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Spectral entropy, which was generated by applying the Shannon entropy concept to the
power distribution of the Fourier-transformed electroencephalograph (EEG), was utilized
to measure the uniformity of power spectral density underlying EEG when subjects
performed the working memory tasks twice, i.e., before and after training. According
to Signed Residual Time (SRT) scores based on response speed and accuracy
trade-off, 20 subjects were divided into two groups, namely high-performance and low-
performance groups, to undertake working memory (WM) tasks. We found that spectral
entropy derived from the retention period of WM on channel FC4 exhibited a high
correlation with SRT scores. To this end, spectral entropy was used in support vector
machine classifier with linear kernel to differentiate these two groups. Receiver operating
characteristics analysis and leave-one out cross-validation (LOOCV) demonstrated that
the averaged classification accuracy (CA) was 90.0 and 92.5% for intra-session and
inter-session, respectively, indicating that spectral entropy could be used to distinguish
these two different WM performance groups successfully. Furthermore, the support
vector regression prediction model with radial basis function kernel and the root-mean-
square error of prediction revealed that spectral entropy could be utilized to predict
SRT scores on individual WM performance. After testing the changes in SRT scores
and spectral entropy for each subject by short-time training, we found that 16 in 20
subjects’ SRT scores were clearly promoted after training and 15 in 20 subjects’ SRT
scores showed consistent changes with spectral entropy before and after training.
The findings revealed that spectral entropy could be a promising indicator to predict
individual’s WM changes by training and further provide a novel application about WM
for brain–computer interfaces.

Keywords: spectral entropy, WM performance, SVR, prediction, classification, BCIs

INTRODUCTION

Working memory (WM) was originally defined as a cognitive mechanism responsible for the
temporal maintain and manipulation of new and stored memory information (Baddeley, 2012).
WM was considered a limited-capacity, short-term, information retention system (Ma et al., 2014).
The original model of WM proposed by Baddeley included three subcomponents: the central
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executive, the visuospatial sketch pad and the phonological loop
(Baddeley and Hitch, 1994). Later, an additional component,
namely the episodic buffer, was added to WM. This component
could take information from the other three components
and from long-term memory, from which a single episodic
representation was created and then temporarily preserved in the
buffer (Baddeley, 2000). Individuals exhibited varying abilities
in WM. For example, one person was able to memorize more
information and manipulate the information more effectively
than others (Baddeley, 2003). There is no doubt that if someone
is confused, his or her memory ability will decline.

Working memory performance prediction has become an
interesting topic which received considerable attention in recent
years (Rajji et al., 2015; Johannesen et al., 2016; Tumari and
Sudirman, 2016). In previous attempts, numerous approaches
were proposed to extract reliable features to predict individual
WM performance and distinguish the difficulty levels of cognitive
tasks, such as alpha power (Myers et al., 2014), absolute power
(Klimesch et al., 2006), and wavelet entropy (Zarjam et al.,
2013).

Previous studies related to WM using EEG found that
upper alpha event-related desynchronization (ERD) and small
power were associated with good performance during actual
processing of the task (Klimesch et al., 2006). Autoregressive
model (Nai-Jen and Palaniappan, 2004) and wavelet entropy
(Zarjam et al., 2013) extracted from EEG signals were used
frequently to measure and distinguish the levels of WM
task difficulty. Similarly, time-frequency characteristics using
wavelet transform were applied to evaluate mental workload
in WM with EEG signals. It has been demonstrated that the
appearance time and the total power extracted from wavelet
analysis were effective features to measure mental workload
(Murata, 2005). Combining magnetoencephalography and EEG
(MEEG) recordings with source reconstruction techniques
showed that synchrony was enhanced with increasing memory
loads among the frontoparietal regions during memory retention
while the individual WM capacity could be forecasted by
phase synchronization in a network among frontoparietal and
visual regions (Palva et al., 2010). An event-related functional
magnetic resonance imaging (fMRI) study found that better WM
performance in a Sternberg-type delayed match WM task could
be predicted by greater temporo-parietal junction (TPJ) and
default mode network (DMN) deactivation during the encoding
period (Anticevic et al., 2010).

