spindle activity andmemory
retention (Schabus et al., 2004; Cox et al., 2012; Mednick et al.,
2013; Lustenberger et al., 2016).

Although the formal definition treats spindles as an
undifferentiated category restricted to the 11–16 Hz range (most
commonly 12–14 Hz; Iber et al., 2007), substantial evidence
suggests that spindles can be classified as either slow (∼10 Hz)
or fast (∼13 Hz). While it is presently unclear whether slow
and fast spindles serve distinct functional roles (Tamaki et al.,
2008, 2009; Barakat et al., 2011; Cox et al., 2014a; Hoedlmoser
et al., 2014; Rihm et al., 2014; Fang et al., 2017), they are
associated with different hemodynamic sources (Schabus et
al., 2007), respond differently to pharmacological interventions
(Ayoub et al., 2013), preferentially occur in distinct phases
of the slow oscillation (Mölle et al., 2011; Cox et al., 2014b;
Staresina et al., 2015; Klinzing et al., 2016), and are dissociated
in terms of heritability (Purcell et al., 2017). Slow and fast
spindles also have distinct EEG topographical distributions,
with slow spindles having a more frontal expression and
fast spindles occurring mostly centrally and parietally (Werth
et al., 1997; Zeitlhofer et al., 1997). Importantly, while the
slow spindle band roughly corresponds to the waking alpha
range (8–12 Hz), individuals’ alpha activity is typically slower
(Kokkinos and Kostopoulos, 2011) and is defined by a distinct
posterior topographical distribution, suggesting these rhythms
reflect distinct phenomena. Although differential slow/fast
spindle topographies are well known at the group-level, little
is known about the consistency of these topographical patterns
across individuals. However, assessing this variability is an
important step towards a full understanding of the dynamics
of slow and fast sleep spindle activity within and across
individuals.

Separating slow and fast spindles is nontrivial, in part because
of the diversity of spectral definitions used by different groups
for spindle detection. A non-exhaustive search of the literature
reveals demarcation frequencies between slow and fast spindles
placed at 12, 13, 13.5 and 14 Hz (Schabus et al., 2007; Barakat
et al., 2011; Mölle et al., 2011; Holz et al., 2012; Ayoub et al.,
2013;Wamsley et al., 2013). Similarly, the lower boundary of slow
spindles has been set anywhere from 8 Hz to 12 Hz (Barakat et
al., 2011; Mölle et al., 2011; Holz et al., 2012; Ayoub et al., 2013;
Wamsley et al., 2013), and the higher boundary of fast spindles
at 15 or 16 Hz (Tamaki et al., 2008; Ayoub et al., 2013). Similar
variability exists for studies not further differentiating between
slow and fast spindles. Clearly, this situation hinders comparison
across studies.

The issue is exacerbated further by considerable variability
in spindle frequency across individuals (De Gennaro et al.,
2005; Ujma et al., 2015). Subject-specific spindle frequencies
are typically determined from peaks in the power spectrum.

However, slow and fast sigma peak frequencies are not confined
to well-separated frequency ranges but form overlapping
distributions at the group level (Ujma et al., 2015). Thus, even
the demarcation line best separating slow and fast sigma peaks at
the group-level likely results in incorrect classification of spindle
activity for some subjects and suboptimal separation for many
others.

Together, individual differences in peak sigma frequencies
and variable spectral spindle criteria distort the correspondence
between the oscillatory phenomena of interest and the measured
activity used for subsequent analysis. This problem affects
approaches investigating sigma power as a proxy for spindle
activity (Achermann and Borbély, 1998), as well as spindle
detection algorithms based on band-pass filters and amplitude
thresholds (e.g., Ferrarelli et al., 2007; Cox et al., 2014a).

To avoid these issues, approaches targeting subject-specific
spindle frequencies have been developed (Gottselig et al., 2002;
Bódizs et al., 2009; Mölle et al., 2011; Adamczyk et al., 2015;
O’Reilly et al., 2015; Ujma et al., 2015). However, while fast sigma
peaks are typically prominent, slow sigma peaks are not always
discernible, even at frontal channels where slow spindle activity
is generally most pronounced (Mölle et al., 2011). This may
reflect that slow and fast spindle topographies, while distinct,
still show considerable overlap at both the level of sensors and
underlying generators (Klinzing et al., 2016). Moreover, as we
will demonstrate, individual differences in spindle topography
limit the effectiveness of selecting a single channel for slow sigma
peak detection. Finally, slow spindles have been observed to
express marked shifts of ∼1 Hz between sleep stages, from faster
in N2 to slower in N3 (Mölle et al., 2011). In sum, available
methods to separate spindle classes do not always succeed and
can lead to ambiguous results depending on what sleep stage is
examined.

To overcome these difficulties, we introduce a novel
approach to determine individualized slow and fast sigma
frequencies in a data-driven fashion. The current report is
organized into three main parts. In part one (Channel-Based
Analyses), we describe individual differences in the NREM
power spectrum, focusing on the difficulties of detecting
subject-specific sigma peaks from both channel-averaged
and single-channel spectra. In part two (Component-Based
Analyses), we detail a spatial filtering approach to facilitate
isolation of subject-specific slow and fast sigma frequencies.
We show that spectra derived from spatially filtered data
allow for slow peak detection in more individuals and with
less ambiguity than channel-based spectra. In part three
(Topographical Analyses), we characterize topographical
aspects of slow and fast sleep spindle expression in N2 and
N3, both to validate our sigma peak separation method,
and to examine spatial aspects of spindles not yet described.
In particular, we investigate the commonalities, individual
differences, and cross-night stability of spatially organized
spindle activity, as well as topographical differences between
several often-used metrics of spindle activity. Part three will
be particularly relevant to those interested in the implications
of these methods for topographical spindle dynamics, and can
be read separately from the first two parts. Combined, our
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results demonstrate the utility of our spindle separation
approach and yield important new insights regarding
the nature and variability of topographical sleep spindle
dynamics.

MATERIALS AND METHODS

Protocol and Participants
The current study utilizes two consecutive nights of full-night
EEG data from 28 healthy individuals (age: 29.7 ± 6.0; 21 males,
7 females). These data were acquired as part of a double-
blind, placebo-controlled, cross-over study of eszopiclone in
schizophrenia patients. Only the placebo nights of the control
group are considered in the present report.

The study protocol was approved by the Partners Human
Research Committee. All subjects gave written informed consent
in accordance with the Declaration of Helsinki and were
compensated monetarily for their participation. Participants
had no personal history of mental illness as confirmed by
screening with the SCID-Non-Patient Edition (First et al.,
2002). Furthermore, they reported no diagnosed sleep disorders,
treatment with sleep medications, history of significant head
injury or neurological illness, or history of substance abuse or
dependence within the past 6 months. Upon completion of a
pre-treatment visit to complete informed consent and undergo
clinical and cognitive assessments, subjects received an actiwatch
to wear from study enrollment to completion.

Subjects were randomly assigned to one of two treatment
orders, placebo first or eszopiclone first, with a week in between
the two treatment visits. Each of the two treatment visits
consisted of two consecutive nights of polysomnography (PSG)
monitoring at the Clinical Research Center of Massachusetts
General Hospital. The first night of each visit served as a baseline
night, while on the second night participants were trained for
12 min on a finger tapping Motor Sequence Task (Walker et al.,
2002) 1 h prior to their usual bedtime. On both nights of the
placebo visit, participants received placebo at 10 PM. Lights were
turned off at 10.30 PM and participants were allowed to sleep for
up to 9.5 h until they were woken up at 8 AM. As no statistically
significant differences in sleep architecture or spindle parameters
were found between the baseline and learning nights, we focused
our analyses on the first night and used the second night for
validation and replication.

Data Acquisition and Preprocessing
PSG was collected using 62-channel EEG caps (Easycap GmbH,
Herrsching, Germany) with channel positions in accordance
with the 10-20 system. Additionally, two single cup electrodes
were placed on the mastoid processes, two around the eyes
for electrooculography, two on the chin for electromyography,
and a reference electrode was placed on the forehead. An
AURA-LTM64 amplifier and TWin software were used for
data acquisition (Grass Technologies, Warwick, RI, USA).
Impedances were kept below 25 k� and data were sampled
at 400 Hz with hardware high-pass and low-pass filters at
0.1 Hz and 133 Hz, respectively.

Sleep staging was performed in TWin using a limited number
of channels with a contralateral mastoid reference on 30 s epochs
according to standard criteria (Iber et al., 2007). Initial processing
of multi-channel EEG data was performed in BrainVision
Analyzer 2.0 (BrainProducts, Germany). All EEG channels were
band-pass filtered between 0.3 Hz and 35 Hz and notch filtered
at 60 Hz. Channels displaying significant artifacts for more
than 30 min of the recording were interpolated with spherical
splines. EEG data were then re-referenced to the average of
all EEG channels. Upon visual inspection, epochs containing
artifacts were removed. To remove artifacts we used independent
component analysis (ICA) with the Infomax algorithm (Makeig
et al., 1997). For each night and individual, remaining epochs
were concatenated separately for the two sleep stages, resulting
in 176 ± 61 (mean ± SD) and 211 ± 49 min of available N2 for
the two nights, and 82± 44 and 85± 30 min of N3.

All subsequent processing steps were performed in Matlab
(The Mathworks, Natick, MA, USA), using custom routines and
several freely available toolboxes including EEGlab (Delorme
and Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011).
After removal of non-EEG channels and the mastoids, leaving
58 channels for analysis, we applied a surface Laplacian filter to
each record (Perrin et al., 1989), as implemented in the CSD
toolbox (Kayser and Tenke, 2006). This approach served two
purposes. First, the Laplacian renders data reference-free, thereby
avoiding common interpretational issues related to the choice of
reference. Second, this approach decreases the effects of volume
conduction and accentuates local aspects of neural processing,
thereby providing enhanced spatial precision for topographical
analyses (Cohen, 2014; Tenke and Kayser, 2015). While the
Laplacian is a spatial filter, we emphasize it is not the spatial
filtering approach that we employ to separate slow and fast sigma
peaks.

Power Spectra and Peak Detection
After the Laplacian transformation, we determined the power
spectrum for every epoch on every channel. In order to minimize
the typical 1/f scaling of the spectrum, we obtained power
estimates not from the Laplacian-transformed time series, but
from its temporal derivative. This approach essentially multiplies
power at every frequency bin by its frequency, thus counteracting
the 1/f trend and allowing for easier detection of spectral
peaks relative to surrounding frequencies (Sleigh et al., 2001).
Using the Laplacian-derivatives, we estimated power spectral
density for each epoch using Welch’s method with 5 s windows
and 50% overlap. We then normalized every electrode’s power
spectrum during both N2 and N3 by dividing the spectrum by
that electrode’s average power in the 0–4 Hz band across all
N2 epochs. This normalization step, based on a common baseline
for N2 and N3, enables direct comparisons between sleep stages.

