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Schizotypy refers to the personality trait of experiencing “psychotic” symptoms and can

be regarded as a predisposition of schizophrenia-spectrum psychopathology (Raine,

1991). Cumulative evidence has revealed that individuals with schizotypy, as well as

schizophrenia patients, have emotional processing deficits. In the present study, we

investigated multimodal emotion perception in schizotypy and implemented the machine

learning technique to find out whether a schizotypy group (ST) is distinguishable from

a control group (NC), using electroencephalogram (EEG) signals. Forty-five subjects

(30 ST and 15 NC) were divided into two groups based on their scores on a Schizotypal

Personality Questionnaire. All participants performed an audiovisual emotion perception

test while EEG was recorded. After the preprocessing stage, the discriminatory features

were extracted using a mean subsampling technique. For an accurate estimation

of covariance matrices, the shrinkage linear discriminant algorithm was used. The

classification attained over 98% accuracy and zero rate of false-positive results. This

method may have important clinical implications in discriminating those among the

general population who have a subtle risk for schizotypy, requiring intervention in

advance.

Keywords: Schizotypy, classification, EEG, multimodal emotion perception, shrinkage linear discriminant analysis

INTRODUCTION

Schizotypy is a pervasive pattern of intrapersonal and interpersonal deficits, characterized by
perceptual, emotional, and cognitive distortions, as well as eccentric behaviors found on a
schizophrenia spectrum (Chapman et al., 1994; Claridge et al., 1996; Kerns, 2006). The spectral
view of psychosis, but not the categorical view, postulates that there is no clear-cut criterion between
sanity and insanity (Eysenck, 1992; Claridge et al., 1996). Accordingly, schizotypy has been thought
to have relatively mild positive and negative symptoms and dimensions, compared to those found
in patients clinically diagnosed with schizophrenia (Gruzelier and Doig, 1996), and show different
levels of cognitive and emotional impairments within certain contexts (Genetic Risk Outcome in
Psychosis (GROUP) Investigators, 2011; Hori et al., 2012; Rossler et al., 2014). Therefore, studies
of schizotypy in a normal population have provided a promising framework to understand the
psychopathology of schizophrenia, as well as elucidating the psychobiological underpinnings of
schizotypy itself, within the spectral view of psychosis.

One of the cardinal symptoms associated with schizophrenia concerns deficits in emotion
perception. Patients with schizophrenia have consistently been reported to show deficits in
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recognizing emotions in facial (Borod et al., 1993; Hall et al.,
2004; Kosmidis et al., 2007) and vocal (Bozikas et al., 2006;
Leitman et al., 2010; Gold et al., 2012) expressions, and this
finding is observed in both behavioral and electrophysiological
studies (Campanella et al., 2006; Turetsky et al., 2007; Lynn and
Salisbury, 2008; Wynn et al., 2008; Ramos-Loyo et al., 2009;
Pinheiro et al., 2013).

For symptoms associated with schizotypy, recent
neuroimaging studies have shown schizotypy have a mild level of
emotional deficits. In an functional magnetic resonance imaging
(fMRI) study, for instance, individuals with schizotypy showed
emotion regulation difficulties, showing stronger activation in a
number of prefrontal regions and decreased amygdala activation,
when compared to controls, while reappraising emotion
(Modinos et al., 2010). Further, the results of a study using
emotional facial stimuli suggested the possibility that individuals
with schizotypy have social interaction difficulties (Huang et al.,
2013). Additionally, individuals with schizotypy have shown
different patterns of brain activation to dynamically changed
facial expressions compared to controls. This was especially
true in the positive type of schizotypy, which showed deficits in
emotion-cognition processes, showing qualitative alterations in
neural processing patterns while performing an emotional Stroop
task (Mohanty et al., 2005). Lastly, in an electroencephalogram
(EEG) study, individuals with schizotypy showed impaired
processing for social-emotional information. These individuals
showed less prefrontal-posterior functional coupling than
controls, which is considered to be indicative of a mechanism
to protect the individual from becoming overwhelmed by the
perception of social-emotion information, during exposure to
auditory displays of strong emotion (Papousek et al., 2014).

As schizotypy is associated with a risk of developing
schizophrenia, and some individuals with schizotypy become
clinically ill, the discovery of a reliable method that can
distinguish schizotypy from healthy individuals is vital. However,
no reliable method has thus far been developed utilizing an
objective measure for discriminating individuals with schizotypy
from normal controls. Although, the Schizotypal Personality
Questionnaire (SPQ; Raine, 1991) has been widely used for
schizophrenia spectrum diagnoses, it is a self-report measure.
Self-report measures are more often used for measuring levels of
traits or symptom severity. Moreover, self-report questionnaires
could suffer from social desirability bias, which can cause over-
reporting of socially desirable and under-reporting of socially
undesirable behaviors (Paulhus and Vazire, 2007).