In recent years, the rapid development of neuroscience
facilitated the improvements of brain–computer interfaces
(BCIs) which were information transfer systems transforming
brain intention into control commands without involving
peripheral neural pathways (Mühl et al., 2014; Putze et al., 2014).
Originally, BCIs were designed to provide a new way for patients
with impaired motor functions to communicate with others.
Generally, motor imagery and evoked visual potentials received
a lot of attentions in BCIs (Ferrez and Millán, 2008; George and
Lécuyer, 2010). Lately, BCIs have become available to anyone
who wants or needs them and have been envisaged to monitor
cognitive state, such as attention, fatigue, and emotions (Frey
et al., 2013; Mühl et al., 2014, 2015; Chanel and Mühl, 2015).

Moreover, the WM-related EEG signal was utilized in BCIs
(Putze and Schultz, 2010; Mühl et al., 2014).

To date, the above measures have widely been investigated
in the analysis of the WM loads (i.e., various difficulty levels)
(Murata, 2005; Mühl et al., 2014; Dimitriadis et al., 2015), but
the estimation or prediction of individual WM performance has
rarely been involved especially in BCIs. Previous literatures also
tried to find ways to improve one’s WM ability which could be
reflected by predicting performance in carrying out a wide range
of cognitive tasks (Chouhan et al., 2015). To some extent, WM
performance might be a symbol of individual’s WM ability when
carrying out the memory tasks.

Usually memory has been regarded as a personal constant
character. However, recent studies revealed that it could be
promoted by adaptive and extended training (Klingberg, 2010).
The density of cortical dopamine receptors changed after training
through test (Mcnab et al., 2009). Previous findings showed
that using WM-related fMRI, the training-induced variations
were linked to the increased activity in prefrontal and parietal
regions (Olesen et al., 2003). Research on children with attention
deficit hyperactivity disorder (ADHD) also suggested that WM
impairments might be overcome by training and stimulant
medication on WM (Holmes et al., 2010).

In this work, we attempted to use a proper and objective
feature of retention period in WM EEG as a biomarker to predict
individual’s WM performance. The existing EEG-based studies,
to our best knowledge, demonstrated that power spectrum of
low frequency resting-state EEG was associated with individual’s
WM performance. Changes in brain activity could be reflected by
the changes of power spectral density (PSD) during performing
cognitive tasks (Weiss, 1992; Pachou et al., 2008).

Recently, different entropy concepts have been applied to
describe the order state of sequences (Bruhn et al., 2000, 2001; Xu
et al., 2013; Zhang et al., 2015). Among them, Shannon entropy
has been shown as an effective measure for the predictability
of EEG series in describing anesthetic drug effect (Bruhn et al.,
2001; Zhang et al., 2015). However, Shannon entropy was not
normalized to the total power of EEG. Consequently, the absolute
value of Shannon entropy might vary among individual, which
hampered the applications in clinical areas. To overcome this
drawback, spectral entropy was developed by using the Shannon
entropy to the Fourier-transformed signals (Vanluchene et al.,
2004). Therefore, the spectral entropies were regarded as features
to distinguish high-performance from low-performance groups
in WM with SVM classifier and further predicted subjects’
individual WM performance by short-time training with support
vector regression (SVR) prediction model in the current study.
We assume that spectral entropy could be applied to predict
individual WM performance and provide a novel approach for
the study of BCI in the future.

MATERIALS AND METHODS

Ethics Statement
The experiment was approved by the ethical committee
of Chongqing University of Posts and Telecommunications.
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FIGURE 1 | An example of the stimulus sequence in the experiment. Each trial started with a fixation cross (0.5◦ × 0.5◦) at the center of the monitor flashing for
50 ms. Next, the memory array with two, four or eight letters (0.5◦ × 0.5◦) was presented for 200 ms. After 3000 ms retention interval, a probe item was presented
for 100 ms and subjects responded with a button press, pointing out if the probe item once was presented in the memory array.

Written informed consent was signed prior to participating
in the study. Subjects received a monetary compensation after
experiment. None of them had cognitive impairments, mental
and neurological disorders.

Subjects
Twenty healthy and right-handed male subjects (mean age
21 years old) participated in the experiment. Subjects were asked
to keep relaxed and to restrain wide movements as much as
possible during the whole experiments. Subjects were requested
to perform a continuous delayed match task consisted of two
sessions at three levels of task difficulty. The two sessions were
exactly equal and the only distinction between the two sessions
was that subjects carried out the first tasks without training but
they performed the second tasks after WM training.

