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Entropy-based algorithms have been suggested as robust estimators of

electroencephalography (EEG) predictability or regularity. This study aimed to examine

possible disturbances in EEG complexity as a means to elucidate the pathophysiological

mechanisms in chronic stroke, before and after a brain computer interface (BCI)-motor

observation intervention. Eleven chronic stroke subjects and nine unimpaired subjects

were recruited to examine the differences in their EEG complexity. The BCI-motor

observation intervention was designed to promote functional recovery of the hand in

stroke subjects. Fuzzy approximate entropy (fApEn), a novel entropy-based algorithm

designed to evaluate complexity in physiological systems, was applied to assess the

EEG signals acquired from unimpaired subjects and stroke subjects, both before and

after training. The results showed that stroke subjects had significantly lower EEG fApEn

than unimpaired subjects (p < 0.05) in the motor cortex area of the brain (C3, C4,

FC3, FC4, CP3, and CP4) in both hemispheres before training. After training, motor

function of the paretic upper limb, assessed by the Fugl-Meyer Assessment-Upper Limb

(FMA-UL), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT)

improved significantly (p < 0.05). Furthermore, the EEG fApEn in stroke subjects

increased considerably in the central area of the contralesional hemisphere after training

(p < 0.05). A significant correlation was noted between clinical scales (FMA-UL, ARAT,

and WMFT) and EEG fApEn in C3/C4 in the contralesional hemisphere (p < 0.05). This

finding suggests that the increase in EEG fApEn could be an estimator of the variance

in upper limb motor function improvement. In summary, fApEn can be used to identify

abnormal EEG complexity in chronic stroke, when used with BCI-motor observation

training. Moreover, these findings based on the fApEn of EEG signals also expand the

existing interpretation of training-induced functional improvement in stroke subjects. The

entropy-based analysis might serve as a novel approach to understanding the abnormal

cortical dynamics of stroke and the neurological changes induced by rehabilitation

training.
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INTRODUCTION

Stroke is the leading cause of adult disability worldwide. In the
United States, more than 700,000 people experience a stroke
each year. Among them, 25% will die and 15–30% will remain
with a physical disability (Lethbridge-Çejku and Vickerie, 2005).
Many of these patients show moderately favorable recovery at
the shoulder and elbow, but limited motor restoration at the
wrist and hand joints. After 6 months, around 38% show some
recovery in hand function, but only 11.6% achieve complete
functional recovery of dexterity (Kwakkel et al., 2003). Recovery
of hand function after stroke is crucial to perform activities
of daily life but is always the most challenging aspect to be
achieved.

Intensive therapeutic interventions could contribute to
significant improvement in the functional use of the affected
parts after chronic stroke (Lum et al., 2002). A brain–computer
interface (BCI) is one approach by which the movement
intentions of a patient can be interpreted (Pfurtscheller and
Neuper, 2001), whereas motor imagery (MI) is the mental
rehearsal of a kinematic movement (Belda-Lois et al., 2011).
Many studies have combined these two techniques and applied
them to post-stroke rehabilitation (Pfurtscheller and Neuper,
1997; Ang et al., 2010; Teo and Chew, 2014). However, some
recent reports have shown that the effect of BCI-MI on motor
recovery is debatable. There are mainly two reasons: First, it
is difficult to perform MI without adequate practice; thus, the
effects of training vary greatly from person to person owing
to variations in MI interpretation. One way to overcome this
limitation is to adopt motor observation. Aziz-Zadeh et al.
(2006) reported that the mirror neuron system (MNS), a parieto-
frontal neural network distributed in the human brain, can be
activated both when individuals perform a particular action and
when they observe a similar action being performed by others.
Therefore, observation of the movement of another person could
activate the same motor areas as those activated during MI
practice, and thus reduce the variance in MI interpretation
among different individuals. Second, the lack of real-time. In
2004, Muthukumaraswamy et al. (Muthukumaraswamy and
Johnson, 2004; Muthukumaraswamy et al., 2004) reported
on electroencephalogram (EEG) mu (8–13 Hz) suppression
during observation of a motor action performed by another
person. Mu suppression was defined as the ratio of the
power during the stimulus condition relative to the power
during the resting baseline condition, with the assumption that
mu synchrony would be greatest during the non-biological
observation, owing to the lack of movement or perception of
movement, but should be suppressed while observing biological
action (Oberman et al., 2008). Mu suppression was represented
as an indirect measure of the recruitment of MNS activity
(Muthukumaraswamy et al., 2004) and could be used as a

Abbreviations: fApEn, Fuzzy Approximate Entropy; BCI, Brain Computer

Interface; EEG, Electroencephalography; FFT, Fast Fourier Transform; MI,

Motor Imagery; MNS, Mirror neuron system; SE, Standard error; WMFT, Wolf

Motor Function Test; ARAT, Action Research Arm Test; FMA-UL, Fugl Meyer

Assessment-Upper Limb.

dependent variable to give feedback to the subject. In this
study, BCI, motor observation, and MNS theory were integrated
to design a novel rehabilitation system that is expected to
overcome the potential problems in existing BCI and MI
systems and facilitate the restoration of hand function in stroke
patients.