To determine global spectra, single-epoch spectra were
averaged across all channels, before averaging across epochs,
separately for N2 and N3. For visualization and peak detection,
each individual’s 0–20 Hz spectra were rescaled between the
minimum and maximum values in that range. Spectral peaks
were detected using the Matlab findpeaks function with a
minimum prominence setting of 0.01, where the prominence of a
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peak indicates how much a peak stands out as a function of both
its intrinsic amplitude and its location relative to other peaks.
For our data, this setting corresponded to a very liberal detection
threshold.

In addition to channel-averaged spectra, we determined
spectra for two selected channels (frontal: Fz; parietal: Pz).
We selected these channels based on evidence of the relative
predominance of slow and fast spindles (Tamaki et al., 2008;
Ayoub et al., 2013). Single-channel spectra were averaged across
epochs, again separately for N2 and N3 and both nights.
Automated spectral peak detection was performed as before.

Slow and Fast Sigma Peak Separation via
Spatial Filters
In order to isolate each individual’s slow and fast sigma activity
in data-driven fashion, we created linear spatial filters maximally
enhancing slow vs. fast sigma activity and vice versa. We
then applied these filters to the multi-channel EEG time series
to obtain a set of component time series that we analyzed
in the frequency domain. The spatial filters were defined
by eigenvectors extracted from covariance matrices, similar
to principal component analysis (PCA). In a spatial filtering
context, the PCA procedure operates on a single channel-by-
channel covariance matrix and produces eigenvectors pointing
in orthogonal directions that explain decreasing amounts of
variance. This approach, together with conceptually related
ICA techniques, can be conceptualized as a ‘‘blind’’ source
separation procedure, in that resulting components are not
necessarily physiologically meaningful. In contrast, generalized
eigendecomposition (GED) operates on two separate covariance
matrices to find eigenvectors maximally differentiating the two.
This may be viewed as a ‘‘guided’’ source separation procedure
that spatially separates signal elements according to user-defined
criteria. In our case, we constructed one covariance matrix from
slow sigma-filtered data and one from fast sigma-filtered data.
The GED approach has been used in various electrophysiological
contexts, typically to maximize spectral power in one frequency
band relative to broadband activity (Nikulin et al., 2011; de
Cheveigné and Arzounian, 2015; Cohen and Gulbinaite, 2017;
Cohen, 2017). We here extend this notion by directly contrasting
activity in two adjacent narrow-band ranges.

In detail, we first band-pass filtered the Laplacian-
transformed EEG separately in the slow (9–12 Hz) and fast
(12–16 Hz) sigma ranges. We used Hamming-windowed finite
impulse response filters (EEGlab: pop_firrws) with a high filter
order (13,200) to create steep, narrow filters that have minimal
overlap between the two passband ranges. After subtracting each
filtered channel’s mean amplitude, we determined the ‘‘slow’’
covariance matrix S and the ‘‘fast’’ covariance matrix F, both of
size 58 × 58 electrodes. If we designate S as the matrix whose
signal we wish to accentuate and F as the matrix with the ‘‘noise’’
we wish to suppress, the eigendecomposition problem can be
written as SW = WFΛ, where W is a matrix of eigenvectors
and Λ is a diagonal matrix of eigenvalues. In Matlab, W and
Λ can be found via [W,L] = eig(S,F). The column in W with
the highest corresponding eigenvalue then corresponds to the
eigenvector that maximally enhances slow relative to fast sigma

activity. Conversely, the eigenvector with the lowest eigenvalue
has the opposite effect, maximizing fast relative to slow sigma
power. Detailed treatments of the derivation of these equations
can be found elsewhere (Nikulin et al., 2011; de Cheveigné and
Arzounian, 2015; Cohen, 2017; Cohen and Gulbinaite, 2017).

Although the most useful eigenvectors generally have
relatively high and low eigenvalues, it is not known a prioriwhich
eigenvectors will yield the best results. We therefore multiplied
the multi-channel, raw, broadband, Laplacian-transformed,
EEG with the full matrix W, resulting in a time series of
58 components (where each component reflects a unique
spatial weighting across all channels). These component time
series, in turn, were transformed to the frequency domain.
Similar to channel-based power spectra, we first took the
temporal derivative of the multi-component time series, and
then estimated power spectral density using Welch’s method
with 5 s windows and 50% overlap. We again took the
temporal derivative approach to reduce 1/f noise, and make
channel- and component-based peak detection as similar as
possible. However, we note that component peak location was
not noticeably influenced by the temporal derivative approach.
Resulting component spectra were visualized and the first
slow and the first fast component with peaks of sufficient
quality were selected based on visual inspection. Typically,
clear spectral sigma peaks were visible within the first 10
(for slow sigma) or last 10 (for fast sigma) components, with
several components peaking at exactly the same frequency.
Although manual component selection is time-consuming and
ultimately subjective, we note this process is akin to routine
manual selection of ICA components for removal or analysis.
Importantly, an individual’s components were selected without
cross-referencing them against that individual’s channel-based
spectra, guarding against experimenter bias. Moreover, as we
will demonstrate, components independently selected for N2 and
N3 and for the two nights showed a close correspondence in peak
frequency for each subject; frequencies of these manually selected
components were determined with an automated peak detection
algorithm as before. Supplementary Matlab code demonstrates
how to implement the GED analysis for several example sleep
recordings (see ‘‘Data and Software Sharing’’ Section).

We note that the spectral bands we used here for temporal
filtering (9–12 and 12–16 Hz) are slightly different from the
ones we later adopt as approximate slow (9–12.5 Hz) and fast
(12.5–16 Hz) spindle ranges based on the distribution of sigma
peak locations across individuals. However, we determined in
several subjects that shifting initial filter ranges does not affect
frequencies of subsequently identified component peaks by more
than 0.2 Hz (Supplementary Discussion).

We defined an individual’s slow or fast sigma range as a 1.3 Hz
window centered on his or her average sigma peak frequency
across nights and sleep stages. This width was a compromise
between a sufficiently broad range to capture small within-
subject differences in peak frequency across sleep stages and
nights, and sufficiently narrow to have non-overlapping slow and
fast windows for as many individuals as possible. An additional
consideration here was that for subsequent spindle detection (see
‘‘Spindle Detection’’ Section), data needs to be filtered in each
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individual’s slow or fast sigma range. Thus, we also inspected
each individual’s slow and fast sigma filters’ frequency response
used for spindle detection. These inspections assisted both in
arriving at the 1.3Hz sigma ranges and in deciding which subjects
to remove due to insufficient separation of the slow and fast
ranges. Based on these considerations, we opted to exclude three
subjects from topographical analyses involving slow spindles,
because their N2 and N3 slow sigma peaks differed by more than
0.7 Hz. Additionally, we excluded two subjects whose slow and
fast sigma filters still overlapped from all topographical analyses
(including one who had already been excluded for slow spindle
analysis). Of note, channel and component spectra for one of
these to-be-removed subjects (S4) are shown in Figures 2C,G.
Thus, these additional exclusions were not due to an inability to
resolve closely spaced peaks with the GED component approach,
but stemmed from an inability to adequately separate them with
filter widths of 1.3 Hz.

Topographical Cluster Analyses
For topographical analyses of sigma power, we averaged, per
epoch and electrode, power across the 1.3 Hz frequency range
corresponding to each subject’s individualized sigma peaks,
before averaging across epochs. This was done separately for
N2 and N3, and for each night. Permutation-based statistical
analyses on topographical data (sigma power, as well as
spindle density and spindle amplitude derived from automated
spindle detection) were performed with Fieldtrip using cluster
correction (Maris and Oostenveld, 2007). In several sets of
analyses, we compared N2 and N3, and slow and fast spindle
topographies for different spindle metrics. Using 1000 iterations,
the paired samples t statistic, a clusteralpha value of 0.1, and a
significance threshold of 0.05, clusters were deemed significant
at P < 0.025 for two-sided testing.

Spectral and Topographical Similarity
We determined the within-subject similarity of each individual’s
power spectra (e.g., between N2 and N3, between nights), and
the topographical correspondence of each individual’s spindle
expression (e.g., between slow and fast spindles, between N2 and
N3) in conceptually and analytically similar ways. First, we
calculated the Pearson correlation coefficient between a subject’s
two relevant spectra, or two relevant topographies. For spectra,
values were normalized power estimates at every frequency
bin from 0 Hz to 20 Hz (103 bins). For topographies, values
were spindle activity estimates (e.g., sigma power) at each of
the 58 electrodes. This yielded, across subjects and for each
comparison, a set of N correlation coefficients and associated
P values (where N is the number of individuals included in the
particular analysis). To assess these results at the group-level, we
performed a one-sample t test comparing the set ofN correlation
coefficients to zero. In addition, we adjusted the set of N P
values for multiple comparisons using the False Discovery Rate
(Benjamini and Hochberg, 1995) and report the percentage of
subjects showing above-chance similarity of spectral or spatial
profiles.

Importantly, while within-subject correlation coefficients
provide a useful index of ‘‘absolute’’ spectral or

topographical similarity, they ignore how similar spectral
or topographical profiles are across individuals. For example,
average within-subject, cross-night correlation values of 0.8 do
not indicate meaningful individual stability if average between-
subject correlations are also 0.8. Conversely, within-subject
correlations of only 0.4 signal substantial individual stability
of spectra or topographies if between-subject correlations
are only 0.2.

Second, therefore, we asked how well an individual’s spectral
or topographical pattern would allow us to differentiate that
subject from other subjects. To this end, we trained, for each
comparison of interest, a k-nearest neighbor classifier (Cover
and Hart, 1967) on all subjects’ spectral/topographical patterns
in one condition (e.g., night 1), and tested it on unseen data
from the other condition (e.g., night 2). This is implemented
in Matlab as fitcknn. We set k = 1, and used the correlation
distance (1 − Pearson correlation) as the distance metric. In
essence, this means each unseen test record is labeled as the one
it is most highly correlated with from the training set. Classifier
performance was calculated as the proportion of test cases
that were assigned the correct label, and classifier significance
was assessed using binomial tests. Thus, classifier performance
provides an index of whether—and how much—spectral or
topographical patterns are more stable within than across
subjects, thereby complementing the within-subject similarity
estimates afforded by Pearson correlation.