Stimuli and Design
Figure 1 showed an example of the stimulus sequence. A fixation
cross (0.5 × 0.5◦; at the center of the monitor) was displayed
throughout the entire block of trials. Each trial started with the
fixation cross flashing for 50 ms. Following that, the memory
array which was randomly consisted of two, four, or eight letters
(0.5◦ × 0.5◦) was presented for 200 ms with the same appearing
frequency of two, four, and eight letters. After 3000 ms retention
interval, the test array was presented on the screen for 100 ms
as a probe item. Then subjects responded with a button press,
indicating whether the probe item was in the memory array.
Subjects pressed the key “F” with their left index fingers for
the absence of the probe item from memory array, and pressed
the key “J” with their right index fingers for the attendance of
the probe item in the memory array. The number between the
absence and the attendance of the probe items in the memory
array was equal. Response accuracy (RACC) and speed were
equally stressed in the instructions.

Subjects were required to maintain central fixation and
minimize eye blinks and body motion throughout the recordings.

The experiment consisted of two sessions per subject and each
session was composed of 60 trials with three kinds of memory
loads (two, four, or eight letters). Stimuli were presented and
behavioral results were recorded using E-prime software1.

EEG Recordings and Preprocessing
EEG recording was accomplished by using a 64-channel
NeuroScan system (Quik-Cap, band pass: 0.05–100 Hz, sampling
rate: 1000 Hz, impedances < 5 k�) with a vertex reference. To
monitor ocular movements and eye blinks, Electro-Oculogram
(EOG) signals were simultaneously recorded from four surface
electrodes, one pair placed over the higher and lower eyelid and
the other pair placed 1 cm lateral to the outer corner of the left
and right orbit.

The data was re-referenced to the infinity reference (IR) (Yao,
2001; Tian and Yao, 2013) using the software REST2. In the study,
EEG was segmented from 100 ms before the onset of the memory
array to 100 ms after the subjects’ response onset. In other
words, the retention and retrieval stages of WM were extracted
for the following preprocessing. EOG and Electromyography
(EMG) were excluded by Blind Source Separation (BSS) (Negro
et al., 2016). Other noise was removed by automatic artifact
rejection (±100 µν). The data was baseline corrected using
100 ms EEG signal before the memory array onset. Then the
EEG recordings were filtered with a band-pass of 0.5–45 Hz.
After the above preprocessing, 60 trials were obtained for each
subject under three memory loads (two, four, and eight items).
The retention stage (3000 ms) of each trial was extracted for
subsequent analysis.

Behavioral Analyses
When performing time limit tasks incorporating both reaction
time (RT) and RACC, subjects either sacrificed accuracy in

1http://www.pstnet.com/eprime.cfm
2www.neuro.uestc.edu.cn/rest
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exchange for response speed, or exchanged response speed for
high accuracy (Mordkoff and Egeth, 1993; Breukelen, 2005).
Here, we utilized the Signed Residual Time (SRT) scores (Maris
and Han, 2012) for speed accuracy trade-off (Schmitt and
Scheirer, 1977) to represent subjects’ behavioral performance.
The SRT scoring rule was defined as follows (Schmitt and
Scheirer, 1977; Maris and Han, 2012; van Rijn and Ali, 2017):∑

i

(2RACCi − 1)(MT − ti) (1)

where the subscript i denoted the item index, RACCi = {0,1} was
the response accuracy (RACC: 0 for incorrect and 1 for correct)
for a single trial, and MT denoted the maximum allowable
response time for item i. ti denoted response latency. The total
scores were simply the sum of the scores in each item. In other
words, for a correct response, subjects earned the residual time
as score, and for an incorrect response, subjects lost the residual
time as score.

For testing the left–right hand effect and memory-load effect
on behavioral WM performance, 2 (hand: left vs. right) × 3
(memory load: 2 items vs. 4 items vs. 8 items) repeated measures
analysis of variances (ANOVAs) were conducted. The dependent
variables were the SRT scores in intra-sessions (session 1, session
2) and the change rates of subjects’ SRT scores in inter-sessions
(from session 1 to session 2). Greenhouse–Geisser correction was
used when the sphericity assumption was violated in repeated
measures ANOVAs (Greenhouse and Geisser, 1959), and a factor
had more than two levels in the current study to protect against
Type I errors (Kisley et al., 2005). In addition, false discovery rate
(FDR) was utilized to the correction of multiple comparisons.