Clinical assessment scales are routinely used to assess residual
motor function after stroke. However, kinematic and kinetic
indexes only reflect external motor performance, whereas the
internal mechanism of neurological changes could determine
external motor performance. The EEG is a recorded signal
of the overlapped oscillations of brain cell action potentials
in time and space. Many linear EEG-derived indexes, such as
frequency analysis and EEG topography (Nuwer et al., 1987),
have been used as evaluation measures. However, the brain is a
complex nonlinear system, and the EEG signal is demonstrated
nonlinearly at the neuronal level. Therefore, it would be more
appropriate to use nonlinear methods to analyze EEG signals
(Klonowski, 2009). Moreover, a nonlinear dynamic approach
could provide novel insights into brain diseases and could be
a useful tool in understanding the mechanisms of neuronal
plasticity after injury and during rehabilitation. C. J. Stam
summarized many kinds of nonlinear time series analysis. For
example, the dimension is used to estimate the degrees of
freedom of the system, Lyapunov exponents and entropy is used
to reflect unpredictability of the dynamics due to the sensitive
dependence on initial conditions (Stam, 2005). Studies that are
concerned with effects of stroke from this perspective are less
numerous but there are some; for example, the point correlation
dimension was used for the analysis of the EEG recorded in
patients with unilateral stroke caused by middle cerebral artery
occlusion (Molnar et al., 1999). However, a relatively large dataset
is needed for these nonlinear dynamic measures to obtain reliable
and consistent results, or spurious results could be generated.
Approximate entropy (ApEn) is a powerful nonlinear method
for the characterization of short physiological signals (less than
1,000 points) (Pincus, 1991; Yentes et al., 2013). The ApEn
method was first developed by Pincus (Pincus, 1991), who aimed
to measure the regularity of a time series. It has been used to
analyze the EEG to assess the conscious state (Wu et al., 2011),
characterize Alzheimer’s disease (Cao et al., 2015), and elucidate
the pathophysiological mechanisms in schizophrenia (Takahashi
et al., 2010). Recently, fuzzy approximate entropy (fApEn) has
been developed which is a combination of the concept of “fuzzy
sets” introduced by Zadeh (1982) and ApEn introduced by
Pincus (1991). Xie et al. (2011) further confirmed the advantage
of fApEn compared to ApEn during a complexity analysis of
electromyography (EMG). Ao et al. (2015) also demonstrated
the consistency and robustness to noise of fApEn in the analysis
of EMG signals, in comparison to ApEn and sample entropy.
Considering its successful application in the analysis of short
noisy physiological signals, fApEn was used in this study to
investigate the changes in complexity of EEG signals in post-
stroke patients after rehabilitation training.We hypothesized that
the complexity of EEG signals would change in association with
training-induced upper limb motor function improvement in
stroke patients.
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MATERIALS AND METHODS

Subjects
Eleven post-stroke subjects (nine males and two females; aged
55.89 ± 9.24 years) and nine unimpaired subjects (seven males
and two females; aged 30.45 ± 6.60 years) were recruited. The
data of age and results of clinical assessments are presented as
mean ± standard error (SE). The time since stroke (TAS) of all
subjects exceeded 1 year. So, the natural recovery is too slow
to cause a significant improvement in motor function during
the period of training (2–3 months). Table 1 summarizes the
demographics of the stroke subjects and Table 2 summarizes the
lesion location of these subjects. Three subjects did not do fMRI
scan due to the health problem. The inclusion criteria comprised
of the following: (1) sufficient cognition to follow simple
instructions and understand the purpose of the experiment
(Mini-Mental State Examination > 21); and (2) hemiparesis
resulting from a unilateral brain lesion with time since stroke
greater than 6 months before study enrollment. The exclusion
criteria comprised the following: (1) severe hand spasticity;
(2) open hand wound or hand deformity; and (3) visual field
deficits. The recruited healthy subjects have sufficient cognition
to follow simple instructions and understand the purpose of the
experiment (MMSE > 21). All subjects had been required to
not participate another rehabilitation project during this training
period and given written informed consent according to the
Declaration of Helsinki. The Joint Chinese University of Hong
Kong-New Territories East Cluster Clinical Research Ethics
Committee (CUHK-NTEC CREC) approved the experimental
protocol (agreement #2014.705-T). This study was also registered
at www.clinicaltrials.gov, with the study identifier NCT02323061.
Clinical assessment scales used in the present study included the
Upper Limb Fugl-Meyer Assessment (Fugl-Meyer et al., 1975)
(UL-FMA) (range: 0–66); Action Research Arm Test (Carroll,
1965) (ARAT) (range: 0–57); and Wolf Motor Function Test

(Wolf et al., 2001) (WMFT) (range: 0–75). The clinical scales of
each stroke subject before and after the training are presented in
Table 1.