In previous studies, EEG has been consistently used
as a sensitive biomarker to distinguish individuals with
impaired mental functioning, including Parkinson’s Disease,
Schizophrenia, and Alzheimer’s Disease (AD), from controls
(Kalatzis et al., 2004; Chapman et al., 2007; Lehmann et al., 2007;
Sabeti et al., 2011; Yuvaraj and Murugappan, 2016). For instance,
EEG was recorded in patients with Parkinson’s disease with the
left (LPD) or right side affected (RPD) and controls during the
identification of six basic emotions: happiness, sadness, fear,
anger, surprise, and disgust. Poorer classification performance
using emotion-specific EEG features was shown in patients with
LPD (inferred right-hemisphere pathology), which indicates that

patients with LPD were more impaired in emotion processing
compared to patients with RPD as well as controls. Moreover,
EEG has been used to predict the progression to AD among
individuals with Mild Cognitive Impairment (MCI), which is
a transitional state between normal aging and AD (Chapman
et al., 2011). In this study, a model was developed using an EEG
signal for the discrimination of individuals with schizotypy and
controls.

Several studies have shown the application of machine
learning algorithms for the classifications of EEG signals (Cao
et al., 2003; Wang and Paliwal, 2003; Liu et al., 2010; Subasi and
Gursoy, 2010; Blankertz et al., 2011; Zhang et al., 2013; Chen
et al., 2016). In this study, a supervised classification algorithm
called the shrinkage linear discriminant analysis (SKLDA) was
used to classify subjects based on their event-related potentials
(ERP), since the sample size is much smaller than the dimensions
of the feature vector. Previous research revealed that when the
number of instances of the training data is much smaller than
the dimensions of the feature vectors, a classifier could provide
poor results (Jain and Chandrasekaran, 1982; Raudys and Jain,
1991). Researchers have recommended using, at least, 5–10 times
as many training samples (per class) as the dimensionality.
However, this is not easy for brain computer interface (BCI)
applications because the dimensionality of the ERP feature
vectors is usually much larger than the training set. It is possible
to use other algorithms for dimensionality reduction, such
as principal component analysis, to reduce the dimensionality
significantly. However, EEG have a weak signal-to-noise ratio
and their sensitivity to discriminatory features could easily be
lost during the reduction. The SKLDA algorithm was proposed
(Blankertz et al., 2011) to remedy this bias. The key advantage
of SKLDA is to estimate an accurate covariance matrix that is
particularly hard in studies with high dimensionality.

In the previous studies, a variety of tests using visual or
auditory stimuli were used to investigate whether individuals
with schizotypy have emotional deficits. However, as far as we
know, there has been no investigation differentiating individuals
with schizotypy from controls using a multimodal (audiovisual)
emotion perception test. In a social context, emotional processing
utilizing multiple sensory information is much more natural and
common, as people rely on the visual (e.g., facial expressions
and gestures) as well as the auditory modality (e.g., vocal tone,
prosody, and accent) to judge the emotional states of others.
Moreover, as individuals with schizotypy are considered to be
non-clinical subjects, the heightened impact of emotionally laden
inputs through a multimodal emotional test might produce
significant differences between them and normal controls.
Therefore, this study adopted a multimodal emotion perception
test that might be theoretically appropriate as well as ecologically
valid for assessing the brain function of individuals with
schizotypy.

In summary, the objective of this study was to propose a
reliable method to distinguish schizotypy from controls, based
on measures of brain activity during emotional processing.
To achieve this purpose, firstly, we developed a multimodal
(audiovisual) emotion perception test, where subjects were
asked to judge the emotions from both face and voice

Frontiers in Human Neuroscience | www.frontiersin.org 2 September 2017 | Volume 11 | Article 450

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Jeong et al. Classifying Schizotypy Using EEG

stimuli, presented simultaneously. We expected that performing
a test with a higher emotional processing demand would
allow for the assessment of brain functioning that may be
affected by schizotypy. Furthermore, we adopted EEG methods,
which can provide high temporal resolution. Whereas fMRI
is temporally limited by the latency of the hemodynamic
response, EEG directly measures the electric fields produced
by neuronal activity (Dale et al., 2000). Therefore, it could
be adequate for detecting brain activity during the emotional
multisensory integration process. To identify individuals with
schizotypy from controls based on their EEG data, we
implemented the SKLDA. The details of the EEG data processing
and features of extraction methods are presented in the
sections below.

MATERIALS AND METHODS

Subjects
A set of questionnaires were administered online to 1,287
Korean university students. A set of questionnaires included a
consent form, demographic questions, the SPQ, and the Center
for Epidemiological Studies Depression Scale (CES-D; Radloff,
1977).

The SPQ is a 74-item scale (score ranges: 0–74) modeled
on DSM-III-R criteria for schizotypal personality disorder. One
hundred and five subjects who scored in the top 10% on the
SPQ (scores of ≥ 31) were selected as the schizotypy (ST)
group, and 464 subjects who scored within ±0.5 standard
deviation (SD) from the mean (M) score on the SPQ were
selected as the normal control (NC) group. Among them, 51
subjects from the ST group and 45 subjects from NC group
were excluded based on scores of the CES-D (i.e., scores
≥ 25) because depression was reported to be comorbid with
schizophrenia (Lewandowski et al., 2006) and could influence

on facial emotion recognition (Feinberg et al., 1986; Persad and
Polivy, 1993).