Spectral Entropy
Spectral entropy based on Shannon entropy in physics,
quantifying the regularity/randomness of the power spectrum
during a given period of time, was used to establish the biomarker
for WM performance in the current study. The methodological
details were similar to those adopted in a previous study on the
prediction of BCI performance (Zhang et al., 2015).

The retention period for each trial was extracted to calculate
PSD Psd(f ) via the Welch’s method (Akbar et al., 2016). The PSD
of a time series was defined as the distribution of power as a
function of frequency. The normalized PSD was defined as the
Psd(f ) divided by the total power to obtain probability density
function.

P̂sd (f ) =
Psd (f )∑f = 45

f = 0.5 Psd (f )
(2)

where P̂sd(f ) was the normalized PSD of Psd(f ). We estimated
spectral entropy based on the PSD within 0.5–45 Hz. The entropy
of P̂sd(f ) was generated by using the following equation:

SEn = −k
f = 45∑
f = 0.5

P̂sd (f ) log (P̂sd (f )) (3)

where k = 1. The base of the logarithm was 10 and the unit of
SEn was dit (i.e., Decimal Digit) in the current study (Schneider,

2007). In effect, spectral entropy reflected the uniformity of the
power spectrum distribution. The greater the spectral entropy
was, the more uniform the power spectral distribution was.

Scalp Spatial Distribution for Highest
Relationship
Spearman’s rank correlation coefficient was widely applied to
measure the monotonic relationships. It was defined according
to the following equation (Gautheir, 2001; Sedgwick, 2014):

r = 1−
6
∑m

i=1 d2
i

m (m2 − 1)
(4)

where each variable was ordered respectively from lowest
to highest. di was the difference between two ranks for
paired variables xi and yi. m was the number of data pairs.
In the current study, the relationships between SRT and
spectral entropy on each channel were separately measured by
Spearman’s correlation. From these, 64 spearman’s coefficients
were observed. Then, we constructed the fingerprint figures
and the scalp spatial distribution according to the spearman’s
coefficients on each channel (the processing steps as shown
in Figure 2). Based on the above method, the electrode site
for highest correlation between SRT and spectral entropy was
identified to carry out the next steps (see below).

Grouping Rules and Classification
Subjects were divided into two groups according to their standard
z scores of SRT. Here, z-score was defined as:

zi =
xi − µ

σ
(5)

where xi (i = 1,2,3. . .,20) was the SRT scores of the ith subject,
µ was the mean of the 20 subjects’ SRT scores and σ was the
standard deviation of SRT scores between 20 subjects in the
current study. Subjects whose z values of SRT were above zero
were allocated to the group with high WM performance, and
the rest were assigned to the group with low WM performance.
The high and low memory performance groups were defined as
positives and negatives, respectively.

The evaluation of generalization performance for SVM
classifier was a required step after using the SVM to classify the
high from low memory performance groups. SVM was developed
by Vapnik based on statistics learning theory (SLT) (Netherlands,
2008). As a result of its excellent generalization performance,
SVM has been applied in a wide variety of issues, such as
text classification, images classification, hand writing recognition
and gene classification. Furthermore, SVM had the feature of
empirical risk minimization (ERM) and global optimum solution
(Netherlands, 2008). If the SVM classifier could reflect the
relationship between features and the class labels very well, then
the classifier was considered that it could predict the classes of
new samples with good performance. Therefore, classification
accuracy (CA), sensitivity (SE), specificity (SP), and area under
ROC curve (AUC) were utilized to evaluate the classification
performance of SVM classifier (Galar et al., 2012). At the same
time, leave-one-out cross-validation (LOOCV) was applied to
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FIGURE 2 | The analysis process of scalp spatial distribution for the relationship between spectral entropy and subjects’ SRT scores.

evaluate the generalization performance of SVM for a relatively
small sample size in the present study.

(1) The percentage of the number of samples predicted
correctly in the test set over the total samples, CA, was calculated
as follows:

CA =
TP − TN

TP + TN + FP + FN
(6)

where true positive (TP) was the number of high-performance
samples correctly predicted and true negative (TN) was the
number of low-performance samples correctly predicted. False
positive (FP) denoted the number of high-performance samples
incorrectly predicted and false negative (FN) denoted the number
of low-performance samples incorrectly predicted.

(2) SE and SP were calculated by the following formulae,
respectively:

SE =
TP

TP + FN
(7)

SP =
TN

TN + FP
(8)

SE referred to the ratio of correctly classified
high-performance samples to the total population of high-
performance samples, whereas SP was the ratio of correctly
classified low-performance samples to the total population of
low-performance samples.