BCI-Motor Observation Training System
A BCI-motor observation training system was developed as
shown in Figure 1A. The EEG signals of each subject were
captured by 16 active electrodes (g.LADYbird, g.Tec Medical
Engineering GmbH, Austria) and amplified by an amplifier
(g.USBamp, g.Tec Medical Engineering GmbH, Austria), and
then processed by a computer. A paradigm was played in a
fixed sequence to guide the subject to complete a training
task while a video-based stimulus was provided. A robotic
hand (Tong et al., 2013) was used to assist the paretic hand to

TABLE 2 | Lesion locations of eight post-stroke subjects.

Subject Lesion location

1 L PLIC, putamen

2 R putamen, insula

3

4 L insula, putamen, IFG, temporal pole

5 R MFG, SFG, precentral, supramarginal, SMA

6 R insula, ITG, IOG, putamen

7

8 R ITG, MTG, STG, MOG, angular, supramarginal

9

10 R insula, putamen, rolandic operculum, IFG

11 L MFG, precentral, IFG, postcentral, insula, SFG

L, left hemisphere; R, right hemisphere; M, male; F, female; PLIC, posterior limb of internal

capsule; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus;

SMA, supplementary motor area; ITG, inferior temporal gyrus; MTG, middle temporal

gyrus; STG, superior temporal gyrus; IOG, inferior occipital gyrus; MOG, middle occipital

gyrus.

TABLE 1 | Basic information of 11 post-stroke subjects.

Subject Gender Age Type Affected hand TSS UL-FMA ARAT WMFT

Pre Post Pre Post Pre Post

1 M 58 Isch R 10 22 24 15 14 33 36

2 F 48 Isch L 1 36 41 8 20 29 38

3 M 59 Isch L 11 25 33 28 38 25 34

4 M 65 Hemo R 8 24 29 10 21 34 36

5 M 46 Isch L 1 20 34 3 21 26 39

6 M 66 Hemo L 1 13 16 8 15 17 21

7 F 68 Isch L 3 25 26 14 27 36 42

8 M 46 Hemo L 1 17 25 16 17 23 28

9 M 47 Hemo R 2 20 24 15 29 19 27

10 M 59 Isch L 3 17 14 4 6 16 20

11 M 52 Isch R 1 41 36 32 27 43 43

Mean 55.82 3.82 23.64 27.45 13.91 21.36 27.36 33.09

SD 8.41 32.89 8.30 8.23 9.14 8.66 8.55 9.97

Hemo, hemorrhagic stroke; Isch, ischemic stroke; M, male; F, female; R, right; L, left; TSS, time since stroke; UL-FMA, Upper-Limb Fugl-Meyer Assessment (maximum: 66); ARAT,

Action Research Arm Test (maximum: 57); WMFT, Wolf Motor Function Test (maximum: 75).
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FIGURE 1 | Schematic diagram (A) and real situation (B) of the BCI-motor observation training system for hand training. (C) The location of electrodes.

grasp/open, based on the result of the mu suppression algorithm
that was calculated from the EEG signals captured during the
video. The system also displayed a mu suppression score on
the computer screen that was placed in front of the subject to
provide real-time feedback. The mu suppression score provides
information about the degree of activation of the MNS, and the
subject could adjust the motion observation according to this
index in order to achieve higher scores. It will be described
in detail in Section Mu Suppression Score. After all tasks were
completed, the computer recorded the EEG signals and time-
marks for further analysis.

EEG Acquisition
EEG signals were referenced to a unilateral earlobe, grounded at
a frontal position (Fpz), and sampled at 256 Hz using 16 active
electrodes with the location as shown in Figure 1C. EEG signals
were also processed in real-time using a band-pass filter (2–60
Hz) and a notch filter (48–52 Hz) to remove artifacts and power
line interference, respectively. All electrodes were filled properly
with a conductive gel to ensure the transmission impedance
remained below 1 kOhm. The EEG electrodes were placed over
the central area according to the international 10–20 system.
Consistent with the methods of similar studies (Pineda, 2005;
Oberman et al., 2013), EEG signals from C3 and C4 electrodes
were used for BCI control. Furthermore, some of the sites that
are related to motor function were used for offline analyses (left
hemisphere: FC3, C3, and CP3; right hemisphere: FC4, C4, and
CP4). The FC3/FC4 lies over the pre-motor cortex and the C3/C4
lies over the primary motor cortex. CP3/CP4 corresponds to the

supramarginal gyrus that is part of the somatosensory association
cortex. These six electrodes covered the major part of the mirror
neuron system (Carlson, 1994).