Spindle Detection
Individual sleep spindles were detected with an automated
algorithm adapted from one we (RC) employed earlier (Cox et al.,
2012, 2014a). For each subject and each channel, and separately
for the slow and fast sigma ranges, the Laplacian-transformed
signal was zero-phase band-pass filtered in that subject’s
frequency range of interest. Specifically, we used Matlab’s firls
function to design steep filters of order 3000 with a 1.3 Hz
passband and 0.5 Hz transition zones around the individualized
center frequency. The sigma envelope was calculated as the
magnitude of the Hilbert-transformed filtered signal, and was
smoothed with a 200 ms moving average window. Whenever
the envelope exceeded an upper threshold a potential spindle
was detected. Crossings of a lower threshold before and after
this point marked the beginning and end, respectively, of the
spindle. Start and end points were required to be at least 400 ms
and no more than 3000 ms apart, similar to other automated
detectors (Ramanathan et al., 2015). Per channel, thresholds were
set at the average N2 smoothed sigma amplitude envelope +
3 SDs (upper), and + 1 SD (lower). Spindle events were discarded
whenever power in any 20–80 Hz frequency bin exceeded that
of any frequency bin in that individual’s sigma range (suggesting
a broadband power increase rather than band-specific spindle),
or when the spindle’s average amplitude envelope was >4 SD
above the mean (indicative of an outlier). We calculated separate
threshold settings for slow and fast spindles to optimally adapt
to differences in slow and fast sigma amplitude. For both slow
and fast spindles, the same N2-based thresholds were used across
N2 and N3 to prevent confounding by different levels of sigma
power across these sleep stages. We then determined spindle
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density (spindles per minute) and the mean peak amplitude of
spindle events for each combination of channel, sleep stage and
spindle class.

Data and Software Sharing
Open source Matlab code (available at https://doi.org/10.6084/
m9.figshare.4905677) demonstrates how to implement the GED
analysis for several example sleep recordings. Sharing of
de-identified data was exempted from ethical approval and was
covered by the informed consent procedure.

RESULTS

Channel-Based Analyses
We first describe in some detail individual differences of NREM
spectra in general, and of sigma activity in particular. While
previous reports have already described several aspects of this
variability (De Gennaro et al., 2005, 2008; Lewandowski et al.,
2013; Ujma et al., 2015), we here revisit this issue qualitatively
and quantitatively in order to make the motivation for a novel
slow/fast spindle separation approach explicit. We examine
spectral properties from both channel-averaged and single-
channel (frontal and parietal) perspectives and demonstrate the
difficulties of both employing fixed slow/fast spindle ranges
and of utilizing channel-based data to define subject-specific
frequency ranges. Readers already familiar with these issues may
skip ahead to Component-Based Analyses where we introduce
an improved spindle separation approach based on spatial
filters.

Channel-Averaged Spectra
To depict oscillatory activity across the cortex, we averaged
58-channel EEG spectra across all channels for every 30 s
epoch, and then across epochs. Figure 1A shows these channel-
averaged spectra from night 1 for all 28 subjects during both
N2 (magenta) and N3 (green) in the 0–20 Hz range. Figure 1B
shows each individual’s detected N2 and N3 peak locations as
correspondingly colored dots with surface areas proportional
to each peak’s prominence. In both panels (A,B), thick dashed
vertical lines placed at 9, 12.5 and 16 Hz indicate boundaries
that best separate putative slow and fast sigma peaks across
subjects. These boundaries are based on careful inspection of
peak frequency distributions in the channel averaged-spectra, as
well as the component-based spectra we present later, and agree
well with those used by some other groups (Mölle et al., 2011;
Ujma et al., 2015). Nonetheless, the overlap between the chosen
slow sigma range and classical alpha band activity is potentially
problematic. We justify interpreting dynamics in this band as
spindle activity in the ‘‘Discussion’’ Section.

There was high variability in spectral profiles between
subjects, especially in the prominence and number of visible
peaks in the sigma range. Using a peak detection method
with liberal sensitivity, we could identify one or more peaks
in the broader 9–16 Hz range for all 28 subjects in both
N2 and N3. In N2, we observed 13 individuals with just
one peak, 14 with two, and one subject with three (S13),

although there was typically one peak that was much more
pronounced than the others. In N3, 12 individuals had just
one identifiable peak, and 16 had two. Peaks in the fast
sigma range (12.5–16 Hz) were relatively pronounced during
both N2 (n = 27) and N3 (n = 24; including two subjects
who had N3 peaks exactly at 12.5 Hz but corresponding
N2 peaks > 12.5 Hz), as is evident from the relatively large
dots in this range in Figure 1B. In contrast, slow sigma peaks
were often very shallow (small dots) or entirely absent in
the channel-averaged spectra, resulting in identified peaks in
far fewer subjects (N2: 16, including one subject with peak
at 12.5 Hz but corresponding N3 peak < 12.5 Hz; N3: 20).
These findings illustrate that two separate sigma peaks can be
uncovered from channel-averaged spectra in roughly half the
subjects.

Importantly, there was considerable variation between
subjects in the precise frequencies of slow (N2: 11.1 ± 1.0 Hz
[mean ± SD]; N3: 10.9 ± 0.8 Hz; no stage difference: t(14) = 1.2,
P = 0.24) and fast sigma peaks (N2: 13.5 ± 0.6 Hz; N3:
13.4 ± 0.6 Hz; trending to minimal stage difference: t(23) = 1.9,
P = 0.07), without consistent separation into distinct slow and
fast bands across subjects. Importantly, while the demarcation
line at 12.5 Hz does a reasonable job for the group, some
individuals’ peaks in Figure 1A are centered right on, or very
close to, that boundary (e.g., S4, S6, S23 and S25). We also
note that many clear slow sigma peaks would have been missed
entirely if the lower slow sigma boundaries were set at a
more conventional 11 Hz, rather than 9 Hz (e.g., S9, S16, S18,
S19). Naturally, this issue would only be exacerbated if this
threshold were increased further. Similarly, depending on the
precise boundaries used, closely spaced peaks could be lumped
together into just one of the spindle classes. Thus, fixed frequency
criteria do not adequately capture the natural variation of spindle
frequencies across individuals.

As expected, N2 and N3 power profiles were often
considerably different within the same individual
(Figures 1A,B), most notably in the slow oscillation (0.5–2 Hz)
and delta (2–4 Hz) range. Indeed, quantitative analyses indicated
that an individual’s N2 and N3 spectra were generally as different
as spectra from different individuals (Supplementary Results).
N2 and N3 differences in sigma amplitude were also evident.
While spectral peak frequencies were relatively consistent for
fast spindles, they did not correspond well between N2 and
N3 in the slow sigma range (e.g., S3, S8, S18; note the disparity
in location between magenta N2 dots and green N3 dots).
Indeed, for subjects having identifiable peaks in both stages,
peak frequencies were highly correlated across N2 and N3 for
fast sigma (R = 0.91, P < 10−9), but less robustly for slow sigma
(R = 0.53, P = 0.04). Thus, selection of slow and fast sigma bands
has to address variability both across subjects and between sleep
stages.

We also examined power spectra within individuals across
the two available recording nights, and confirmed previous
evidence that spectral profiles are exceptionally similar across
nights (De Gennaro et al., 2005, 2008; Lewandowski et al.,
2013), including stable N2-N3 differences (Figure 1C; see
Supplementary Figure S1 for spectra of all individuals).
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FIGURE 1 | Variability of channel-averaged spectra and spectral peak locations in N2 and N3. (A) Individual subjects’ normalized spectra averaged across all
channels are shown for N2 (magenta) and N3 (green) from night 1. For visualization, spectra have been rescaled to have the same amplitude range for every subject.
Thick vertical dashed lines indicate slow and fast sigma boundaries at 9, 12.5 and 16 Hz. Thin solid vertical lines spaced at 1 Hz intervals assist in evaluating how
alternative spectral definitions would partition sigma activity into slow and fast categories. (B) Spectral peak frequencies in N2 and N3 from night 1, corresponding to
panel (A). Each row represents an individual and colored dots indicate the location of spectral peaks for N2 (magenta, above line) and N3 (green, below line). Size of
dots is proportional to peak prominence. Note the large variability in peak frequencies in the sigma range and the absence of clear slow sigma peaks for many
individuals. In contrast, peaks in the 0.5–2 Hz range are highly consistent across individuals during N3. Vertical lines as in (A). (C) Normalized and rescaled
channel-averaged N2 (left, orange) and N3 (right, blue) spectra of five example subjects from night 1 (solid) and night 2 (dashed). Individual differences in spectral
shape are highly stable across nights. Vertical lines as in (A).

Quantitative analyses further supported this notion, including
highly accurate cross-night subject identification around 90%
(Supplementary Results).

In sum, NREM spectra differ considerably both across
individuals and within individuals for N2 and N3, including

variation in sigma peak frequencies. Nonetheless, spectral
differences are highly stable across nights, suggesting the
existence of similarly trait-like sigma peak frequencies.
We return to this issue in more detail in the following
sections.
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FIGURE 2 | Channel- and component-based spectral peaks. (A–C) Single-channel spectra for three selected subjects for frontal channel Fz (blue) and posterior
channel Pz (red), for N2 (dashed) and N3 (solid). Power obtained using derivative of Laplacian-transformed time series, and normalized to average 0–4 Hz power
during N2. (D) Correspondence between channel-based peaks identified during N2 and N3, calculated separately for Fz and Pz. (E–G) Component-based spectra
for same individuals as in panels (A–C). Spectra scaled between 0 and 1 to account for varying amplitudes of different components. (H) Correspondence between
component-based peaks identified during N2 and N3, calculated separately for slow and fast components. Correlation for slow sigma peaks is much greater
compared to channel-based peak selection in (D), indicating more stable estimates of underlying oscillatory frequency.

Single-Channel Spectra
While averaging spectra across channels offers a topographically
unbiased perspective, this approach may also obscure and distort
spectral peaks present on a limited number of channels. Thus,
the appearance of unitary sigma peaks in Figure 1A for some
subjects may reflect the merger of closely spaced slow and fast
sigma peaks, or the attenuation of slow sigma peaks if they are
only present on a few frontal channels.