(3) AUC was defined as the area under ROC curves, which
was discovered and proved to be better than CA to evaluate
the predictive performance of classification learning algorithms
(Jin and Ling, 2005). Moreover, AUC was indeed a statistically
consistent and more discriminating measure than CA (Ling et al.,
2003). Originally, the ROC curves were introduced to evaluate
machine learning algorithms (Provost et al., 1997). On ROC
curves, TP was plotted on the Y axis and FP was plotted on
the X axis. It described the classifiers’ performance across the
entire range independent of class distributions (Provost et al.,
1997; Jin and Ling, 2005). However, often there was no clear

dominating relation between two ROC curves in the entire range.
Therefore, AUC was introduced to provide a good “summary” for
the performance of the learning algorithms based on ROC.

To examine the stability of the SVM classification
performance, the classification was performed respectively
under intra- and inter-session conditions. In the intra-session,
LOOCV was utilized separately for the first and second sessions
(Vehtari et al., 2016). One subject was picked out as a test sample,
while the rest of the subjects were regarded as the train samples
for obtaining the classification model. The above steps were
repeated until every subject has been allocated as a test sample
for one time. During the inter-session prediction, subjects in
the first session were regarded as test samples and subjects
in the second session were regarded as the training samples.
Then subjects in the first session were considered as training
samples and subjects in the second session were considered as
test samples.

Predicting WM Performance
The subject’s spectral entropies derived from WM data at the
retention period were selected to predict the corresponding
SRT scores. According to the Section “Grouping Rules and
Classification,” the spectral entropies of the channel achieving
the highest correlations between SRT and spectral entropy were
applied to SVR to develop predictive model for a relatively
small sample size (Ju et al., 2014) respectively in session 1,
session 2, and merged session (i.e., session 1 + session 2).
Then, LOOCV was utilized to test the stability of the model
and the performance of the predictions. Detailed information
for the LOOCV procedure for prediction was described as
follows:

We assumed that there were n samples in the dataset. One
sample was picked out as a testing set, and the rest of the
samples were regarded as training sets to develop the predictive
model. The above steps were repeated until every subject had
been assigned as a test sample for one time and eventually n
SVR models were obtained. The correlation coefficients between
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FIGURE 3 | Scalp spatial distribution for correlations between the normalized spectral entropy and subjects’ SRT scores. (A) Fingerprint maps. (B) Topographic
maps. The color bar denoted the correlation values between SRT scores and spectral entropy. (C) Correlations between SRT scores and spectral entropy on
channel FC4 separately in session 1, session 2, and merged session.

TABLE 1 | The number of subjects in different conditions.

Session Groups Changes Change rates

High Low Increase Decrease Consistent Inconsistent

Intra Session 1 11 9

Session 2 12 8

Inter 16 4 15 5

“Groups” denoted the grouping results about the number of subjects separately in session 1 and session 2 according to standard z scores of subjects’ SRT. “Changes”
denoted the changes (i.e., SRT scores increased or SRT scores decreased) in the number of subjects after training (i.e., from session 1 to session 2). “Change Rates”
denoted the number of subjects whose change rates of SRT showed the consistent and inconsistent change with spectral entropy after training.
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TABLE 2 | The classification results of SVM classifier.

CA AUC SE SP

Intra-session Session 1 0.950 0.976 1.000 0.900

Session 2 0.850 0.918 0.800 0.900

Inter-session Session 1∗ 0.950 0.973 0.898 1.000

Session 2∗ 0.900 0.942 0.900 0.900

CA, classification accuracy; AUC, area under ROC curves; SE, sensitivity; SP, specificity. The session 1 with asterisk (∗) denoted the classification results of session 1 with
WM data in session 2 as training samples. The session 2 with asterisk (∗) denoted the classification results of session 2 with WM data in session 1 as training samples.

predicted and actual SRT scores, together with root-mean-square
error of prediction (RMSEP), were calculated to evaluate the
prediction performance of the SVR model (Ju et al., 2014;
Kichonge et al., 2015).

Change Rates of SRT Scores and
Spectral Entropy between Sessions
For a single subject, behavioral scores usually varied by training.
Thus we attempted to study whether the spectral entropy of
WM data at retention stage could predict changes in memory
performance before and after training.