Experiment and Paradigms
All stroke subjects received BCI-motor observation training
consisting of 20 sessions, with an intensity of 3–5 sessions per
week that was completed within 5–7 weeks. Healthy subjects were
only required to participate one session. During each session,
each subject sat in a height-adjustable chair with his/her: (1)
shoulder positioned at 90◦ abduction; (2) elbow flexed at 90◦;
(3) arm pronated, such that the palm was directed medially; and
(4) wrist positioned neutrally without any flexion/extension, as
shown in Figure 1B. The non-dominant arm was used for the
healthy subject while the affected arm was used for stroke subject.
A cushion was used to support and maintain the position of the
subject’s arm.

Two paradigms were used (Figure 2): (1) observation of
biological movement: observation of a video demonstrating
grasping or releasing of a cup using the affected hand, from
three different perspectives (A: egocentric, B: overhead, and C:
allocentric). In the egocentric viewpoint, the subject viewed the
actions from the first-person perspective (Figure 2A). In the
overhead viewpoint, the subject viewed the actions from above
(Figure 2B). In the allocentric viewpoint, the subject viewed
the actions from the third-person perspective (Figure 2C). (2)
Observation of non-biological movement: observation of a video
generated by decomposition of the video clip of biological
movement into frames (24 frames per second), with each frame
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FIGURE 2 | Experiment paradigms for observation of (i) biological and (ii) non-biological movements. During the observation of biological movements, video clips

were displayed in (A) egocentric, (B) overhead, and (C) allocentric perspectives.

FIGURE 3 | Comparison of mu power during non-biological observation at six

electrodes (C3, C4 FC3, FC4, CP3, CP4) among healthy subjects and stroke

subjects at pre- and post-training.

spatially scrambled (192 × 108 fragments in each frame), to
ensure that the hand action could no longer be recognized.
The timings of the experimental sequence for observation of

biological and non-biological movements are shown in Figure 2.
During the observation of biological movements (Figure 2i),
a dark screen was first displayed for 2 s, followed by a white
cross for 2 s. A text cue of “hand grasp” or “hand open” was
then displayed for 2 s. A video clip with a duration of 6 s
was then displayed. Subjects were asked to observe the actions
and avoid blinking. The mu suppression score was calculated
based on the EEG signals during the video clip (introduce
in Section Mu Suppression Score). A robotic hand provided
mechanical support to assist the subject in the completion of
the hand grasp/open task during the following 3 s, if the mu
suppression score was above 20. Such scores meant that the
ratio of the mu power between biological and non-biological
observation was below 80% according to the average results
reported in Perry’s study (Perry and Bentin, 2009). The mu
suppression score was then shown for 2 s. The trial ended with
the display of a dark screen for 2 s. During each session, the
trial was repeated 100 times and video clips of the grasping
hand and opening hand were shown alternately with random
viewing perspectives. Subjects were allowed to rest for 1 min
after 10 trials. The sequence of the experimental paradigm for
observation of non-biological movements (Figure 2ii) included
only a black screen, cross, scrambled video clips, and then
another black screen. The display of experimental sequences
for the two paradigms was controlled by the Psychophysics
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Toolbox 3.0 (http://psychtoolbox.org/) (Brainard, 1997; Pelli,
1997).

Mu Suppression Score
Mu suppression reflects an event-related desynchronization
(ERD) of the EEG caused by an increase in neural activity
(Kuhlman, 1978). Many researchers believed that mu
suppression is associated with the activation of MNS in
human brains (Bartur et al., 2015). To compute mu suppression,
C3 or C4 was selected according to the subject’s ipsilesional side.
The EEG data were converted to the frequency domain by a fast
Fourier transform algorithm with a Hanning window covering
the EEG data during the video period (6 s) in paradigm. The
mean power in the mu band (8–13 Hz) for the selected electrode
was calculated. The value of mu suppression score is equal to
the negative difference of mu power between the observation of
biological movement and non-biological movement, divided by
the mu power during observation of non-biological movement
(baseline), andmultiply by 100 (Oberman et al., 2008; Braadbaart
et al., 2013), as expressed by the following equation:

MuSC = −
MuPbo −MuPnbo

MuPnbo
∗ 100

where MuSC represents the Mu suppression score, MuPbo
represents the mu power of EEG during observation of biological
movement, andMuPnbo represents the mu power of EEG during
observation of non-biological movement.