Thirty-four subjects from the ST group (age: M = 20.83,
SD = 2.42; % female: 57.22) and 17 subjects from NC
group (age: M = 21.06, SD = 1.60; % female: 50.00) were
randomly selected to participate in the experiment among
the 513 subjects (ST: 94, NC: 419). Among them, data
from 6 subjects (4 NC and 2 ST) were excluded from the
analyses because of excessive electrical artifacts during EEG
recordings. Mean SPQ scores from ST and NC groups were
37.35 (SD = 7.57) and 15.53 (SD = 3.12), respectively. All
subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by
the Ethics Committee of Korea University (1040548-KU-IRB-
14-75-A-3). All subjects had normal or corrected to normal
vision and no history of neurological and/or psychiatric
disorders.

Audiovisual Emotion Perception Test
(AEPT)
Figure 1 illustrates the Audiovisual emotion perception test.
The facial images (2 males, 2 females) were created from
the Korea University Facial Expression Collection (KUFEC;
Kim et al., 2011). Photoshop CS5 (Adobe systems, USA) was
used to crop the photographs, remove non-facial attributes
(e.g., hair, ears), and create a uniform black background.
A computerized morphing program (Abrosoft FantaMorph
version 5.4.1; Abrosoft, USA) was used to create a linear
continuum of facial images. Morphed faces were created by
merging two face pictures (e.g., angry face and happy face)
in 1% steps, resulting in 101 morphed face images (e.g., from
0 to 100% happy), with the graded blending of the facial
features of the two faces. Two prototypical images (e.g., 100%
angry and happy faces), 6 unambiguous images near to the

FIGURE 1 | Audiovisual emotion perception test. Subjects were asked to judge whether the emotions on the face and the voice were same or not. Figure shows

morphed face images used at the AEPT (upper) and the AEPT trial sequence (lower).
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prototypical images (91, 82, 73, 27, 18, and 9% morphed
faces), and 13 ambiguous images in the midrange (68, 65,
62, 59, 56, 53, 50, 47, 44, 41, 38, 35, and 32% morphed
faces) were selected from the continuum and used for the
AEPT.

Vocal stimuli of happy and angry emotional valence were
recorded by four amateur actors (two males, two female) in a
noise-free room. The actors were instructed to pronounce four
semantically neutral sentences either in an angry or happy voice
since content cues could help in identifying the emotion. Four
Korean sentences were “stayed in the house,” “went by airplane,”
“will be going to Seoul,” and “arrived in Busan.” The mean length
of the 16 voice stimuli (4 sentences× 2 actors× 2 emotions) was
1.06s (SD= 0.059).

The AEPT consisted of 840 trials (4 identities × 21 morphed
images × 2 voice emotions × 5 repetitions), which were 400
congruent (e.g., angry face/angry voice or happy face/happy
voice audiovisual stimulus pairs), 400 incongruent (e.g., angry
face/happy voice or happy face/angry voice audiovisual stimulus
pairs), and 40 trials with no correct answer (e.g., 50% morphed
face/happy voice or 50% morphed face/angry voice audiovisual
stimulus pairs). These 40 trials were excluded from the data
analysis. In the test, subjects were asked to judge whether the
emotions on the face and the voice were same (congruent) or not
(incongruent).

A trial started with the presentation of a 1,000 ms fixation,
which was then followed by the presentation of the audiovisual
stimulus pairs. The face was presented for 1,000 ms, while
the voice was delivered via earphone. When the length of the
voice was longer than 1,000 ms, a black blank screen was
briefly presented on the screen for the rest of the duration.
Subjects pressed either a “same” or “different” button during the
subsequent 2,000 ms. Subjects pressed buttons using one hand,
and response hands were counterbalanced across subjects. The
flowchart for the proposed classification approach is depicted in
Figure 2.

EEG Recordings and Preprocessing
EEG was recorded continuously from 14 electrodes (Fz,
Cz, Pz, OZ, F3, F4, C3, C4, P3, P4, O1, O2, T5, and T6)
using a Grass Model 12 Neurodata Acquisition System
(Grass Technologies Astro-Med, Inc., West Warwick,
USA) according to the extended 10–20 system. The vertical
electrooculogram (EOG), which records the voltage difference
between two electrodes placed above and below the left eye,
was used to detect eye blinks. A single ground electrode
was placed on the forehead, and the reference electrode
was located at the right earlobe. The signals were recorded
continuously at a sampling rate of 1,024 Hz (bandpass
filter, 0.01–100 Hz). The electrode impedances were below
5 k�.

The offline data analysis was performed with EEGLAB
(version 12.0.2.2) running under Matlab 2012a (Mathworks,
USA;MATLAB, 2012). All EEG data were re-referenced to linked
earlobes. Gross movement artifacts were removed from the data
based on visual inspection. The data were digitally filtered with
a band pass of 0.1–30 Hz. The data were epoched between

−200 and 800 ms, relative to stimulus onset. The epochs were
baseline-corrected, and those containing artifacts larger than
±50µV were removed. Individual EOG artifact correction was
conducted using an independent component analysis. Data was
then down sampled to 350 data points by taking mean of four
consecutive data points.

Behavioral and Event-Related Potentials
Analysis
The epochs were separately averaged for the ST and NC groups to
obtain ERP. The assumptions for the normality and homogeneity
of variance were tested with the Shapiro–Wilk and Levene’s
test, respectively, for both behavioral and ERP data. For the
behavioral data analysis, one-way ANOVAs were performed on
the percent of correct responses and reaction times. For the ERP
data analysis, mixed-model analysis of variance (ANOVA) for
averaged ERP amplitude in a time window ranging from 150 to
270 ms (P2 component) was performed, in which site (14) was
the within-subjects factor and group (2) was the between-subjects
factor. The Greenhouse-Geisser adjustment was used to correct
for violations of sphericity.

