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Human reaching movements require complex muscle activations to produce the forces

necessary to move the limb in a controlled manner. How gravity and the complex kinetic

properties of the limb contribute to the generation of the muscle activation pattern

by the central nervous system (CNS) is a long-standing and controversial question in

neuroscience. To tackle this issue, muscle activity is often subdivided into static and

phasic components. The former corresponds to posture maintenance and transitions

between postures. The latter corresponds to active movement production and the

compensation for the kinetic properties of the limb. In the present study, we improved the

methodology for this subdivision of muscle activity into static and phasic components by

relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets

arranged to create a standard center-out reaching task in three dimensions. Muscle

activity and motion capture data were synchronously collected during the movements.

The motion capture data were used to calculate postural and dynamic components of

active muscle torques using a dynamic model of the arm with 5 degrees of freedom.

Principal Component Analysis (PCA) was then applied to muscle activity and the torque

components, separately, to reduce the dimensionality of the data. Muscle activity was

also reconstructed from gravitational and dynamic torque components. Results show

that the postural and dynamic components of muscle torque represent a significant

amount of variance in muscle activity. This method could be used to define static and

phasic components of muscle activity using muscle torques.

Keywords: EMG, principal component analysis, kinematics and dynamics, motor systems and movement control,

arm

INTRODUCTION

The musculoskeletal anatomy of the body constitutes a complex dynamical system that is a
challenge to control for the central nervous system (CNS). Some of the complexity is due to
the muscular redundancies that allow humans to perform complex tasks. Additional complexity
results from the forces associated with the mechanical properties of the multi-joint limb, termed
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limb dynamics. How the CNS deals with limb dynamics is
commonly investigated through joint torques, or rotational
forces, that arise during motion of the limb (Flanders, 1991;
Sainburg et al., 1995, 1999; Shabbott and Sainburg, 2008) or
from action of external forces when the limb is held stationary
(Buneo et al., 1997; Weiss and Flanders, 2004). During these
tasks, angular kinematics (position and velocity) can be used to
derive joint torques for each independent direction of motion
termed degree of freedom (DOF) using equations of motion.
The goal is to derive the active torques that are the result of
muscle contractions in the presence of passive forces that have
both extrinsic and intrinsic sources (Papaxanthis et al., 2005;
Gentili et al., 2007; Le Seac’h and McIntyre, 2007; Dounskaia
and Wang, 2014). A large contributor to the extrinsic passive
torques is gravity. These gravitational torques depend on the
orientation of limb segments in space, and thus they contribute
to both posture and movement (Bastian et al., 1996). The
compensation for gravitational torques is important for motor
control, as evidenced by altered patterns of movement errors and
muscle activity of people moving in micro-gravity environments
(Fisk et al., 1993; Papaxanthis et al., 1998, 2005; Pozzo et al.,
1998). Gravity torques can also be optimally integrated in the
planning of rapid arm movements and exploited to reduce
muscular efforts during rapid motions (Gaveau et al., 2014,
2016; Rousseau et al., 2016). Studies of cerebella pathologies
and adaptation after returning from microgravity environment
to normal gravity have also suggested that the effect of gravity
on the arm may be separately estimated from the effect of
dynamic torques (Gaveau et al., 2011; Sajdel-Sulkowska, 2013).
The proportion of active muscle torques that is responsible for
gravity compensation can be estimated as the difference between
muscle torques produced in a micro-gravity environment and
muscle torques produced under normal gravity. This portion of
muscle torques has a different temporal profile than that of the
motion-related dynamic components of muscle torque (Russo
et al., 2014). In another definition, the dynamic component of
muscle toque varies with the speed of movement, while the
gravitational component of muscle torque does not (Hollerbach
and Flash, 1982; Flanders and Herrmann, 1992). In this study,
we obtain both dynamic and gravitational components of muscle
torque produced during pointing in virtual reality by healthy
human subjects.

Traditionally, the postural transition component of muscle
activity has been estimated as a linear ramp in electromyography
(EMG) during movement. The ramp is calculated between EMG
values obtained before and after movement, i.e., during posture
maintenance (Buneo et al., 1994; Flanders et al., 1996). This
static component is often subtracted from the EMG during
movement, and the residual phasic EMG is studied as the
motion-related signal. While the estimate of postural EMG are
valid, there is no physiological evidence for a linearly-changing
EMG associated with the transition between postures during
movement. An improvement on this technique would be a
quantitative estimate of the contribution of gravity acting on the
limb during movement to muscle activity. In addition, relating
phasic EMG to the dynamic component of muscle torque would
be useful in evaluating the contribution of individual muscles to

active torques responsible for movement vs. joint stiffness, that is
not accounted for by active torques. Damage to the cerebellum
appears to uniquely affect the phasic component of EMG in a
way that supports its role in controlling passive torques (Manto
and Bosse, 2003). The rationale of this study was to contribute
a new method for dividing the EMG into static and phasic
components by evaluating the different contribution of torque
components to the overall EMG. EMG of different muscles and
torques about different DOFs are coupled through the kinematic
chain of the limb. We control for this coupling by reducing
the dimensionality of our data using principal component
analysis (PCA). We use PCA to obtain independent components
from muscle torques and compare them to the independent
components obtained from EMG. We also calculate the amount
of variance that the gravitational and dynamic components of
muscle torque account for in EMG. We expect that gravitational
and dynamic torque components capture significant amounts of
variance in EMG and their waveforms can be used to identify
static and phasic components in EMG.