Fuzzy Approximate Entropy (fApEn)
EEG complexity has been used to assess Alzheimer’s disease
(Cao et al., 2015), schizophrenia (Takahashi et al., 2010) and
epilepsy (Acharya et al., 2012), it may reflect the condition of
neuronal death, loss of synaptic connections, and the general
effects of neurotransmitter deficiency. In addition, compared to
the traditional linear approaches, EEG complexity as a nonlinear
dynamic approach provides novel insights into brain diseases.
This study adopted the fApEn algorithm described in a previous
study (Ao et al., 2015). A brief introduction to the algorithm is
described in this section. To compute the fApEn of an N sample
series

{

u(i) : 1 ≤ i ≤ N
}

, a vector of length m could be derived
from the time series:

Xm
i =

{

u(i), · · · , u(i+m− 1)
}

−
1

m

m−1
∑

j=0

u(i+ j) (1)

Where 1
m

m−1
∑

j=0
u(i+ j) is the baseline of the vector.

The distance dmij between Xm
i and Xm

j was defined as:

dmij = max
k∈(0,m−1)

∣

∣w(i+ k)− w0(i)− u(j+ k)+ u0(j)
∣

∣ (2)

A fuzzy function Dm
ij (n, r) was formulated to calculate the

similarity degree of the two vectors Xm
i and Xm

j . where n and r

are two parameters that determine the width and gradient of the
boundary of the exponential function, respectively:

Dm
ij (n, r) = exp(−(dmij /r)

n) (3)

The function φm then aggregated the similarity from any vector
in the time series to another as follows:

φm(n, r) =
1

N −m

N−m
∑

i=1

(
1

N −m− 1

N−m
∑

j=1,j 6=i

Dm
ij ) (4)

Finally, fApEn (m, n, r, N) was estimated by the algorithm of the
difference between the function of the length m+ 1 and m.

fApEn(m, n, r,N) = lnφm(n, r)− lnφm+1(n, r) (5)

Statistical Analysis
Statistical analysis was performed using the IBM SPSS 22
software (SPSS Inc., Chicago, Illinois, USA). The Wilcoxon
signed-rank test was applied to verify the statistical significance
of changes in the UL-FMA, ARAT, and WMFT between pre-
and post-training. For fApEn and mu power analyses, two-
way repeated-measures analysis of variance (ANOVA), with
time (pre-training vs. post-training) and electrode (FC3, C3,
CP3, FC4, C4, and CP4) as within-subject factors were used to
assess the training effects. Two-way mixed analysis of covariance
(ANCOVA), with group (stroke: pre- or post-training vs. healthy
control) as between-subject factor, electrode (FC3, C3, CP3, FC4,
C4, and CP4) as within-subject factor, and age as covariate,
was performed to test for group differences. The Greenhouse-
Geisser adjustment was applied to the degrees of freedom for
all analyses if the Mauchly’s test of sphericity was significant.
Spearman’s correlation analysis was used to investigate potential
associations between fApEn and clinical scales (UL-FMA, ARAT,
and WMFT). The significance level for all statistical analyses was
set at p < 0.05.

RESULTS

Clinical Scales
The results from the clinical scales are presented in Table 1.
The Wilcoxon signed-rank test showed a significant increase in
the group mean WMFT score (pre-WMFT: 27.36 ± 8.55; post-
WMFT: 33.09 ± 9.97; p = 0.005); the group mean ARAT score
(pre-ARAT: 13.91 ± 9.14; post-ARAT: 21.36 ± 8.66; p = 0.014);
and the group mean UL-FMA score (pre-UL-FMA: 23.64± 8.30;
post-UL-FMA: 27.45± 8.23; p= 0.045) after training.

Mu Suppression
In Figure 3, there was no significant interaction between the time
and electrode, F(3.085, 30.850) = 1.447, p = 0.248. Furthermore,
there was no significant main effect of the time [F(1, 10) = 1.184,
p = 0.302], and the electrode [F(1.369, 13.693) = 1.342, p = 0.281].
There was no significant difference in mu power of the electrodes
between healthy controls and stroke patients before the training,
F(1, 17) = 0.02, p= 0.968. Also, there was no significant difference
in fApEn of the electrodes between healthy controls and stroke
patients after the training, F(1, 17) = 0.042, p= 0.840.

EEG fApEn
The fApEn parameter choices of window length N and tolerance
window r were tested with the EEG data from a stroke participant
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(S3) as in Figure 4A. The window N increase from 40 points to
1200 points in steps of 40 points. The EEG signal was picked from
C3 during motor observation in three training sessions: the 1st,
10th, and 20th sessions. The fApEn curve from the 20th session
was larger than that from the 10th session, and the fApEn from
the 10th session was larger than that from the 1st session. There
were only a few crossovers between the sessions when N was less
than 600. No crossover was evident in the changes in the fApEn
curve with r that reflected the good relative consistency of fApEn
in short physiological signals. Figures 4C,D depict the average
change of EEG fApEn with increase of N and r of 11 stroke
subjects at six electrodes (C3, C4, FC3, FC4, CP3, and CP4). They
have the same pattern as S3 in Figure 4A. Combining the results
of a previous study (Ao et al., 2015) with those testing results
of the present study, N was set at 1000, and r was fixed at 0.2.
Figure 4B depicts average multiscale fApEn of EEG of 11 stroke
subjects at six electrodes. Based on the sampling rate of the EEG
data (256 Hz), fApEn was calculated at time scale from 1 to 20.
fApEn increase after training at fine time scales at all of the six
electrodes. However, the changes of fApEn at course time scales
are not consistent at six electrodes. So, we used fApEn at fine time
scale (time scales= 1) to analysis EEG data in this study.