Feature Extraction
Let the ERP at channel c that varies as a function of time t

be denoted by Xc(t). Assume that a trial lasts for T time units,
where T = {t1, t2, t3, ..., tT}, and is sampled at equally spaced
intervals. Let Ci( t) be the potential of the ith channel at time
point t. Then, the vector XCi (T) = [c (t1) , c (t2) , . . . , c(tN)]
defines the ERP of this channel for the duration T. Given C =

{C1,C2, . . . ,CM}, as a subset of channels chosen for analysis,
where for Cj, j = 1, 2, 3, ..., and M represents a chosen channel.
Equation (1) defines a vector of potential values for the subset of
channels at time point t for the kth trial, and τ denotes vector
transpose.

XC
K (t) = [XC1

K (t) , XC2
K (t) ,XC3

K (t) . . . ,XCM
K (t)]

τ
(1)

Concatenating those vectors for all time points of T across
all chosen channels, for the kth trial gives the spatio-temporal
features shown in Equation (2).

XC
K(T) = [XC1

K (T) , XC2
K (T) ,XC3

K (T) . . . ,XCM
K (T)] (2)

For the sake of readability, notations are simplified as follows:
both C and T (constants) are omitted, and XC

K(T) is
denoted by XK . Hence, XKǫ RM × N represents spatiotemporal
data of one participant for the kth trial. The data set
is grouped into three sets based on the stimuli used in
the AEPT test. The first set contains all trials for happy
visual stimuli only. Similarly, the second set contains all
data from angry stimuli only, and the third set contains
all data from both happy and angry stimuli trials. Let xH ,
xA, and xHA denote the data set of happy only, angry only,
and both happy and angry stimuli, respectively. Then, define
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FIGURE 2 | Flowchart for the proposed classification approach.

the averages of the ith participant’s data over stimuli type using
Equation (3).

Xi
h =

1

NH

∑

xik∈xH

xi
k

Xi
a =

1

NA

∑

xik∈xA

xi
k

Xi
ha =

1

NHA

∑

xik∈xHA

xi
k (3)

Here, xn
m, m ǫ{a, h, ha} defines the mean of the ith

participant samples over stimuli type; NH and NA is the
number of trials with happy and angry stimuli, respectively,
and NHA = NH + NA. As explained earlier in this section, T
has equally spaced intervals. Hence, dimensionality reduction
achieved by mean subsampling (replacing the n consecutive data
points by their mean), where n is a heuristically determined
constant.

To be specific to this study, ERP values from 0 ms (right after
onset of stimuli) to 800 ms after stimuli onset were chosen for
analysis. The sampling rate was reduced from 1,024 to 256 Hz
using mean subsampling (for n = 4). After down sampling,
(800�1000 ×1024)

4 = 204 features were extracted per channel. For
the analysis, the first 200 features were selected. In total, 2,800
features were extracted from the 14 channels and utilized as input
during classification.

Classification
SKLDA

The conventional LDA has been widely adopted for feature
reduction during the classification of ERP for BCI applications

(Lehmann et al., 2007; Lotte et al., 2007; Subasi and Gursoy,
2010). Due to the high similarity of covariance matrices in
the Gaussian distribution corresponding to the features of ERP
and non-ERP (i.e., targets and non-targets), LDA performs well
for the classification of ERP (Blankertz et al., 2011) and it
can be described using the Rayleigh Equation, as defined by
Equation (4).

J (W) =
WTSbW

WTSwW
(4)

where Sb and Sw are the between andwithin class scattermatrices,
respectively; W is the projection vector and T is the transpose.
The optimum transformation is obtained by the maximization of
WTSbW and the minimization ofWTSwW.

The empirically estimated covariance is a standard estimator
for the covariance matrix. This estimator is unbiased and has
good properties under usual conditions. However, it may give an
imprecise estimation if data with high dimensionality and low
sample size are used for training. This is because the number
of unknown parameters that have to be estimated is quadratic
in the number of dimensions, leading to a systematic error.
The systematic error causes estimation of large eigenvalues of
the covariance matrix to be very large and estimation of small
eigenvalues to be very small.

Shrinkage of the estimated covariance matrix is a way
of correcting this systematic bias. The SKLDA can reduce
the ill-conditioned covariance matrix with an appropriately
selected shrinkage parameter, and can effectively enhance the
generalization capability of the classifier, thereby providing more
accurate classification of ERP, even when using insufficient
training samples (Blankertz et al., 2011). The SKLDA is an
accurate covariance matrix estimator, particularly useful in high
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dimension studies. Let X1,X2,X3, ...,Xn ∈ Rd be n feature
vectors with dimension d. Denote the unbiased estimator of the
covariance matrix as

∑̃
. Then, a shrinkage parameter gamma,

γ is used to relate
∑̂

to
∑̃

as defined in Equation (5).