We therefore turned to examining spectra on individual
frontal (Fz) and parietal (Pz) channels where slow and fast
spindles are most frequently reported (Tamaki et al., 2008;
Ayoub et al., 2013). Figure 2A shows data for subject S10,
with clearly separable slow frontal (blue) and fast parietal
peaks (red), during both N2 (dashed) and N3 (solid). In a
more ambiguous example (S6, Figure 2B), posterior channel
Pz exhibited clear peaks around 13 Hz, while frontal channel
Fz expressed a peak at 11.5 Hz during N3, presumably
reflecting slow spindles. However, Fz displayed a much faster
12.9 Hz peak during N2, ostensibly signaling fast rather than
slow spindle activity. In yet another case (S4, Figure 2C),
both the frontal and parietal channels showed peaks around
13 Hz with no suggestion whatsoever of a separate slow
sigma peak. Applying the same peak detection method as
before, single-channel sigma peak isolation was numerically
improved relative to the channel-averaged approach for Pz-based
fast (N2: 28 vs. 27; N3: 27 vs. 24) and Fz-based slow
spindles (N2: 19 vs. 16; N3: 24 vs. 20). Detailed values of
single-channel detection success are presented in Table 1.
Moreover, peak frequencies were highly correlated across
nights (fast N2: R = 0.79, P < 10−6; fast N3: R = 0.92,

P < 10−11; slow N2: R = 0.81, P < 10−4; slow N3: R = 0.79,
P < 10−5), further affirming the stability of sleep spectral
features.

However, when we examined the correspondence of sigma
peak frequencies across N2 and N3, we obtained disparate
results for slow and fast spindle activity. Fast sigma frequencies,
averaged across the two nights, were highly correlated across
stages (Figure 2D; R = 0.92, P < 10−11), with a small,
but significant difference in frequency between N2 and N3
(13.4 ± 0.6 vs. 13.3 ± 0.6 Hz, t(27) = 2.3, P = 0.03). In contrast,
for slow sigma we found no reliable association between stages
(R = 0.36, P = 0.09), and observed a significant difference between
N2 and N3 frequency that was much greater than for fast sigma
(11.2 ± 1.0 vs. 10.7 ± 0.8 Hz; t(22) = 2.2, P = 0.04), differing
in individual cases by up to 3.3 Hz. The latter result confirms
previous observations that peak frequencies of slow sigma can
differ substantially between N2 and N3 (Mölle et al., 2011).

In sum, these findings indicate that while a single-channel
vs. channel-averaged approach allows sigma peak detection in
more individuals, this does not remedy the inconsistencies in
slow sigma peak location observed across sleep stages. However,
addressing this issue is crucial to accurately distinguish slow from
fast spindle activity; we turn to a proposed resolution next.

Component-Based Analyses
We sought to overcome the limitations of channel-based
approaches to determine subject-specific spindle frequencies
by harnessing the spatio-spectral structure inherent to multi-
channel EEG recordings. Conceptually, the main obstacle to
identifying slow sigma peaks is that, for any individual, it is
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TABLE 1 | Sigma peak detection using single-channel and component-based spectra.

Slow Fast

N2 N3 N2 N3

Night 1 Single-channel 68% 86% 100% 96%
Component 96% 100% 100% 100%
Z 2.8 2.1 0 1
P 0.005 0.04 1 0.31

Night 2 Single-channel 79% 93% 100% 100%
Component 93% 93% 100% 93%
Z 1.5 0 0 −1.0
P 0.13 1 1 0.31

Percentage of subjects (n = 28) where sigma peaks could be identified in the slow and fast sigma ranges, for N2 and N3 in both nights. The z statistic was used to

compare proportions between the single-channel and component-based approaches.

not known a priori which channels express slow sigma most
clearly and are least affected by interfering fast sigma activity. By
determining an optimal combination of channels that enhances
slow as opposed to fast sigma activity, and vice versa, the problem
of identifying individual subjects’ slow and fast sigma frequencies
becomes tractable.

Computationally, we derived the desired channel
combinations using a linear spatial filtering approach based
on generalized eigendecomposition (GED). These spatial
filters were then applied to the original EEG, resulting in
‘‘components’’ that we subsequently analyzed in the frequency
domain (see ‘‘Materials and Methods’’ Section). Figures 2E–G
show the results of such analyses in the same three subjects
used for the single-channel approach. For S10, who already
expressed clear slow and fast sigma peaks in single-channel
spectra (Figure 2A), the GED-based component approach
identified highly similar peaks (Figure 2E). More importantly,
and in sharp contrast to the channel-based approach, clear
slow peaks were also identified for both S6 and S4 during both
N2 and N3 sleep (Figures 2F,G). For S6, where the frontal
channel appeared sensitive to fast rather than slow spindle
activity during N2 (Figure 2B), components now identified
slow peaks in both N2 and N3, with peaks frequencies only
0.6 Hz apart (Figure 2F). Remarkably, whereas S4 showed no
inkling of slow sigma activity based on channel Fz during either
N2 or N3 (Figure 2C), the decomposition approach identified
components in the slow sigma range for both N2 and N3 with
highly similar peak frequencies (Figure 2G). Importantly,
these slow components were distinguishable from components
with peaks in the fast sigma range, suggesting this technique
is able to identify closely spaced, but distinct, oscillatory
rhythms. Critically, these findings demonstrate that relying
on channel-based spectra can lead to erroneous conclusions
regarding the frequency, and even existence, of slow spindle
activity.

Using this GED component method, we identified fast peaks
for a total of 110 of 112 subject-night-sleep stage recordings
(all but 2 second-night N3 recordings), similar to channel-based
detection (Table 1). In contrast, for slow sigma, component-
based peaks could now be isolated for all but three and two
subject-night recordings for N2 and N3, respectively. This
constitutes a significant increase in the proportion of detected
slow sigma peaks for night 1 (Table 1, N2: P = 0.005; N3:

P = 0.04), but not night 2 (N2: P = 0.13, N3: P = 1). As with
channel-based peak detection, cross-night correlations were very
high for fast sigma (N2: R = 0.93, P < 10−11; N3: R = 0.94,
P < 10−11) and slow sigma peaks (N2: R = 0.77, P < 10−5;
N3: R = 0.59, P = 0.0015), indicating this method identified
components with similar spectral properties across nights.

Repeating the cross-stage analyses for component-based
sigma frequencies, we found that fast sigma peak frequencies
were highly correlated as before (Figure 2H; R = 0.95,
P < 10−13), with a small, but significant difference between
N2 and N3, similar to the channel-based approach (13.5± 0.6 vs.
13.4 ± 0.6 Hz, t(27) = 2.7, P = 0.01). For slow sigma,
however, peaks now also showed a strong correlation between
stages (Figure 2H; R = 0.68, P < 10−4; cf. R = 0.36,
P = 0.09 for single-channel analyses, above). Moreover, slow
sigma frequency no longer differed significantly between N2 and
N3 (11.0 ± 0.8 vs. 10.8 ± 0.7 Hz; t(27) = 1, 4, P = 0.15).
Thus, the GED component approach identified highly similar
peaks in N2 and N3, suggesting that the same underlying
oscillatory phenomena are present, and may be captured,
during both light N2 and deep N3 sleep. We also directly
compared sigma frequencies as determined from the single-
channel and component approaches and found that peak
frequencies are not substantially shifted by the component
approach (Supplementary Results).

In total, unambiguous sigma peaks that were stable across
N2 and N3 in both nights could be isolated for all 28 subjects
for fast spindles, and for all but three individuals for slow
spindles. Of note, applying the same strict criteria to channel-
based spectra would result in a further loss of nine subjects
for slow spindle analyses. Thus, the component-based approach
reduced the amount of data excluded from downstream slow
spindle analyses by 75%. Mean fast spindle frequency was
13.5 ± 0.6 Hz (range: 12.5–15.4 Hz), while average slow spindle
frequency was 10.9 ± 0.7 (range: 9.3–12.0 Hz), well in line
with previous studies (Mölle et al., 2011; Ujma et al., 2015).
Not surprisingly, a paired t-test showed these frequencies to be
significantly distinct (t(24) = 12.2, P < 10−11). Similar to previous
reports (Kokkinos and Kostopoulos, 2011), we found no reliable
correlation between slow and fast spindle frequencies (R =−0.30,
P = 0.15).

In sum, component-based sigma peak frequencies were
highly replicable across nights and between sleep stages, for
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both fast, and crucially, for slow spindles. While single-
channel spectra yielded similarly consistent results for fast
sigma activity across nights and stages, these correspondences
were much poorer for channel-based slow sigma activity.
Together, these findings demonstrate that subject-specific
spindle frequencies can be identified with higher accuracy
using a GED-based spatial filtering approach. Supplementary
Matlab code illustrates how to implement the GED-based
sigma peak detection approach for several example sleep
recordings.

Topographical Analyses
We now turn to topographical analyses of spindle activity
defined by the individualized sigma peaks identified in the
previous section. These examinations follow three main threads.
First, given the novelty of the GED-based component approach
to isolate subject-specific sigma frequencies, these analyses
aim to provide crucial validation of our method. In order
to demonstrate that the identified oscillatory frequencies
correspond to physiological slow and fast spindles, individually
targeted spindle activity should replicate key findings regarding
slow frontal and fast centro-parietal spindle topography
(Werth et al., 1997; Zeitlhofer et al., 1997). However, these
previous reports did not statistically compare these spatial
patterns, nor have N2 and N3 spindle activity patterns been
contrasted directly, motivating more rigorous permutation-
based topographical group analyses. Second, taking advantage
of the increased sensitivity afforded by our method, we take a
detailed look at the spatial properties of sleep spindle activity at
the individual level, and find that group effects mask substantial
individual variability. Third, we compare spindle topographies
between several often-used metrics of spindle activity (sigma
power, spindle density, spindle amplitude), and observe that
these topographies show only moderate resemblance on the
individual level. Combined, these analyses offer several new
insights regarding topographical spindle dynamics.

Group-Level Slow and Fast Sigma Power
Topographies
In order to carry out topographical analyses, we set
individualized sigma ranges as a 1.3 Hz band centered on
the mean peak frequency across N2 and N3. Due to overlapping
slow and fast sigma ranges in two individuals, we included
26/28 individuals for fast spindle analyses and 24/28 for slow
spindles (see ‘‘Materials and Methods’’ Section). We then
averaged every electrode’s normalized power spectrum across
frequency bins corresponding to that individual’s slow and fast
sigma range. We performed this procedure separately for N2 and
N3, and for each night. In what follows, we report data from
night 1, unless otherwise stated.