To obtain a continuous fApEn curve, a sliding window
was applied during EEG data processing. The moving step
was 0.1 s (i.e., 26 points). Figure 5 shows the comparison of

sliding-window EEG fApEn during the 1st (Figure 5A) and 20th
training sessions (Figure 5B) from a stroke participant (S3) and
a healthy subject (Figure 5C). The period of the video clip was
represented between the red line and the blue line. The fApEn
curve showed no clear trend in changes, and the values recorded
during the video clip showed no remarkable characteristics
during the 1st session of training. After training, the fApEn curve
showed clear peaks during the period of the video clip, and the
fApEn value was relatively low during segments without a video
clip, consistent with the shape of the EEG fApEn curve from the
healthy participant.

In order to verify the change in the fApEn curve before
and after training as illustrated in Figure 5, we separated all
trials in each experiment by time-marks. Thus, the average
of 100 trials in each training session was calculated. Figure 6
compares the average fApEn between the 1st and 20th training
sessions among 11 stroke participants. In addition, Figure 6
presents the average EEG fApEn generated from nine healthy
participants. The EEG fApEn before the observation of the action
was relatively low. When the video clip was started, the fApEn
increased significantly, indicating an increase in the complexity
of the EEG over the primary motor cortex. When biological
observation tasks were complete, the EEG fApEn was reduced
to the baseline level (Figure 6). Furthermore, after training, the
fApEn during the video clip was higher than that before training.

FIGURE 4 | (A) Change of EEG fApEn with increase of window N, and tolerance r in the 1st, 10th, and 20th training session in a subject (S3). (B) Average multiscale

fApEn of EEG of 11 stroke subjects at six electrodes (C3, C4, FC3, FC4, CP3, CP4). Average change of EEG fApEn with increase of (C) window N and (D) tolerance r

of 11 stroke subjects at six electrodes.
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FIGURE 5 | Sliding window of EEG fApEn during the (A) first training session, (B) and 20th training session from a stroke participant (S3) and a healthy participant (C).

The fApEn during the video clip was also closer to that of the
fApEn in healthy study participants, in comparison to the fApEn
before training.

fApEn during the period of the video clip was averaged
for statistical analysis. In Figure 7, there was a significant
interaction between the time and electrode, F(2.49, 24.85) = 3.432,
p = 0.039. The fApEn of C3/C4-contralesional and FC3/FC4-
contralesional (C3/C4-contralesional: F = 5.407, p = 0.042;
FC3/FC4-contralesional: F = 7.107, p = 0.024) increased after
training. However, there was no significant main effect of the
time [F(1, 10) = 4.29, p = 0.065], and the electrode [F(1.88, 18.79)
= 1.60, p = 0.229]. There was a significant difference in fApEn
of the electrodes between healthy controls and stroke patients

before the training, F(1, 17) = 7.68, p = 0.013. The fApEn of
all electrodes in healthy controls were larger than those in
stroke patients. However, there was no significant main effect
of the electrode [F(2.30, 39.07) = 0.971, p = 0.398], and the
electrode∗group interaction [F(2.30, 39.07) = 0.991, p= 0.390]. The
covariate, age, was not significantly related to the fApEn, F(1, 17)
= 2.66, p = 0.121. There was no significant difference in fApEn
of the electrodes between healthy controls and stroke patients
after the training, F(1, 17) = 3.95, p = 0.063. There was also
no significant main effect of the electrode [F(1.72, 29.18) = 0.16,
p = 0.822], and the electrode∗group interaction [F(1.72, 29.18) =
0.29, p = 0.720]. The covariate, age, was not significantly related
to the fApEn, F(1, 17) = 1.60, p= 0.224.
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FIGURE 6 | Comparison of fApEn during observation of biological movement at six electrodes (A, C3/C4-ipsilesional; B, FC3/FC4-ipsilesional; C, CP3/CP4-

ipsilesional; D, C3/C4-contralesional; E, FC3/FC4-contralesional; F, CP3/CP4-contralesional) among healthy participants and stroke participants, pre- and

post-training.