∑̃
(γ ) = (1− γ )

∑̂
+ γ vI (5)

In this equation, γ ǫ [0, 1] is the shrinkage parameter,
∑̃

and∑̂
are the shrinkage and empirical covariances, respectively, and

ν is the average eigenvalue of the empirical covariance matrix,

v = trace(
∑̂

)/d; d denotes the dimensionality of the data,
and I the identity matrix. The fact that

∑̃
=

∑̂
, when

γ = 0 means that the sample-based estimated covariance can
accurately measure the variability of the training sets, and no
shrinkage is required. However,

∑̃
= γ vI when γ = 1,

means the estimated covariance matrix
∑̃

poorly measures the
variability in the sample. Heuristically, γ is set as γ ǫS =

{0, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0}, considering its linear property
and using a heuristic approach. Schäfer and Strimmer (2005)
provide the analytical solution of γ for reference. In this paper,
nested-cross-validation is used to estimate γ .

LOOCV

The leave-one-out cross-validation (LOOCV), also known as
nested-cross-validation, is used for classifier evaluation. LOOCV
works as follows: (1) group the entire training set into N-
folds; (2) holding first-fold out, again group the data from
the remaining N − 1 folds into M-folds; (3) holding the first
fold from the M-folds out, train a model (classifier) using
the data from the M-1 folds; (4) score (predict) the first-fold
from the second step using the developed model. Keep this
classifier and its accuracy; (5) repeat this from the third step
onward for every fold; (6) choose the model giving the minimum
classification error rate from the models in fourth step as a
candidate classifier; (7) score (validate) the first-fold in step
one using the candidate classifier obtained in step six. Repeat
from step one for the remaining folds. The steps produce N
scores that do not capitalize on one chance. Choose the model
with the highest classification accuracy. The assumption is that
classifiers showing higher classification accuracy on the testing
data are more likely to have higher classification accuracy on the
validation data.

The number of folds used for the cross-validation is decided
on by running the classifier for 20-folds, starting from 2- to 20-
folds. Figure 3 depicts the error rates versus number of folds. The
experimental result shows that as the number of folds increased,
the error rate decreased rapidly, up until the ninth-fold. However,
from the tenth-fold onwards the error rate decreased very slowly.
Taking into consideration the iteration cost and the error rate,
the tenth-folds is used for cross-validation. Stratification is used
to split the sample sets.

Performance Measures

To evaluate the correctness of a classifier, some statistical
performance measures can be used. These measures depend
on the four entries of a confusion matrix, namely, the
number of correctly recognized class examples (true positives,

FIGURE 3 | Error rates vs. number of folds. The optimum number of folds for

the cross-validation determined by running the classifier for 20 times per fold.

TP), the number of correctly recognized examples that do
not belong to the class (true negatives, TN), and examples
that either were incorrectly assigned to the class (false
positives, FP) or those that were not recognized as class
examples (false negatives, FN). Based on the four terms, the
following performance measures were used to evaluate the
classifier.

Accuracy: the fraction of correct classifications. It summarizes
the overall effectiveness of the classifier.

Accuracy =
ρTP + TN

ρTP + TN + FP + ρFN
× 100% (6)

Recall: proportion of actual positives, which are predicted
positive. Also known as sensitivity.

Recall =
TP

TP + FN
× 100% (7)

Precision: proportion of predicted positives which are actual
positive.

Precision =
TP

TP + FP
× 100% (8)

Specificity: fraction of those negatives that will have a negative
test result. Also referred to as true negative rate.

Specificity =
TN

TN + FP
× 100% (9)

F1-measure (weighted harmonic mean): combined measure that
assesses precision/recall tradeoff. It provides a relation between
the positive labels of the data and those given by a classifier.

F1measure =
2

1/precision+ 1/recall
× 100% (10)

where ρ is an adaptive normalization constant used for
imbalanced data. It is computed as the ratio of the number of
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samples in the smaller sample size to the number of samples in
the larger sized class.

Channel Selection

To choose the smallest subset of the 14 channels with the highest
discriminatory information, a systematic selection algorithm is
required. For this, the sequential forward selection (SFS) greedy
algorithm (Marcano-Cedeño et al., 2010; Liu et al., 2015) can
be used. The SFS algorithm starts with an empty list. Pairs of
channels giving the highest classification accuracy are searched
for and added to the empty list. Next, a third channel satisfying
two conditions is obtained. There are two important aspects
to this; first, this channel should give the highest classification
accuracy when combined with the previously chosen channels;
second, the classification accuracy of the three channels must be
greater than the classification accuracy of the previously chosen
channels. Repeat the steps until adding any more channel tends
to decrease the performance.

RESULTS

Behavior
Finally, 30 ST and 15 NC were included in the data analyses. The
percentage of correct responses (%) was not significantly different
between the ST (M = 81.73, SD = 5.17) and NC (M = 83.97,
SD = 4.23) groups [F(1, 44) = 0.050, p = 0.83]. The reaction time
(ms) was also not significantly different between the two groups
[M = 414, SD = 138 for ST; M = 424, SD = 135 for NC; F(1, 44)
= 2.097, p= 0.16].