Since the subjects’ SRT scores and spectral entropy were in
different unit scales, a new measure called Change Rate (CR) was
defined as follow (Zhang et al., 2015):

CR = 2× (TA− TB)/(TA+ TB)× 100% (9)

where TB denoted the subjects’ SRT scores or spectral entropy
of WM data at retention period before training (i.e., session 1).
TA was the subjects’ SRT scores or spectral entropy predictors at
retention period after training (i.e., session 2).

RESULTS

Behavioral Performance
For SRT scores, the significant main effects of memory load
were separately observed in intra-sessions (session 1: F = 218.99,
P < 0.001, η2

p = 0.920; session 2: F = 162.32, P < 0.001,
η2

p = 0.895), indicating that different memory-load tasks affected
the behavioral performance on SRT scores regardless of before
training and after training. Non-significant main effects of hand
were found in intra-sessions (session 1: F = 0.435, P = 0.518,
η2

p = 0.01; session 2: F = 1.51, P = 0.234, η2
p = 0.074),

indicating that SRT scores were not affected by left–right hand
effect in intra-sessions. There were non-significant interactions
between hand and memory load (session 1: F = 4.24, P = 0.053,
η2

p = 0.183; session 2: F = 0.92, P = 0.405, η2
p = 0.046).

For the change rates of SRT scores from session 1 to session
2, there were non-significant main effects of hand (F = 3.636,
P = 0.072, η2

p = 0.161) and memory loads (F = 0.028, P = 0.973,
η2

p = 0.002), indicating that the change rates reduced by training
were not affected by both hand and memory-load effects. There
were non-significant interactions between hand and memory
load (F = 3.99, P = 0.060, η2

p = 0.169).

Relationship between SRT Scores and
Spectral Entropy
The correlations between SRT scores and the spectral entropy on
64 channels were illustrated in the fingerprint map (Figure 3A)
and the scalp topographic map (Figure 3B). Among them, the
spectral entropy on channel FC4 showed the strongest correlation
with subjects’ SRT scores (session 1: r = 0.814, P < 0.001; session
2: r= 0.761, P < 0.001; and merged session: r = 0.698, P < 0.001;
FDR correction, and also shown in Figure 3C).

Therefore, the spectral entropies on channel FC4 from WM
EEG recording at the retention stage were then used as features
for SVM classifiers to distinguish the high-performance group
from the low-performance group, and further used to predict
subjects’ SRT scores with SVR prediction model.

Intra- and Inter-Session Classification
for SRT
In the first session (i.e., before training), 11 subjects were divided
into high-performance group and nine subjects were divided into
low-performance group; while for the second session (i.e., after
training), 12 of 20 subjects were assigned to high-performance
group and eight subjects were assigned to low-performance group
(Table 1).

The CA was 95 and 85% for the first and second session
with spectral entropy features, respectively. The sensitivity (SE)
and specificity (SP) at the optimal operating point, as well
as the resulting AUC were showed for the first and second
session, respectively. The grouping results were showed in
Table 2.

For intra-session prediction, the resulting CA, AUC, SE, and
SP were respectively 0.950, 0.976, 1.000, and 0.900 for session 1
with spectral entropy as classification feature. CA, AUC, SE, and
SP were respectively 0.850, 0.918, 0.800, and 0.900 for session 2
with spectral entropy as classification feature.

For inter-session classification, CA, AUC, SE, and SP were
respectively 0.950, 0.973, 0.898, and 1.000 for session 1 with
session 2 as training samples. The resulting CA, AUC, SE, and
SP were respectively 0.900, 0.942, 0.900, and 0.900 for session 2
with session 1 as training samples.

The classification results were illustrated in Figure 4 and
Table 2. The red line demonstrated the ROC curves of session
1, and the blue line showed the ROC of session 2.