FIGURE 7 | The fApEn values among healthy participants and stroke participants during observation of biological movements at six electrodes, pre- and post-training

(A, C3/C4-ipsilesional; B, FC3/FC4-ipsilesional; C, CP3/CP4-ipsilesional; D, C3/C4-contralesional; E: FC3/FC4-contralesional; F, CP3/CP4-contralesional). *p < 0.05

Correlation of fApEn with Clinical Scales in
Stroke Patients
Table 3 summarizes the results of Spearman’s correlation
analyses performed between fApEn and the clinical scales (UL-
FMA, ARAT, and WMFT) used in the stroke patients. For
the EEG fApEn of the ipsilesional hemisphere, no significant
correlation was noted between the changes observed with the
clinical scales (post- minus pre-training) and those of the
average fApEn in the electrodes (p > 0.05). For the EEG
fApEn of the contralesional hemisphere, a significant correlation
was observed between the change in fApEn in the C3/C4-
contralesional hemisphere and the change reflected by the UL-
FMA (R = 0.671, p = 0.024); ARAT (R = 0.774, p = 0.005);

and WMFT (R = 0.849, p = 0.001), as shown in Figures 8A-C

respectively. However, the fApEn in the FC3/FC4-contralesional
and CP3/CP4-contralesional hemispheres showed no correlation
with changes reflected by any of the clinical scales.

DISCUSSION

The Effect of BCI-Motor Observation
Training
To answer the question whether the motor function of
the upper limb recovery after BCI-motor observation
training in post-stroke hemiparetic patients, this study
adopted motor observation in BCI rehabilitation, and then
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TABLE 3 | Correlations between change in clinical scales (UL-FMA, ARAT, WMFT) and change in EEG fApEn at six electrodes (C3, C4, FC3, FC4, CP3, CP4).

UL-FMA ARAT WMFT

C3/C4 I. R = −0.023; p = 0.947 R = 0.155; p = 0.649 R = −0.050; p = 0.883

C3/C4 C. R = 0.671; p = 0.024* R = 0.774; p = 0.005** R = 0.849; p = 0.001**

FC3/FC4 I. R = −0.064; p = 0.852 R = 0.036; p = 0.915 R = −0.032; p = 0.926

FC3/FC4 C. R = 0.511; p = 0.108 R = 0.574; p = 0.065 R = 0.516; p = 0.104

CP3/CP4 I. R = 0.201; p = 0.554 R = 0.292; p = 0.384 R = −0.237; p = 0.482

CP3/CP4 C. R = 0.498; p = 0.119 R = 0.346; p = 0.297 R = 0.315; p = 0.345

I., ipsilesional hemisphere; C., contralesional hemisphere; UL-FMA, Upper Limb Fugl-Meyer Assessment; ARAT, Action Research Arm Test; WMFT, Wolf Motor Function Test. *p < 0.05;

**p < 0.01.

FIGURE 8 | Correlation of fApEn with clinical scales (A, UL-FMA; B, ARAT; and C, WMFT) in stroke patients.

tested the effects of training. Both the WMFT and ARAT
demonstrated significant improvement in upper limb motor
function after training. These findings indicate that the
novel training system improved motor function of the upper
limb.

Several studies (Jeannerod and Frak, 1999; Jackson et al., 2001;
Page, 2001; Sharma et al., 2006) suggest that motor imagery
could be a useful training method for stroke rehabilitation;
however, one study (Ietswaart et al., 2011) reported mental
practice with motor imagery does not enhance motor recovery
on the ARAT. Differences in understanding of motor imagery
in different individuals might be the main reason for these
disparities. We believe that motor observation could overcome
the challenges associated with the interpretation of motor
imagery, because it is a passive activity with smaller variations
among individuals, in comparison to voluntary motor imagery.
On the other hand, motor observation could activate a similar
region in the cortex as motor imagery and execution. Maeda
et al. (Maeda et al., 2002) demonstrated the involvement of
the primary motor cortex during action observation, indicating
similarity not only between action and imagery but also between
action and observation. The study by Maeda et al. also shows
that “passive” movement observation, as distinct from that
with “the intention to imitate,” activates structures in the brain
that are normally involved in the planning and execution of
movements, including supplementary motor area (SMA), the
premotor cortex, the superior temporal sulcus, the inferior
frontal cortex (area 45), and the inferior parietal cortex (area
40). Hence, an active intention to imitate does not seem to
be crucial for the observation of movement-related neural
activity in motor areas. In the present study, whether or not

a subject performed motor imagery during motor observation
was not a crucial point, because passive motor observation
could also activate similar brain cortical activity as motor
imagery.