ERP
Figure 4 depicts the grand-averaged ERP waveforms at all
electrode sites (upper) and the NC minus ST difference in
topographies in the 150–270ms time window (lower). A group×
site ANOVA showed a significant site effect [M = 3.88, SE= 0.49
for Fz; M = 3.89, SE = 0.42 for F3; M = 3.77, SE = 0.49 for
F4; M = 6.23, SE = 0.55 for Cz; M = 5.96, SE = 0.42 for C3;
M = 5.11, SE = 0.47 for C4; M = 5.73, SE = 0.51 for Pz;
M= 5.55, SE= 0.36 for P3;M= 4.86, SE= 0.42 for P4;M= 6.25,
SE = 0.47 for Oz; M = 6.88, SE = 0.51 for O1; M = 6.57,
SE= 0.45 for O2;M= 2.89, SE= 0.26 for T5;M= 2.32, SE= 0.29
for T6; F(13, 559) = 20.69, p < 0.001], but not a significant
group effect [M = 4.82, SE = 0.38 for ST; M = 5.16, SE = 0.53
for NC; F(1, 43) = 0.27, p = 0.60]. Interaction effects were not
observed [F(13, 559) = 1.01, p = 0.39]. These results suggest that
P2 component, an indicative of multisensory processing, was not
different between two groups.

Classification
The SKLDA algorithm was implemented through the
Matlab2012a working environment. The classifier was trained
using EEG data from the NC and ST groups; it was evaluated
using LOOCV and the performance measures provided in
Section LOOCV. As mentioned earlier, one key advantage of
SKLDA is an accurate estimation of covariance matrices; this is
particularly useful for high dimensional data. Before estimating
the covariance, the shrinkage parameter value was computed.

Figure 5 shows the classification error rates as a function of
the shrinkage parameter gamma, γ . In this figure, the vertical
and the horizontal axes represent the classification error rates
and the shrinkage parameters, respectively. The three curves
represent the misclassification rates for the training (green),
testing (red) and validation (blue) sets. All three curves attain
their minimum at γ = 0.05, verifying the robustness for the
value of γ . Considering the convexity of Equation (4), and
principles of calculus for first derivatives, the optimal value of
γ was estimated to be 0.05. Table 1 presents performance rates
of the classifier for the validation set as a function of γ . When
the value of γ increased from 0.00 to 0.05, the classification
accuracy increased from 50% to over 98%. Similarly, the values
of the precision (Pr), recall (Re), specificity (Sp), and F1-measure
(F1) also increased. However, when γ increased from 0.05 to
1.0, the classification accuracy and other performance measures
decreased. Therefore, we chose γ = 0.05 as an optimal value
for the shrinkage parameter. Unless mentioned otherwise, all
reports in this document are based on the value of γ = 0.05.

The boxplot in Figure 6 shows the range of classification
accuracy rates at γ = 0.05. The vertical axis denotes the range
of classification accuracy rates for the testing and validation data.
From the given boxplots, the testing set accuracies range from
0.9732 to 0.99, i.e., for the testing set, the minimum accuracy
is 0.9732 ∼= 97.32% and the maximum is 99.0%. Similarly,
the minimum and the maximum classification accuracy for the
validation set are 97.42 and 98.56%, respectively. From this figure,
one can see that the accuracy range for the cross-validation is
smaller than that of the testing accuracy range which supports
the assumption given in Section LOOCV, i.e., best classifiers for
the testing can do better for the validation set.

Table 2 presents the classification accuracies for both the
training (TR) and testing (TS) sets. Channels found at the top of
this table have the highest classification accuracies (smallest error
rate) and those found near the bottom of this table have the least
classification accuracies. Similar to the case of using 14 channels
at once, these classifiers acquired their minimum classification
error at γ = 0.05.

Using the SFS greedy selection algorithm, we found that
three channels (P4, Pz, and T5) perform very similarly to the
14 channels, but with minimum computational cost for the
developmental phase. Using the selected channels, we obtained
a classification accuracy of 98.18%, which is approximately equal
to the accuracy obtained while using all the 14 channels (98.22%)
at once. Table 3 presents the results of SFS algorithm.

In linear binary classification, the hyperplane (W’ · X −

b = 0), is used as a class boundary between the two classes.
Where W’ is the transpose of W defined in Equation (4),
X is the data set to be classified and b is a constant. The
classifier is assigned a given input sample X ǫ Rd (in this
case, d = 2, 800) according to the sign of (W’ · X −

b). If the sign of (W’ · X − b) is positive, X belongs to the
schizotypy group, and if the sign is negative, X belongs to the
control group. Figure 7 visually presents the projection of NC
(green) and ST (red) groups on a 2-dimensional coordinate
plane. The hyperplane indicated by a broken line creates an
ideal boundary between the two groups. For any unseen data,
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FIGURE 4 | ERP results. Figure shows the grand-averaged ERP waveforms during the AEPT for the ST and NC at 12 sites (upper) and the NC minus ST difference

topographical maps in the 150–270 ms time window (lower).
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FIGURE 5 | Classification error rates as a function of the shrinkage parameter,

γ . When γ increased from 0 to 0.05, the classification error rates dropped

from 0.55 to 0.04. However, as γ increased from 0.05 to 1.0 the classification

error rates increased from 0.04 to 0.31. For all three curves, the error rate is

minimum at γ = 0.05.

TABLE 1 | Performance rates (%) of the classifier for the validation.