Across subjects, fast sigma power showed a clear centro-
parietal topography, both during N2 and N3 (Figures 3A,B).
Moreover, performing topographical statistics with cluster
correction, we found that fast sigma power was significantly
elevated during N2 relative to N3 in one large cluster comprising
all electrodes (P = 0.002, Figure 3C), although the difference was
largest at parietal sensors. In contrast, we saw distinctly different

topographical profiles for slow sigma power. While during
N3 slow spindles exhibited a clear frontal topography as expected
(Figure 3E), slow sigma activity during N2 was expressed in
a bilateral fronto-central fashion, albeit with reduced power
(Figure 3D). Statistical analyses (Figure 3F) revealed that slow
sigma power was higher in N3 than N2 in a frontal cluster
comprising 13 electrodes (P = 0.07), whereas the reverse was
found for a posterior cluster of 14 electrodes (P = 0.04). The
distinctly low slow sigma power at Fz during N2 is noteworthy,
as this electrode is often used to quantify slow spindles (Tamaki
et al., 2008; Ayoub et al., 2013).

We also directly contrasted fast and slow spindle activity and
observed that, during N2, fast sigma power was significantly
enhanced over a wide central-to-posterior region (P = 0.002,
Figure 3G). In fact, while fast spindles clearly had a parietal
focus, frontal fast spindle power during N2 was still numerically
greater than slow sigma power. This observation could explain
why N2 slow sigma peaks are not readily observed in channel
data and may be easily overshadowed by fast sigma peaks. For
N3, we similarly observed greater fast vs. slow spindle power
over parietal regions (P = 0.010, Figure 3H), and additionally,
enhanced slow vs. fast power over a frontal cluster (P = 0.014,
Figure 3H).

These group-level findings, based on our component-based
extraction of individualized spindle frequency bands, confirm
the differential topographical expression of frontal slow and
parietal fast spindles, and N2 vs. N3 differences in fast spindle
activity (Werth et al., 1997; Mölle et al., 2011). In addition,
we report a more distributed slow spindle topography during
N2 that was statistically distinct from the frontal pattern
during N3. Thus, while slow spindles are most prominent
over frontal areas during periods rich in slow oscillations, they
extend to more parietal areas during light sleep. Importantly,
we observed highly similar topographies and reproducible
significant clusters when we analyzed data from night 2 (not
shown). Encouraged that the individualized spatial filtering
approach produced expected results, we decided to have a deeper
look at the individual topographies contributing to the group
effects.

Individual Slow and Fast Sigma Power Topographies
Individual topographies of slow and fast sigma power
from night 1 are shown for four subjects in Figure 4,
including two whose selected components were shown
in Figure 2. Inspection of scalp maps revealed both
commonalities and considerable variability across
subjects.

Fast spindles (top row in every panel) were expressed
across the entire cortex, but with typical hotspots over
central and parietal areas, although the exact topographies
varied substantially. In line with group effects, fast sigma
power was distinctly greater in N2 compared to N3 for
some subjects (Figures 4A,B), but not others (Figures 4C,D).
These findings also match the shape of individual power
spectra in Figure 1A. Regarding slow spindle activity, while
three subjects exhibited a clear frontal topography during N3
(Figures 4A–C), another had a more distributed, and distinctly
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FIGURE 3 | Group topographies of fast and slow sigma power during N2 and N3 from night 1. (A) N2 fast spindles. (B) N3 fast spindles. (C) N2 > N3 fast spindles
difference. (D) N2 slow spindles. (E) N3 slow spindles. (F) N2 > N3 slow spindles difference. (G) N2 fast > slow difference. (H) N3 fast > slow difference. Significant
electrodes from paired tests with cluster correction indicated on difference maps as black (positive) and white (negative) dots. Cluster size(s) (number of electrodes)
and P value(s) indicated below each difference map. Note the different color scales for fast (A,B) vs. slow spindles (D,E), as well as different scales for each
difference map.

non-frontal, pattern during deep sleep (Figure 4D). During
N2, slow sigma topographies were even more variable, with
one subject having a frontal distribution matching the one
seen in N3 (Figure 4C), a second having both frontal and
parietal hotspots (Figure 4A), another having just posterior
clusters (Figure 4D), and yet another having a rather distributed
profile (Figure 4B). We note that the observed individual
topographical variability emphasizes the difficulty of detecting
slow sigma peaks from a single frontal channel. For example,
S1 (Figure 4A) did not express much slow spindle power at
channel Fz, and, additionally, had higher fast than slow sigma

power even over frontal regions. Indeed, this subject only
demonstrated one unitary sigma peak in the power spectrum of
Figure 1.

Despite overall power differences, each individual’s N2 and
N3 topographies appeared quite similar within a spindle class.
In order to quantify this, we correlated N2 and N3 sigma
power across all electrodes for each individual, separately for
slow and fast spindle classes. Thus, this approach assesses the
similarity between topographical N2 and N3 patterns within
subjects, irrespective of potential stage-dependent differences
in absolute power. We found quite strong correlations of
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FIGURE 4 | Individual topographies of fast and slow sigma power from night 1. For each subject panel (A–D), the top row displays normalized fast sigma power, the
bottom row shows slow sigma power, and the left and right columns show N2 and N3 topographies, respectively. Note the different color scales for fast vs. slow
spindles. Numbers below “fast” and “slow” indicate each individual’s peak sigma frequencies in Hz. Dashed boxes indicate topographies used for cross-night
comparisons of Figure 5.

TABLE 2 | Within-subject similarity of sigma power topographies across sleep stages and spindle classes.

Comparison Correlation Classification

N R Pcorr < 0.05 I ≥ II II ≥ I

N2 vs. N3 Night 1 Slow 24 0.46 ± 0.37∗∗∗ 75% 42%∗∗∗ 46%∗∗∗

Fast 26 0.78 ± 0.21∗∗∗ 96% 77%∗∗∗ 69%∗∗∗

Slow vs. Fast sigma Night 1 N2 24 0.33 ± 0.35∗∗∗ 67% 25%∗∗∗ 38%∗∗∗

N3 24 0.19 ± 0.35∗ 63% 33%∗∗∗ 46%∗∗∗

R: Pearson correlation coefficient (mean ± SD, across individuals); Pcorr < 0.05: percentage of subjects with False Discovery Rate-corrected P values < 0.05; I ≥ II and II

≥ I: classification direction. Significance levels (correlation: one-sample t-test vs. zero; classification: binomial test) indicated by ∗ < 0.05; ∗∗∗ < 0.001.

around 0.5 and 0.8 for slow and fast sigma, respectively
(Table 2, N2 vs. N3). These values were significantly greater
than zero both at the group level and for at least 75% of
individuals across N2 and N3. However, these results do not
indicate whether similar correspondences might be found when
correlating N2 and N3 sigma profiles from different subjects. We
therefore trained k-nearest neighbor classifiers on individuals’

N2 sigma profiles and tested them on N3 profiles from the
same night, and vice versa. Recognition rates were highly
significant, at approximately 45% and 75% for slow and fast
sigma (Table 2, N2 vs. N3). Thus, these findings suggest the
same underlying subject-specific spindle generators are active
across light N2 and deep N3 sleep states, most clearly for fast
spindles.
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FIGURE 5 | Stability of individual differences in sigma power topographies
across nights. (A) Slow N2 sigma for subject S1. (B) Slow N3 sigma for
subject S6. (C) Fast N2 sigma for subject S10. (D) Fast N3 sigma for subject
S27. To emphasize topographical similarity, color scales were scaled between
minimum and maximum value for each topography.

As evident from Figure 4, each individual’s slow and fast
sigma topographies appeared to correspond poorly. Quantifying
the degree of similarity between these spatial profiles, we found
that slow and fast sigma topographies had average correlation
coefficients of 0.3 and 0.2 during N2 and N3, respectively,
indicating only limited within-subject correspondence of slow
and fast sigma expression across the scalp (Table 2, slow
vs. fast sigma). Again, however, these results do not account
for the baseline similarity of slow and fast sigma profiles
from different subjects. Using classifiers, we asked if knowing

individuals’ slow sigma profiles would allow us to recognize
them from their fast sigma topography, and vice versa. Across
N2 and N3, we obtained significantly above chance cross-
spindle-type classification rates of around 30% when trained
on slow sigma and tested on fast sigma, and of around 40%
when trained on fast sigma and tested on slow (Table 2, slow
vs. fast sigma). These findings indicate that, even though an
individual’s spatial profiles of slow and fast sigma expression
are quite distinct (low correlation), they still share a sufficient
degree of commonality to allow differentiation from other
individuals’ sigma topographies in at least a third of our
subjects. Overall, however, individual slow and fast sigma profiles
were much less similar than N2 and N3 topographies of the
same spindle type, suggesting these spindle classes are largely
distinct.

So far, it is unclear whether individual differences in
topographical expression of sigma power constitute stable traits,
or rather, reflect night-specific differences in brain state that
may be equally pronounced for the same individual across
nights. As shown for the examples in Figure 5, however,
individual spatial differences were highly stable across nights,
for both slow and fast sigma power, and for both N2 and
N3. To quantify this effect, we correlated sigma power across
all electrodes between the two nights for each individual. We
found substantial evidence for individual topographical stability
across nights, with correlation values of around 0.6 for both
slow and fast sigma topographies, and during both N2 and N3
(Table 3, sigma power). Note how these cross-night correlations
were much higher than cross-spindle-type correlations within
the same night. We again turned to classifiers to ask if
individuals can be recognized across nights based on their
spatial expression of sigma activity. Recognition performance
was significantly above chance for all analyses, but successful
in up to three times as many individuals for N2 than N3, and
higher for slow than fast sigma profiles (Table 3, sigma power).
Whereas cross-night N3 fast sigma topographies were only
slightly more similar within than between individuals, leading
to classification rates around 20%, this difference was much
greater for N2 slow sigma profiles, yielding recognition accuracy
around 65%. The latter observation is noteworthy given that
slow sigma peaks were most difficult to isolate from channel-
based spectra in this sleep stage, indicating that meaningful
slow sigma topographies may be extracted even under taxing
circumstances.

For all preceding and forthcoming classification analyses,
it should be mentioned that recognition scores are influenced
by both individual stability and between-subject variability.
Higher ‘‘baseline’’ topographical similarity between different
individuals for a particular sleep stage or spindle class could
make it more difficult to differentiate between individuals,
even if within-subject topographies are highly similar. Thus,
the classifier approach takes between-subject variability into
account, complementing the topographical correlation analyses
that do not.

Together, these subject-specific analyses demonstrate that
individual patterns of sigma expression are relatively stable
across sleep states, but much less so across slow and fast
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TABLE 3 | Within-subject similarity of topographies across nights.