SRT Predicted by the Spectral Entropy
Support vector regression prediction model and LOOCV
revealed that the spectral entropy could be utilized to predict

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2017 | Volume 11 | Article 437

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00437 August 29, 2017 Time: 16:52 # 8

Tian et al. Predicting WM Performance with Spectral Entropy

FIGURE 4 | Intra- and inter-session classifications for distinguishing high-performance and low-performance groups. (A) Classification plot for intra-session and
inter-session. The red star denoted the high-performance group, and the blue star denoted the low-performance group. The green line was the classification
boundaries. (B) ROC curves for spectral entropy predictors for intra-session and inter-session in classifying the two different performance groups in WM tasks. The
session 1 with asterisk (∗) denoted the classification results of session 1 with WM data in session 2 as training samples. The session 2 with asterisk (∗) denoted the
classification results of session 2 with WM data in session 1 as training samples. The abscissa represented the false positive rate, and the ordinate denoted the true
positive rate. The red line denoted the ROC curves of session 1, and the blue line represented the ROC curves of session 2. AUC: area under curve.
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FIGURE 5 | Prediction performance of SVR model. The figures illustrated the correlations between original SRT scores and predicted SRT scores respectively in
session 1, session 2, and merged session.

individual WM performance on SRT scores in the current
study. The RMSEP after doing LOOCV were 4.635 (session
1), 3.339 (session 2), and 6.972 (merged session), respectively.
As illustrated in Figure 5, the predicting SRT scores were
significantly correlated with the original SRT scores (session 1:
r = 0.749, P < 0.001; session 2: r = 0.864, P < 0.001; merged
session: r = 0.732, P < 0.001; FDR correction).

Consistent Changes in Spectral Entropy
and SRT Scores between Sessions
Within single subject, we explored whether the increased (or
decreased) changes in spectral entropy could be predictive of
the increased (or decreased) changes in SRT scores. Figure 6A
showed that 16 in 20 subjects’ SRT scores increased by short-time
training. Figure 6B showed that 15 in 20 subjects’ SRT scores
consistently varied with spectral entropy predictor before and
after training. The results also could be seen in Table 1.

DISCUSSION

The present study utilized the spectral entropy to predict
individual WM performance changes reduced by short-time
training during carrying out the delayed-match-to-sample tasks.
We found that: (1) the spectral entropy features extracted from
FC4 channel during retention stage of WM was strongly related
to subjects’ SRT scores; (2) the averaged CA to distinguish high-
performance from low-performance group in WM tasks was 90.0
and 92.5% for intra-session and inter-session, respectively; (3)
SVR with LOOCV revealed that spectral entropy could predict
individual WM performance; (4) 16 out of 20 subjects’ SRT scores
increased and 15 in 20 subjects’ SRT scores were consistent with
the changes in spectral entropies by short-time training.

Spatial Distribution for WM Performance
As shown in Figure 3B, the spatial distribution of the r-values
(i.e., the relationship between spectral entropies and behavioral
scores) focused on the right frontal area, which was consistent
with the previous findings that the frontal cortex might play
a prominent part in WM tasks (Gentili et al., 2015; Thürer

et al., 2016). The previous study showed that right inferior
frontal junction (rIFJ) as a prefrontal cortex (PFC) control region
mediated the causal connection between top–down modulation
in the service of attentional goals and WM performance
(Gazzaley and Nobre, 2012). Among these channels (Figure 3A),
the spectral entropy of channel FC4 from WM at retention period
generated the strongest correlation (r = 0.698) in comparison
to other channels in the merged session. Likewise, in the
two separate sessions, the highest correlation coefficients also
appeared on channel FC4 before training (r = 0.814) and after
training (r = 0.794), respectively. The good classification effect
of SVM showed that the spectral entropies on channel FC4 from
WM EEG recording at the retention stage might be a dependable
biomarker to classify two memory groups successfully.

In the current study, there was no significant effect on the
change rates of subjects’ SRT scores before and after training
when different WM items (i.e., two, four, and eight) were loaded.
Thus, subjects’ SRT scores were utilized to reflect individual
WM performance while carrying out the WM tasks regardless of
memory load. As illustrated by Figure 3C, the spectral entropy
indexes of the subjects were significantly related to individual
SRT scores in all sessions including separate sessions and merged
session, indicating that spectral entropy indexes might be applied
to predict individual WM performance (i.e., SRT scores).

For the further analysis, SVR prediction model combined
with LOOCV was established to estimate the predictive ability
of spectral entropy indexes on WM performance separately
in session 1, session 2, and the merged session (Figure 5).
The resultant RMSEP after using LOOCV, as well as the high
correlation between original SRT scores and predicted SRT
scores, demonstrated that prediction models constructed by SVR
were effective. The spectral entropy obtained from channel FC4
could be a biomarker to predict individual WM performance.