Gamma Pr Re Sp F1 Ac

0.00 51.47 50.17 50.84 50.30 50.52

0.05 98.18 99.21 97.64 98.41 98.61

0.20 98.14 98.88 97.59 98.34 98.17

0.40 98.31 98.77 97.83 98.38 98.01

0.60 98.17 98.06 97.71 97.94 97.09

0.80 96.09 95.26 95.22 95.29 93.90

1.00 66.16 72.12 59.51 67.92 68.64

FIGURE 6 | Boxplot for the range of classification accuracy rates at γ = 0.05.

if its projection lies on the lower side of the hyperplane, the
new data is classified as NC; and it is classified as ST if its
projection lies on the upper side of the hyperplane. The classifier

achieved true positive and true negative rates of 98.8 and 100%,
respectively.

DISCUSSION AND CONCLUSIONS

To distinguish individuals with schizotypy from controls, a
customized version of the linear discriminant analysis algorithm,
called SKLDA, was used. EEG data were fed as input into
the discriminant analysis to obtain the discriminant function.
The classifier achieved an average of 98.18 % precision, and
98.77% recall rate. Our method achieves a “partially unbiased
estimate,” as the data used to develop the discriminant function
was not used during validation. Thus, this approach has better
generalizability of the results.

The two important tasks that contribute to the enhanced
accuracy of our method include estimation of the shrinkage
parameter and the LOOCV. Particularly important was the
LOOCV procedure, because in this method, the subjects being
tested are not involved in the development of the classification
functions. This crucial step gives our approach the ability
to generalize results for unseen subjects. In addition to the
LOOCV, the use of the shrinkage parameter helped to establish
a covariance matrix with optimum discriminate information.
The minimum classification error occurred at γ = 0.05. When
γ = 0.0, since the misclassification rate got its maximum, this
verified that the empirical covariance did not contain enough
discriminatory information. It also shows the advantage of using
the shrinkage linear discriminant analysis over the traditional
linear discriminant analysis.

The other important finding of our experiment is the output
of the SFS greedy selection algorithm. We found classification
accuracy using three channels (Pz, P4, and T5) that showed
similar performance to those using 14 channels in identifying
individuals with schizotypy from controls, but with significantly
reduced computational and calibration cost. This result suggests
the possibility that brain activity in the parieto-temporal region
can reflect different emotional processing of multisensory stimuli
between the two groups. Previous brain imaging studies, using
functional magnetic resonance imaging (Calvert, 2001) and
magnetoencephalography (Raij et al., 2000) have found that
parieto-temporal regions are part of the brain network involved
during the audiovisual integration process. More direct evidence
from a positron emission tomography study, using test with
emotional audio-visual pairs (face expressions and emotional
voices), found that the left lateral temporal cortex was related to
processing of multisensory stimuli (Pourtois et al., 2005). ERP
studies have also found that a positive ERP deflection (P2), a
marker of multisensory processing, was mainly localized in the
posterior areas (Balconi and Carrera, 2014).

Our study has several advantages. First, using a paradigm with
emotional processing demands, which is believed to be affected
by schizotypy, allows specific assessment of brain functioning of
schizotypy. Because individuals with schizotypy are considered
as non-clinical subjects, EEG measurements, with a high level
of imposed demands through multimodal emotional processing,
might produce significant differences between two groups. In
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TABLE 2 | The classification accuracies for both the training (TR) and testing (TS) sets.

Gamma/channel 0 0.05 0.2 0.4 0.6 0.8 1.0

TR TS TR TS TR TS TR TS TR TS TR TS TR TS

P4 0.5079 0.5032 0.9236 0.8435 0.8956 0.8419 0.8741 0.8225 0.8523 0.7988 0.8183 0.7622 0.7007 0.6667

Pz 0.4979 0.4845 0.9161 0.835 0.8808 0.8332 0.8384 0.783 0.7787 0.7429 0.7200 0.7151 0.6494 0.6385

T5 0.4686 0.5138 0.9167 0.8345 0.8775 0.8061 0.8388 0.7709 0.8025 0.7262 0.7695 0.702 0.6334 0.5828

T6 0.5143 0.4686 0.9026 0.8223 0.8598 0.8023 0.8423 0.8062 0.8248 0.7893 0.8029 0.7744 0.7365 0.6954

O2 0.4879 0.5033 0.9217 0.8156 0.8871 0.7977 0.8543 0.7791 0.817 0.7565 0.7834 0.7312 0.7461 0.738

Oz 0.5014 0.4792 0.9102 0.7912 0.8637 0.7666 0.8211 0.7196 0.7748 0.695 0.737 0.6909 0.6448 0.5741

P3 0.5014 0.5044 0.9157 0.7809 0.8616 0.7194 0.8033 0.6507 0.7544 0.6122 0.7143 0.5826 0.6298 0.5501

O1 0.4964 0.5008 0.8959 0.7780 0.8347 0.7513 0.7892 0.7086 0.7474 0.6651 0.7007 0.6053 0.6038 0.5200

Cz 0.5207 0.4899 0.8561 0.7560 0.7997 0.712 0.7476 0.6642 0.7196 0.6382 0.6949 0.6232 0.6390 0.5764

C3 0.5143 0.5045 0.8522 0.7380 0.8113 0.6804 0.7664 0.6248 0.7295 0.5939 0.6902 0.5771 0.5690 0.5819

F4 0.4857 0.5041 0.8594 0.7271 0.7992 0.6673 0.7556 0.627 0.7261 0.5882 0.6844 0.5586 0.5408 0.4833

Fz 0.5251 0.4676 0.8389 0.7208 0.7673 0.6639 0.7288 0.6326 0.6999 0.6140 0.6717 0.5835 0.6096 0.5246

C4 0.4757 0.492 0.8462 0.7158 0.7836 0.6806 0.758 0.6639 0.7355 0.6470 0.7111 0.6168 0.6624 0.5845

F3 0.4911 0.5221 0.8333 0.6552 0.7735 0.5918 0.7198 0.5532 0.6761 0.5356 0.6336 0.5161 0.5659 0.5525

TABLE 3 | Performance rate (%) of channel combination.