Comparison Correlation Classification

N R Pcorr < 0.05 I ≥ II II ≥ I

Sigma power Slow N2 24 0.67 ± 0.21∗∗∗ 96% 71%∗∗∗ 58%∗∗∗

N3 24 0.56 ± 0.25∗∗∗ 92% 38%∗∗∗ 46%∗∗∗

Fast N2 26 0.69 ± 0.20∗∗∗ 96% 46%∗∗∗ 54%∗∗∗

N3 26 0.53 ± 0.23∗∗∗ 88% 23%∗∗∗ 15%∗∗

Spindle density Slow N2 24 0.60 ± 0.26∗∗∗ 92% 33%∗∗∗ 46%∗∗∗

N3 24 0.52 ± 0.32∗∗∗ 75% 25%∗∗∗ 46%∗∗∗

Fast N2 26 0.46 ± 0.22∗∗∗ 77% 35%∗∗∗ 23%∗∗∗

N3 26 0.24 ± 0.25 ∗∗∗ 46% 15%∗∗ 19%∗∗∗

Spindle amplitude Slow N2 23 0.64 ± 0.25∗∗∗ 91% 43%∗∗∗ 48%∗∗∗

N3 17 0.57 ± 0.26∗∗∗ 88% 47%∗∗∗ 47%∗∗∗

Fast N2 25 0.59 ± 0.26∗∗∗ 88% 48%∗∗∗ 40%∗∗∗

N3 16 0.53 ± 0.22∗∗∗ 88% 31%∗∗∗ 38%∗∗∗

R: Pearson correlation coefficient; Pcorr < 0.05: percentage of subjects with False Discovery Rate-corrected P values < 0.05; I ≥ II and II ≥ I: classification direction.

Significance levels (correlation: one-sample t-test vs. zero; classification: binomial test) indicated by ∗∗ < 0.01; ∗∗∗ < 0.001. Note: cases where spindles were not detected

on every channel were excluded from spindle amplitude analyses.

sigma bands, providing additional support for the existence of
two distinct spindle classes. Moreover, individual variability in
topographical sigma expression is stable across nights, most
prominently for N2 sleep. As such, individual topographical
variability of both slow and fast spindles appears to reflect
another individual trait of NREM sleep, similar to the cross-
night stability of power spectra (Supplementary Results). In sum,
while the previous section demonstrated clear indications of
canonical slow and fast sigma topographies across subjects, these
group effects mask substantial individual variability that must be
taken into consideration when analyzing the spatial properties of
spindle activity.

Topographies of Individually Detected Spindles
across and within Subjects
Apotential concern from the previous analyses is that by focusing
on sigma power we do not treat spindles as distinct events with
designated starts and ends. More generally, it is often assumed, at
least implicitly, that sigma power and properties of individually
detected spindles (e.g., spindle density, spindle amplitude)
capture largely similar aspects of underlying spindle activity.
However, as we are unaware of studies directly comparing these
metrics, we next turn to examinations of group-level and subject-
specific topographies of discrete spindle properties, and relate
these to the sigma power patterns described in the previous
sections.

We used an automated spindle detector (Cox et al., 2012,
2014a) to isolate individual sleep spindles using the subject-
specific frequencies identified earlier. Briefly, the algorithm
filters Laplacian-transformed channel data in the individualized
sigma range of interest, and applies upper and lower thresholds
based on characteristics of the N2 sigma envelope (see
‘‘Materials and Methods’’ Section). Of note, this threshold
approach dynamically adapts to the level of sigma signal
present at each channel, thus contrasting with the sigma
power approach that expressly does not account for such
differences. Moreover, by running the algorithm twice, targeting
slow and fast sigma ranges separately, different thresholds are

applied for slow and fast spindle detection, aiding in isolating
different-amplitude spindles. For example, upper thresholds
were significantly higher across subjects for slow vs. fast spindle
detection on channel Fz (0.20 ± 0.06 vs. 0.18 ± 0.07 µV/cm2,
t(27) = 3.6, P = 0.001), but this relation was reversed on
channel Pz (0.17 ± 0.07 vs. 0.21 ± 0.10 µV/cm2; t(27) = −2.4,
P = 0.02). After detecting spindle events in this manner, we
calculated spindle density (number per minute) and mean
spindle peak amplitude for each channel and individual,
separately for N2 and N3, and separately for slow and fast
spindles.

In general, group topographies of spindle density and
peak spindle amplitude were consistent with sigma power
profiles presented in Figure 3. Compared to sigma power,
spindle density profiles generally had a more diffuse appearance
(Figures 6A,B,D,E), but topographical statistics indicated N2 vs.
N3 differences for both fast (Figure 6C) and slow spindles
(Figure 6F) similar to those seen for sigma power. Similarly, slow
vs. fast spindle density topographies matched those observed
for sigma power (Figures 6G,H; noting that different thresholds
were applied for detecting these two spindle types). Spindle
amplitude topographies also looked similar to sigma power
patterns, albeit with a more focal appearance (Figures 6I,J,L,M).
Similar to the other metrics, fast spindle amplitude was
greater in N2 than N3 (Figure 6K). In addition, slow spindles
were also of significantly higher amplitude in N2 vs. N3
(Figure 6N), including frontal regions where values were
substantially lower in N2 for sigma power (significantly) and
spindle density (numerically). Finally, fast and slow spindle
amplitude topographies differed significantly as the other metrics
did (Figures 6O,P).

Combined, these group-level topographies provide some
insights regarding which aspects of spindle activity contribute
to observed sigma power. In particular, the N2 fast sigma
power peak over centro-parietal regions (Figure 3) appears to
be predominantly driven by enhanced spindle amplitude in this
region, but not by spindle density, which was quite uniform
across the scalp. In contrast, the bilateral fronto-central profile

Frontiers in Human Neuroscience | www.frontiersin.org 14 September 2017 | Volume 11 | Article 433

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cox et al. Individual Differences of Slow and Fast Spindles

FIGURE 6 | Group topographies of fast and slow spindle density (A–H) and
spindle amplitude (I–P) during N2 and N3. (A,I) N2 fast spindles. (B,J) N3 fast
spindles. (C,K) N2 > N3 fast spindles difference. (D,L) N2 slow spindles.
(E,M) N3 slow spindles. (F,N) N2 > N3 slow spindles difference.
(G,O) N2 fast > slow difference. (H,P) N3 fast > slow difference. Significant
electrodes from paired tests with cluster correction indicated on difference
maps as black (positive) and white (negative) dots. Cluster size(s) (number of
electrodes) and P value(s) indicated below each difference map. Color scales
are shared for (A,B), (D,E), (I,J,L,M), (K,N), and (O,P).

of N2 slow sigma seems inexplicable in terms of either spindle
density or amplitude. Interestingly, both density and amplitude
of spindles appear to contribute to the patterns of both fast and
slow sigma power in N3.

FIGURE 7 | Comparison of topographical maps based on different spindle
activity measures for a single subject (S1). (A) Topographies of sigma power,
spindle density and spindle amplitude for fast spindles during N2.
(B) Topographies for slow spindles during N3. While this subject’s
topographies based on different measures show a reasonable
correspondence for slow N3 spindles, spatial agreement is quite poor for fast
N2 spindles.

To examine these group-level observations in more detail,
we turned to spatial maps of spindle properties from individual
subjects. Similar to sigma power, individual subjects’ spindle
density and spindle amplitude profiles were quite variable, and
these, too, were generally stable across nights (Table 3, spindle
density and spindle amplitude). However, direct comparisons of
cross-night topographical similarity between metrics indicated
that spindle density topographies were significantly less stable
across nights than sigma power profiles for fast spindles
(N2: t(25) = 6.0, P < 10−5; N3: t(25) = 6.5, P < 10−6), but not
for slow spindles (both P > 0.18). Similarly, spindle density
patterns were less stable than spindle amplitude patterns for
fast (N2: t(24) = 3.4, P = 0.002; N3: t(15) = 3.8, P = 0.002),
but not slow spindles (both P > 0.30). Complementing this
view, we found cross-night subject classification based on spindle
density (mean across spindle class, sleep stage, and classification
direction: 30± 12%) to be significantly lower than sigma power-
based (44 ± 18%; t(7) = 2.7, P = 0.03) and spindle amplitude-
based recognition (43 ± 6%; t(7) = 4.6, P = 0.002). We also
observed sigma power profiles to be more similar across nights
than spindle amplitude profiles for fast N2 spindles (t(24) = 3.0,
P = 0.006), but not for fast N3 spindles or slow spindles (all
P > 0.30). However, cross-night classification rates did not
differ between sigma power and spindle amplitude (P > 0.8).
Overall, these findings establish that topographical patterns of
sigma power and spindle amplitude are more reliable across
nights than spindle density distributions, particularly for fast
spindles.

We next compared within-subject topographical patterns of
all three metrics from the same night to determine how well
they correspond with one another. For illustration, Figure 7
shows topographies from one subject for all metrics, for both
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TABLE 4 | Within-subject similarity of topographies based on different measures of spindle activity.

Comparison Correlation Classification

N R Pcorr < 0.05 I ≥ II II ≥ I

Sigma power vs. Spindle density Slow N2 24 0.17 ± 0.38∗ 46% 17%∗∗ 13%∗

N3 24 0.62 ± 0.23∗∗∗ 88% 58%∗∗∗ 75%∗∗∗

Fast N2 26 0.24 ± 0.26∗∗∗ 42% 19%∗∗∗ 27%∗∗∗

N3 26 0.41 ± 0.23∗∗∗ 73% 54%∗∗∗ 50%∗∗∗

Sigma power vs. Spindle amplitude Slow N2 24 0.16 ± 0.32∗ 38% 21%∗∗∗ 17%∗∗

N3 24 0.46 ± 0.26∗∗∗ 71% 13%∗ 21%∗∗∗

Fast N2 19 0.44 ± 0.23∗∗∗ 77% 42%∗∗∗ 31%∗∗∗

N3 18 0.56 ± 0.22∗∗∗ 54% 35%∗∗∗ 35%∗∗∗

Spindle density vs. Spindle amplitude Slow N2 24 0.38 ± 0.37∗∗∗ 71% 25%∗∗∗ 13%∗

N3 19 0.42 ± 0.36∗∗∗ 63% 21%∗∗∗ 29%∗∗∗

Fast N2 26 0.47 ± 0.20∗∗∗ 84% 42%∗∗∗ 35%∗∗∗

N3 18 0.27 ± 0.25∗∗∗ 38% 15%∗∗ 19%∗∗∗

R: Pearson correlation coefficient; Pcorr < 0.05: percentage of subjects with False Discovery Rate-corrected P values < 0.05; I ≥ II and II ≥ I: classification direction.