WM Training
Converging evidence revealed that one’s memory ability was
absolutely not innate and could be promoted through proper
training (Klingberg et al., 2005; Holmes et al., 2010; Klingberg,
2010). Moreover, this improved performance was related
to training-induced plasticity from the intracellular level to
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functional organization of the cortex for WM (Klingberg, 2010).
Vogt et al. (2009) conducted a WM training study on multiple
sclerosis. They found that the patient’s memory was improved
effectively and the spread of bad mood was delayed after receiving
the special training for memory (Vogt et al., 2009).

As illustrated by Figure 6A and Table 1, 16 subjects’ behavioral
scores were obviously increased after training, indicating that
individuals’ WM performance could be promoted effectively
through training, consistent with the previous study (Klingberg
et al., 2005; Holmes et al., 2010; Klingberg, 2010). The CR of 15 in
20 subjects’ SRT scores increased (or declined) with the increase
(or decline) of the spectral entropy before and after training,
which demonstrated that the variations in the spectral entropy
predictor could be predictive of the WM performance variations.
The findings revealed the consistent changes in SRT scores and
spectral entropy by training (Figure 6B and Table 1).

WM in BCIs
Previously, P300 in motor imagery tasks and steady state evoked
visual potentials (SSVEP) were frequently applied in BCIs (Parra
et al., 2003; Dal et al., 2009; George and Lécuyer, 2010). Recently,
BCIs also were designed to recognize human emotions (Garcia-
Molina et al., 2013; Chanel and Mühl, 2015) and to monitor WM
load (Sánchez et al., 2015), while there are still little research on
the detection of WM performance or individual memory in BCIs.
Consequently, it is of great significance to find a reliable feature
for the monitor of individual WM performance in BCIs. The
development of predictors on WM performance could recognize
the potential memory impairment subjects, assisting them in
preparation for the positive life and avoiding the frustration from
disordered memory. On the other hand, the relevant study might
in turn be heuristic for making effective training strategies for
those subjects with low WM performance. Moreover, spectral
entropy could be a potential instructive biomarker applied in
the detection of schizophrenia, depression, ADHD and two-way
affective disorder patients and meanwhile provide a new thought
for BCIs on the feature extraction of WM.

Limitations
As shown in Figure 6A, 16 in 20 subjects’ SRT scores obviously
was improved after training, while there were still four subjects’
SRT scores representing a downward trend which might be
induced by individuals’ state: either their mental state such as
easy to feel tense when carrying out the unfamiliar WM tasks or
staying unsuitable to experimental environment, or their physical
state such as exhaustion without rest well before experiment or
easy to be tired when doing the “dull” experiment. For small
sample size in the current study, we just utilized LOOCV and
four different evaluation indexes of the classifier’s generalization
to avoid overfitting as much as possible. It is noted that extracting
classification features (like channels) outside of the LOOCV
method still could induce overestimation problems. Therefore,
we verified the robustness of the selected channel. And the
correlation between spectral entropies and WM-related SRT
scores of all subjects was highest on channel FC4 regardless
of session 1, session 2 and merged session, suggesting the
relationship was robust. In addition, spectral entropy was used

FIGURE 6 | WM performance changes by short-time training. (A) Changes in
subjects’ SRT scores before and after training. The red bar represented the
subjects’ SRT scores before training, and the blue bar denoted the subjects’
SRT scores after training. After training, 16 subjects’ SRT scores increased
and 4 subjects’ SRT scores showed a downward trend. (B) Change rate (CR)
of subjects’ SRT scores and spectral entropies between sessions. The blue
bar represented the CR of subjects’ SRT scores, and the red bar denoted the
CR of spectral entropies before and after training.

to predict the individual SRT scores thus indirectly reflecting
the WM performance. In the future, a direct way represented
the online WM-related BCI would be explored by optimizing
classifiers, expanding sample size and improving experimental
paradigm.

CONCLUSION

In the current study, we first proposed to use spectral entropy
as a feature applied in the classification of WM to distinguish
high-performance from low-performance groups in the delayed-
match-to-sample task. The resulting RMSEP for the SVR
prediction models, as well as the high correlations between
original SRT scores and predicted SRT scores, demonstrated
that the spectral entropies on channel FC4 could implicitly
predict individual WM performance. The changes in the spectral
entropy can be predictive of changes in behavioral scores
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for individual WM performance. This study could provide
theoretical foundation for researchers in the establishment of
enhanced training strategies for memory impairment humans
BCIs feedback system on memory state with spectral entropy as
feature.
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