Channel Pr. Re Sp. F1 Acc. No. of chan.

TR TS TR TS TR TS TR TS TR TS

P4 0.9875 0.9080 0.8996 0.8390 0.9882 0.8972 0.9412 0.8637 0.9224 0.8446 1

P4/Pz 0.9997 0.9555 0.9744 0.9099 0.9997 0.9479 0.9868 0.9266 0.9811 0.9078 2

All Except F3 1.0000 0.9749 1.0000 0.9917 1.0000 0.9666 1.0000 0.9813 1.0000 0.9806 13

P4/Pz/T5/T6/ O2/Oz/O1/P3 /C3 1.0000 0.9787 1.0000 0.9907 1.0000 0.9718 1.0000 0.9829 1.0000 0.9813 9

P4/Pz/T5 1.0000 0.9816 1.0000 0.9877 1.0000 0.9760 1.0000 0.9829 1.0000 0.9818 3

P4/Pz/T5/O2/ P3 1.0000 0.9839 1.0000 0.9911 1.0000 0.9796 1.0000 0.9862 1.0000 0.9821 5

All Except Fz/F3/C4 1.0000 0.9780 1.0000 0.9926 1.0000 0.9711 1.0000 0.9836 1.0000 0.9830 11

All Except P3 1.0000 0.9813 1.0000 0.9932 1.0000 0.9751 1.0000 0.9857 1.0000 0.9830 13

All Except Fz/F3/C4 1.0000 0.9780 1.0000 0.9926 1.0000 0.9711 1.0000 0.9836 1.0000 0.9830 11

All channels 1.0000 0.9736 1.0000 0.9840 1.0000 0.9673 1.0000 0.9770 1.0000 0.9822 14

All Except P3/F3 1.0000 0.9819 1.0000 0.9926 1.0000 0.9765 1.0000 0.9859 1.0000 0.9837 12

P4/Pz/T5/O2 1.0000 0.9817 1.0000 0.9936 1.0000 0.9756 1.0000 0.9862 1.0000 0.9862 10

P4/Pz/T5/T6/O2/Oz/Cz/F4 1.0000 0.9728 1.0000 0.9892 1.0000 0.9641 1.0000 0.9788 1.0000 0.9767 8

social contexts, moreover, emotional processing ability using
multiple sensory modalities is an essential component. While
people predominantly rely on the visual modality to judge
the emotional states of others, the auditory modality also
provides a great deal of emotional information. The ability to
extract emotional salience from both visual and auditory signals,
and integrate this information, has important implications for
successful communication in social life. Therefore, the advantage
of our study is the use of an ecologically valid test for assessing
brain function of individuals with schizotypy.

Second, a discriminant function is suggested in this paper
as a useful diagnostic validator that can reliably distinguish
schizotypy from control. Although, self-report questionnaires
have been being widely used for schizophrenia spectrum
diagnoses, the suggested method has two advantages. First,
whereas self-report questionnaires, such as the SPQ, would be

affected by the subject’s understanding and introspective ability
and suffer from response biases, such as the social desirability
bias and acquiescence bias (Paulhus and Vazire, 2007), brain
activity measurements might be considered more objective and
less vulnerable to these types of bias. Because schizotypy is
associated with a vulnerability to schizophrenia, it is important
to predict which individuals could later develop schizophrenia.
This method may have important clinical implications in
discriminating individuals with schizotypy, who have a subtle
risk and need intervention in advance, among the general
population. Therapeutic intervention is effective in the early
phase of the disease, and early detection at the beginning of a
schizophrenia spectrum disorder results in a direct therapeutic
benefit for the potential patient population.

The limitation of our study inferred directly from the
use of cross-validation with data of the same session for
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FIGURE 7 | Projection of NC and ST groups on a 2-dimensional coordinate

plane.

analysis. Some previous research reported that performance
degradation in classification could be observed because
of session-to-session transfer (Marcel and Millán, 2007).
However, a recent in-depth study on the stability of EEG
features for biometrics concluded that EEG signals contain
discriminative information that are stable across time (Maiorana
et al., 2016). Although, we have not estimated this type of
degradation here, we expected the performance degradation

to be minimal since EEG is robust against session-to-session
transfer.

In sum, a successful method is proposed in this
paper to identifying schizotypy from controls based on

neurophysiological outcomes of audiovisual emotion perception
and shrinkage linear discriminant analysis. Good accuracy and
zero false positive rates are among the advantages of our method.
The classification accuracy was significantly high (98.22%),
in which subjects were correctly classified with an average
98.18% precision and 98.77% recall rates. This method could
be useful in early detection of psychosis prone individuals,
such as those suffering from schizotypy, as well as helping to
elucidate understanding of the progression from schizotypy to
schizophrenia.
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