Significance levels (correlation: one-sample t-test vs. zero; classification: binomial test) indicated by ∗ < 0.05; ∗∗ < 0.01; ∗∗∗ < 0.001. Note: cases where spindles were

not detected on every channel were excluded from spindle amplitude analyses.

fast N2 spindles (Figure 7A) and slow N3 spindles (Figure 7B).
In line with the group maps, this subject’s N2 fast sigma
power distribution appears to be more strongly driven by
spindle amplitude, and to a lesser extent, if at all, by spindle
density (Figure 7A). In contrast, the slow N3 power topography
appears similarly related to spindle amplitude and spindle density
profiles (Figure 7B). These observations suggest that amplitude
and prevalence of spindles may contribute to observed sigma
power in different ways depending on spindle class and sleep
stage.

To quantify these visual observations, we directly compared
topographical patterns between each pair of these three metrics
within individuals. Detailed values and statistics can be found in
Table 4. Overall, within-subject spatial maps based on different
metrics showed moderate correspondence, although results
depended importantly on sleep stage, spindle class, and which
metrics were being compared. Confirming the observations from
Figures 3, 5, 7, fast sigma power topographies were more closely
related to spindle amplitude than spindle density for both N2
(t(25) = 3.3, P = 0.003) and N3 (t(17) = 2.9, P = 0.01). In contrast,
slow sigma power topographies were equally poorly related to
spindle amplitude and density during N2 (t(23) =−0.1, P = 0.95),
but more similar to spindle density than spindle amplitude
topographies during N3 (t(18) = −2.0, P = 0.06). In terms of
subject discriminability, cross-metric subject recognition rates
typically did not exceed 40%, except for N3 sigma power vs.
spindle density topographies. To place these findings in context,
we achieved higher recognition performance for the majority of
cross-sleep stage and cross-night comparisons based on the same
sigma power metric (Tables 2, 3, Figures 4, 5), than we did for
cross-metric comparisons within the same night and sleep stage.

Overall, these spindle metric comparisons lead to four
conclusions. First, sigma power and spindle amplitude maps are
more stable across nights than spindle density profiles. Second,
spindle amplitude and spindle density contribute differently
to sigma power, depending on sleep stage and spindle class
under consideration. Third, topographical maps based on
different metrics are generally quite distinct even for the same

individual. This somewhat unexpected finding suggests that the
choice of spindle metric could have important downstream
ramifications regarding topographical group maps, statistics,
and interpretations. Finally, these findings again show that
group-level maps obscure substantial individual topographical
variability of spindle expression.

DISCUSSION

The current study characterized the large between-subject
variability of spindle frequencies and topographies, and assessed
the correspondence of spatial spindle expression between slow
and fast spindle classes, sleep stages, nights, and several
metrics of spindle activity. Employing a novel spatial filtering
approach to isolate subject-specific frequencies of slow and fast
spindle activity, we replicated topographical properties of spindle
expression at the group-level (Werth et al., 1997; Zeitlhofer et
al., 1997), strongly suggesting that we successfully isolated the
oscillatory phenomena of interest. By then taking a more detailed
look at topographical aspects of these oscillatory dynamics,
and, furthermore, by extending the subject-specific approach
from the spectral to the spatial dimension, we made several
novel observations about the organization of NREM spindle
dynamics.

Individual Differences in NREM Spectra
and Sigma Frequencies
We observed marked individual differences in the shape
of NREM power spectra (Figure 1). Analyses across nights
confirmed several previous studies demonstrating the existence
of robust spectral power fingerprints during sleep (De Gennaro
et al., 2005; Lewandowski et al., 2013). Indeed, these profiles have
been shown to be the highly heritable (De Gennaro et al., 2008)
and remain stable throughout development (Tarokh et al., 2011).
In sharp contrast, we observed that N2 and N3 spectral profiles
for the same individual show considerable differences within the
same night. While spectral differences between N2 and N3 are
inevitable given that these stages are defined by the amount of
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slow wave (<4 Hz) activity, it is perhaps surprising that N2 and
N3 spectral profiles are so different in higher frequency bands.

Indeed, one of the most prominent differences between
N2 and N3 spectra appeared in the sigma range, and these sigma
differences, too, were highly stable across nights (Figures 1A,C).
While fast sigma peaks were more pronounced in N2 than
N3 across most individuals, slow sigma peaks did not show
consistent amplitude differences between N2 and N3. Yet, both
individual sigma peak frequencies and individual topographical
patterns of sigma power were highly stable across N2 and N3,
suggesting that while the broader oscillatory context may change
markedly from light to deep sleep, underlying thalamic spindle
generators and their influence on neocortex remain relatively
fixed. Thus, the extent to which N2 and N3 are seen to be similar
depends on which physiological aspects one considers.

The most striking observation from the spectral profiles,
however, was the large between-subject variability of sigma
range frequencies, and the difficulty this poses for defining slow
and fast sigma ranges that can provide adequate group-level
separation of fast and slow spindles. Component-based slow
and fast sigma frequencies ranged from 9.3 Hz to 12.0 Hz for
slow spindles and from 12.5 Hz to 15.4 Hz for fast spindles,
similar to what has been described previously (De Gennaro et al.,
2005; Ujma et al., 2015). For this reason, it seems any attempt
to define spindle activity in terms of fixed spectral criteria is
destined to fail in at least some instances. Thus, rather than
arguing in favor of specific spectral definitions for slow and fast
spindle classes, we believe this variability provides motivation to
identify slow and fast sigma peaks in a subject-specific manner
(Gottselig et al., 2002; Bódizs et al., 2009; Adamczyk et al., 2015;
Ujma et al., 2015). However, we demonstrated that both channel-
averaged spectra and spectra derived from single frontal and
parietal channels are inadequate in this regard, and in many
instances do not lead to reliable estimates of subject-specific
sigma frequencies.

Separating Slow and Fast Sigma Peaks via
Spatial Filters
To improve upon channel-based approaches, we employed a
novel data-driven technique to identify individualized slow and
fast sigma peaks. By making use of the fact that multi-channel
EEG data has a spectral structure that is typically correlated
between nearby channels, we constructed spatial filters that
maximally enhance spectral content in one frequency range at
the expense of another. When we compared component-derived
spectral peaks to both channel-averaged and single-channel
spectra, we found a clear advantage for the spatial filtering
approach. Compared to peaks isolated from individual channels,
the component-based approach allowed detection of slow sigma
peaks in approximately three-quarters of the sample that would
have otherwise been lost for downstream analyses. Nonetheless,
it is important to note that channel- and component-based sigma
peak frequencies were significantly correlated (Supplementary
Results), reflecting the obvious dependence of GED-derived
spindle peaks on individual channel information.

Several channel-based approaches have been proposed
to identify subject-specific sigma ranges (Bódizs et al., 2009;

Mölle et al., 2011; Ujma et al., 2015). While we did not directly
compare our technique to these approaches, we see important
benefits to the GED-based spatial filtering approach. First,
because it is data-driven, it makes no a priori assumptions
regarding which channels exhibit slow or fast spindle activity.
Indeed, individual topographical maps exhibited substantial
variability in local spindle expression, such that anterior vs.
posterior channel selection may not always successfully resolve
distinct peaks (Figure 4D). Second, our approach consistently
returned highly similar slow sigma frequencies for N2 and
N3. This contrasts with observations of less well-matched
slow sigma peaks in N2 and N3 when using spectra averaged
across groups of channels (Mölle et al., 2011), or single-
channel spectra (this study). Likely, this poor correspondence
is due to fast sigma peaks overshadowing slow sigma peaks
during N2 and thereby shifting peak locations, an issue that
the GED approach inherently tries to avoid by increasing
spectral power in one sigma band relative to the other. Several
methodological considerations regarding the dependence of
the GED approach on the Laplacian transform, initial filter
settings, and number of required channels, are discussed in
the Supplementary Discussion. Taken together, we suggest
our method is a more sensitive technique to robustly identify
individuals’ fast and especially slow spindle frequencies than
those previously described. Based on this validation of the
GED-based approach, we analyzed the spatial characteristics of
sleep spindles.

Sleep Spindle Topographies
We analyzed topographical patterns of spindle expression both at
the group and individual level. Group-wise, we observed typical
differential topographies of slow and fast spindles, suggesting
we succeeded in separating the two spindle classes. Canonical
slow-frontal vs. fast-central topographies were observed inN3 for
all spindle metrics (Figures 3, 6). In N2, we also observed a
central expression of fast spindle activity for sigma power and
spindle amplitude, but a less typical fronto-central topography
for slow sigma power, and a relatively uniform distribution
of both slow and fast spindle densities. Direct statistical
comparisons of slow and fast spindles supported distinct
topographies for most sleep stage/spindle class/spindle metric
combinations. We also observed stronger fast spindle activity
during N2 than N3, regardless of metric, consistent with earlier
observations (Werth et al., 1997). In contrast, frontal slow sigma
power and slow spindle density were greater during N3 than N2,
consistent with more pronounced slow sigma spectral peaks in
N3 than N2. Here, it should be noted that N2 slow spindles have
not been examined in detail previously, likely because channel-
based spectra did not unambiguously indicate their presence
during N2. Thus, the increased sensitivity afforded by targeting
subject-specific spindle frequencies uncovers subtle differences
in sigma power expression during N2 and N3 sleep that might
otherwise be overlooked.

When we examined in detail individual topographical
profiles of spindle expression, we observed substantial individual
differences (Figure 4), refining earlier findings (Werth et al.,
1997; Zeitlhofer et al., 1997; Finelli et al., 2001). Importantly,
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individual topographical variability was stable both across sleep
stages and nights (Figure 5), indicating these patterns constitute
robust traits. Together, these findings underscore that group
averages reflect a mixture of quite idiosyncratic spatial spindle
patterns.

What could be the cause of such marked individual
topographical variability? First, it is possible that spatial
variability is due to individual differences in cortical folding
patterns, affecting how intracortical spindle signals summate
and propagate to the scalp. Second, different individuals
might have different anatomical or functional thalamocortical
wiring profiles, resulting in different spatial profiles of spindle
expression. Indeed, between-subject variability in white matter
tracts, including fibers intrinsic to and surrounding the thalamus,
is known to be related to spindle power and density (Piantoni
et al., 2013). More generally, there is substantial evidence
for the existence of localized cortical and subcortical spindles
(Nir et al., 2011; Frauscher et al., 2015; Kim et al., 2015;
Piantoni et al., 2016) and the potential role of localized
spindles in processing specific memories (Clemens et al., 2005,
2006; Nishida and Walker, 2007; Bang et al., 2014; Cox et
al., 2014a). Thus, an intriguing possibility is that individual
differences in topographical spindle expression have functional
implications and underlie individual differences in cognitive
processing.