The fApEn of EEG during Observation of
Biological Movements
A dynamic nonlinear index, EEG complexity, was used to
describe EEG oscillation during motor observation. According
to previous reports, the fApEn shows good consistency and
robustness to noise in the evaluation of a complexity of bio-
signals, and a very short data length (0.5 s) is needed to
distinguish different processes (Ao et al., 2015). In this study,
the fApEn increased during observation of biological movement
and was reduced to baseline levels during observation of non-
biological movement. This could be attributed to activation
of the motor cortex during motor observation. During the
mental activity, different neuronal networks at the cortical
level start to oscillate at different frequencies, and this can
reduce the predictability of the EEG signal. However, during
the resting state, a relatively large number of neuronal networks
fire synchronously, thereby increasing the predictability of
the signal. Ming et al. (2009) found that MI and rest can
be discriminated with the use of multiscale entropy in the
EEG. Furthermore, they reported that the entropy of MI is
significantly higher than that at rest, which is consistent with
the present results. A key difference is that the present study
used fApEn, whereas Ming’s study used multiscale entropy.
Both of these algorithms can be used to evaluate EEG
complexity.
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The fApEn of EEG from Healthy Adults and
Stroke Patients, Pre- and Post-Treatment
To our knowledge, this is the first report of an investigation
into the dynamic temporal complexity of EEG, using fApEn
in post-stroke patients and healthy adults during BCI-motor
observation training. The results show that fApEn values of post-
stroke patients were significantly lower than those of healthy
adults in the fronto-central, central regions pre-training. This
suggests that the motor dysfunction of post-stroke patients is
characterized by a loss of complexity of brain activity. However,
the associated pathophysiological implications remain unclear.
These findings might be attributed to neuronal death, loss of
synaptic connections, and the general effects of neurotransmitter
deficiency. These results also highlight the possibility that fApEn
could be used as a novel evaluation to facilitate the diagnosis of
brain disorders such as stroke by qualifying brain activity.

The low EEG complexity in stroke patients was increased to
the level of healthy subjects in the fronto-central region after
training. In contrast to the reduction in fApEn observed after
stroke possibly due to neuronal death, the increase in fApEn
after treatment could not have been due to an increase in the
number of neurons, as lost neurons cannot be regenerated during
rehabilitation training. However, following the neuronal death in
stroke, spared neural structures in adjacent tissue, and remote
structures in the ipsilesional and contralesional hemispheres,
undergo significant functional changes (Nudo and Hillis, 2010).
For example, changes in neural pathways in remote areas of
the brain occur, and new neuronal connections develop during
rehabilitation (Pekna et al., 2012) that could have led to the
increased complexity of brain signals.

The extent of the restoration of motor function is highly
dependent on remapping in the uninjured motor-related areas
apart from the site of the lesion in the brain (Murphy
and Corbett, 2009). The present results indicate that the
EEG complexity increases much more significantly in the
contralesional hemisphere than in the ipsilesional hemisphere,
particularly in the fronto-central region. This indicates that the
contralesional hemisphere can become more active after the
training. In animal studies, a greater number of distant motor-
related sites, such as contralesional hemisphere, become involved
if a stroke has induced a relatively large lesion (Brown et al.,
2009). The region of the brain injury in all subjects of the present
study was relatively large, so there might have been insufficient
cortical tissue left in the ipsilesional hemisphere to re-establish
a new motor center. Also, the majority of our participants
had the left hand affected, suggesting a lesion in the non-
dominant right hemisphere. The increase of EEG complexity
in contralesional hemisphere may due to the dominant left
hemisphere (contralesional for these patients) exerts a stronger

influence on the right hemisphere’s motor activity than the other
way around (Derakhshan, 2005).

The Correlation between fApEn and
Clinical Scales
The trend of an increase in the group means of clinical scales
(FMA-UL, ARAT, and WMFT) across the training sessions
suggest an improvement of motor function in the paretic limbs.
The fApEn value increased as rehabilitation training progressed,
and this might have been caused by changes in neuronal
pathways. According to a previous study, neurophysiologic and
neuroanatomic changes that take place in undamaged tissue
could be explained by the functional plasticity of the adult
cerebral cortex, even as training sessions proceed (Nudo et al.,
2001). Moreover, the significant correlation between clinical
scales and the fApEn of the EEG implied that modulation of
the neural pathway is one of the factors responsible for the
improvement in motor function. It is interesting to note that,
among six electrodes, only the fApEn in the central region
(C3/C4) of the contralesional hemisphere showed significant
correlation with clinical scales. Coincidentally, a significant
increase in the fApEn of this region was noted after the training.

Prospects, Limitations, and Future Plans
This study provides new information about electrophysiological
aspects based on the fApEn of EEG signals. This information is
both useful for, and complementary to, the clinical evaluation
of motor status. Moreover, the method outlined is very simple,
as motor observation can be easily performed and the subject
experiences no associated discomfort. The method and findings
of the present study have clinical potential for the evaluation
of improvement in the motor system and for evaluation of the
effects of therapeutic devices or rehabilitative therapies. However,
this paper represents a pilot study on BCI-motor observation
training. Future studies that evaluate a greater number of patients
and healthy subjects will be necessary to verify the conclusions of
the present study.
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