Regardless of the question of function, topographical
heterogeneity may be an undesirable source of variance in
research designs choosing a specific channel for spindle analysis.
For example, ranking subjects according to sigma power on
channel Cz will, in all likelihood, yield a different order from one
based on each individual’s channel of maximum sigma power.
As a result, differences between experimental or clinical groups
could stem from these groups having different cortical regions
with maximal spindle activity, either systematically or by chance.
Similarly, experimental studies testing topographical hypotheses
might benefit from taking spatial variability into consideration by
recording a baseline night prior to experimental manipulation.

Not All Spindle Metrics Are Alike
Beyond differences in spectral definition, studies of spindles
report a host of different metrics intended to capture (specific
aspects of) underlying spindle activity. Classical measures
of sigma power are reported along with various properties
derived from individually detected spindles (e.g., spindle density,
amplitude, peak frequency, power, duration, integral, etc.).While
it is well understood that different metrics are, in a trivial sense,
distinct, they often appear to be lumped together when relating
findings from different studies.

When we compared individuals’ spatial topographies between
different spindle activity metrics and across nights, we made
several observations. First, amplitude-related topographies
(sigma power and spindle amplitude) were more stable across
nights than spindle density patterns. This observation matches
a report evaluating the stability of spindle characteristics
derived from a single channel (Eggert et al., 2015). Second,
spindle amplitude and spindle density were found to contribute
differently to sigma power, depending on sleep stage and spindle

class under consideration. Whereas fast sigma power was more
strongly driven by spindle amplitude than spindle density across
sleep stages, the opposite was found for slow sigma during N3.
Third, while individuals’ topographical patterns of sigma power,
spindle density, and spindle amplitude showed above-chance
levels of correspondence, cross-metric subject classification
was rather low. In general, neither spindle density nor spindle
amplitude appeared greatest where sigma power was highest.
Similarly, sites where spindles were more plentiful did not
necessarily have larger spindles.

How do these various metrics relate? Sigma band power, as
a relatively crude measure of spindle activity, likely includes
noise unrelated to physiological events of interest, but also
captures meaningful activity of low amplitude and short duration
spindles that do not register with specialized spindle detection
algorithms. Conversely, spindle detection methods are forced
to make ultimately arbitrary decisions regarding amplitude
and duration criteria, potentially leading to non-detection of
relevant spindle activity (for the difficulties associated with
validating automated spindle detectors against human scorers,
see Warby et al., 2014; O’Reilly and Nielsen, 2015). Anecdotally,
we often observed in the raw EEG trace brief, but prominent,
increases in sigma amplitude during slow oscillation up states
that ended abruptly with the onset of subsequent down states.
In many cases, however, these sigma events were shorter
than the 400 ms criterion employed in our current algorithm
and were not counted as spindles. In the absence of ground
truth, we have no clear preference for taking a sigma power
or spindle detection approach, nor do we advocate specific
spindle detection criteria or particular spindle metrics. From a
practical standpoint, however, the greater test-retest reliability
of amplitude-based spindle measures may provide motivation to
prefer these indices to the less reliable spindle density estimates.
Regardless, it is important to realize that different metrics
capture different components of spindle activity and cannot
be assumed to correspond to one another in a straightforward
fashion.

On the Existence of Slow and Fast
Spindles
While the evidence for distinct slow and fast spindles is
surprisingly equivocal in the animal literature (Terrier and
Gottesmann, 1978; Schwierin et al., 1999; Kim et al., 2015),
our findings are well in line with the current notion of two
distinct types of human spindles (Schabus et al., 2007; Mölle
et al., 2011; Ayoub et al., 2013; Cox et al., 2014b; Staresina
et al., 2015; Klinzing et al., 2016; Purcell et al., 2017). Indeed,
our group-level topographical maps agree with previous reports
(Werth et al., 1997; Zeitlhofer et al., 1997). More fundamentally,
we were able to identify separate, and typically quite narrow,
slow and fast spectral peaks using the GED spatial filter
approach for every individual (although we did exclude three
individuals with inconsistent N2 and N3 slow peaks). It is
worth emphasizing that the GED spatial filter approach does
not systematically introduce artifactual peaks, as there were
still some instances where we could not identify sigma peaks
from component spectra. We further verified this notion by
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performing control analyses in which we applied GED to
covariance matrices derived from data filtered in the 16–20 Hz
and 20–24 Hz ranges. However, the returned components
generally did not contain any peaks at all, or returned a peak
that was absent in all other night-sleep stage combinations. This
contrasts markedly with the clear congruence of component
peak locations between nights and sleep stages in the sigma
band.

Previous studies described the existence of an anterior-
posterior gradient of spindle frequency (Peter-Derex et al.,
2012; Frauscher et al., 2015), but it is unclear how the distinct
spectral peaks found here could have emerged from a more
continuous distribution of sleep spindle frequencies. Instead,
such findings could be equally explained in the framework of
a bimodal distribution of slow and fast spindles. As others
(Werth et al., 1997; Zeitlhofer et al., 1997; Klinzing et al., 2016)
and we have shown, both slow and fast spindles occur widely
across the brain, but with more anterior or posterior biases.
Thus, averaging over many spindles (or, regarding sigma power,
many spectra derived from short data segments) can give rise
to a topographical frequency gradient by sampling different
proportions of slow and fast spindles at different cortical sites.
This issue could be exacerbated further when observations from
individuals with different slow and fast spindle frequencies are
aggregated.

Similarly, findings of varying spindle frequencies throughout
the night or within sleep cycles (Werth et al., 1997; Himanen
et al., 2002; Andrillon et al., 2011), may be explained
by shifting contributions of slow and fast spindle activity
as opposed to the occurrence of progressively slower or
faster spindles. Indeed, while GED-based sigma frequencies
were stable from N2 to N3 (Figure 2B), channel-based
frequencies were much more variable between sleep stages
(Figure 2F), indicating that the same underlying combination
of slow and fast sigma generators can manifest in the power
spectrum as peaks with different locations. While we note
that individual spindles tend to decelerate over their course
(Andrillon et al., 2011; O’Reilly and Nielsen, 2014; Zerouali
et al., 2014), we believe that the current evidence, including
our findings, is most consistent with two fundamentally
distinct human spindle classes. How this suggestion, based
on macroscopic and predominantly non-invasive evidence,
relates to underlying thalamocortical circuitry is an open
question.

As the 9–12.5 Hz range overlaps substantially with the
canonical waking alpha (8–12 Hz) band, it may be argued
that our slow sigma range merely captures wake-like alpha
intrusions. However, the observed group-level frontal (N3)
and fronto-central (N2) topographies were decidedly different
from classical occipital alpha distributions, arguing against this
interpretation. Previous evidence has also indicated differences
between individuals’ waking alpha and slow spindle frequencies
(Kokkinos and Kostopoulos, 2011). Finally, we examined phase-
amplitude coupling between ∼1 Hz slow oscillations and slow
and fast spindles, using the same underlying data and the
individualized sigma frequencies identified here. These analyses,
to be reported in a separate article, revealed expected differential

phase preferences of slow and fast spindles, with fast spindles
occurring preferentially towards the up state, and slow spindles
in the down state (Mölle et al., 2011; Klinzing et al., 2016).
Together, these considerations strongly suggest that NREM
spectral peaks in the 9–12.5 Hz range do not constitute wake-like
alpha activity.

Practical Recommendations
We offer several suggestions regarding the examination of
sleep spindles measured with EEG. First, we believe the field
would benefit from targeting subject-specific frequencies.
While it was outside the scope of the current work to directly
compare individualized spectral bands to a fixed frequency
approach (see Ujma et al., 2015 for a comparison), we hope
the variability showcased in Figure 1 makes the point.
Individuals with highest sigma power levels based on fixed
spectral criteria are not necessarily the ones with greatest
power when using individually defined sigma frequencies.
Fixed frequency criteria could therefore have undesired
effects, e.g., when assessing the link between spindle activity
and memory. As another concern, even small changes in
sigma range settings can have comparatively large effects
on an individual’s topography, as ‘‘true’’ slow and fast
topographies are differentially enhanced, attenuated, and
mixed. While we hope our spatial filtering approach will prove
useful in this regard, the precise method employed is less
important than adopting an individualized approach in the first
place.

Second, when subject-specific frequency selection is not
feasible, we suggest fixed criteria be based on visual inspection
of power spectra. In our sample, approximate slow and fast
spindle ranges of 9–12.5 Hz and 12.5–16 Hz would likely
have worked reasonably well. Moreover, based on visual
inspection of the distribution of peak frequencies in a sample
of 161 individuals (Ujma et al., 2015; their Figure 2) these
ranges appear to be a sensible choice for young, healthy
individuals. However, we caution against blindly following
this suggestion, as slow and fast sigma peak distributions
may overlap (Ujma et al., 2015), or may be clustered in
different spectral bands in different age ranges or clinical groups
(Shinomiya et al., 1999). It is also possible that no sensible
demarcation frequency can be found, in which case it may be
preferable to not further differentiate spindles into slow and fast
classes.

Finally, we recommend careful examination of spindle
detection criteria used in the literature. Study conclusions
regarding the specific involvement of slow or fast spindles
that appear at odds may no longer be when one considers
in detail the spectral criteria employed. Specifically, we
suggest that studies placing lower bounds for slow spindles
at 11 or 12 Hz may have missed their slow spindle target
in some subjects, and/or confused fast for slow spindles by
artificially separating the fast sigma range into two. Rather
than criticizing these studies, however, we simply wish to alert
researchers and clinicians that seemingly minor methodological
details could have a major impact on the interpretation of
results.
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CONCLUSION

Despite decades of progress, the functional role of sleep spindles
in general, and of slow and fast spindles in particular, is still
unclear. While some recent evidence suggests fast spindles are
more strongly implicated in cognitive processes (Tamaki et al.,
2008, 2009; Barakat et al., 2011; Cox et al., 2014a; Rihm et
al., 2014; Fang et al., 2017), only few studies finding such
links target the purported brain rhythms in an individualized
manner (Mölle et al., 2011). But if slow and fast spindles
do indeed turn out to serve different functions, to serve the
same function differently, or to be differentially affected in
neuropsychiatric disorders, it becomes critical that these spindle
types be adequately separated. We hope our approach will prove
useful in this respect, and we suggest that proper understanding
of sleep spindle dynamics and their functional role requires
addressing individual variability as much as accounting for
shared organizational principles.
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