METHODS

Ten healthy individuals (7 males, 3 females) with an average
age of 26 ± 11 years old were recruited to perform

FIGURE 1 | Experimental setup. Illustration showing the locations of reaching

targets, arranged in a semi-spherical pattern in virtual reality, relative to the

physical location of the subject. The central target is shown in red and one of

the goal targets is shown in green.

Frontiers in Human Neuroscience | www.frontiersin.org 2 September 2017 | Volume 11 | Article 474

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Olesh et al. Gravitational and Dynamic Muscle Activity

a reaching “center-out” task. The study and the consent
procedure were approved by the Institutional Review Board
of West Virginia University (Protocol # 1311129283). All
subjects provided their written consent prior to participating
in the study. All subjects were right-hand dominant and
reported no movement disorders and no major injuries to
their right arm. Height, weight, and arm segment lengths
were measured for each subject and used to adjust model
parameters to create subject-specific dynamic models (see
below).

Movements were instrumented using a virtual reality (VR)
software (Vizard by Wolrdviz) and head set (Oculus Rift),
which displayed 14 targets arranged in two perpendicular planes,
horizontal transverse plane and vertical coronal plane (Figure 1).
To reduce inter-subject variability in kinematic data, the target
locations were adjusted for each subject based on the lengths of
their arm segments, which ensured the same initial and final joint
angles across all subjects. The center target was placed so that
initial arm posture was at 0◦ shoulder flexion, 90◦ elbow flexion,
and a 0◦ wrist flexion. The distance from the center target to
the peripheral targets was scaled to 30% of each subject’s total
arm length (from anterior acromial point to the distal end of the
index finger). On average, this amounted to 20 cm distance from
the central to peripheral targets. This scaling reduced the inter-
subject variability in the joint angles at each peripheral target.
Each movement began with the subject pointing to the center
target, which was the only one visible. After VR detected the tip
of the subject’s finger inside the target radius, the central target
changed color and one peripheral target appeared. When the
VR detected the tip of the subject’s finger inside the peripheral
target radius, it changed color, which cued the subject to return
to the central target. Upon returning to the central target the
task reset, peripheral target disappeared and a new one appeared
after a delay of 0.5 s. Subjects were instructed to not move
the trunk, keep their wrist pronated and straight, and point as
quickly and accurately as possible. Movements to each target
location were repeated 15 times and performed in a randomized
order.

Arm and trunk movements were recorded with an active
motion capture system (PhaseSpace, Impulse) at 480 frames per
second. The light emitting diodes of the motion capture system
were placed on anatomical landmarks according to best practice
guidelines (Robertson et al., 2013) EMG was recorded from
12 arm muscles at a rate of 2,000 Hz (MA400-28 MotionLab
Systems). Muscles recorded during the experiment included the
pectoralis major (Pec), teres major (TrM), anterior deltoid (AD),
posterior deltoid (PD), long and short heads of the biceps (BiL
and BiS respectively), lateral and long heads of the triceps (TrLa
and TrLo respectively), brachioradialis (Br), flexor carpi ulnaris
(FCU), flexor carpi radialis (FCR), and extensor carpi radialis
(ECR). Motion capture and EMG were synchronized using a
custom circuit and triggering mechanism (Talkington et al.,
2015). Motion capture and EMG data were imported into Matlab
and processed as follows using custom scripts.

Digitized EMG data were high pass filtered at 20 Hz to
remove motion artifacts, rectified, and low pass filtered at 10 Hz,
consistent with SENIAM recommendations.Motion capture data

were low pass filtered at 10 Hz and interpolated with a cubic-
spline. The maximum interpolated gap was 0.2 s. The onset and
offset of movement was found based on the velocity of three
hand LEDs changing by five percent of the maximum velocity
for a given movement. These events were used for temporal
normalization of all data. Signals starting 200 ms prior to the
onset of movement were included in all analyses to ensure
adequate capture of initial EMG bursts and onset of phase-
advanced torques. Arm kinematics were obtained from motion
capture by fitting local coordinate systems to form rigid bodies
from markers for the trunk, upper arm, forearm, and hand.
The axes of these coordinate systems were oriented so that X/Y
plane matched the frontal plane of the body with Y pointing
along the long axis of each segment opposite to the gravity
vector; Z was completing the right-handed basis. The Euler angles
between these local coordinate systems in time were obtained
using linear algebra for five joint DOFs including shoulder
(flexion/extension, abduction/adduction, pronation/supination),
elbow (flexion/extension), and wrist (flexion/extension). The
posture with 0 angles corresponded to the arm straight along the
body with hand pronated. Angular velocity and acceleration were
calculated by differentiating the Euler angles waveforms. Hand
pronation/supination and wrist abduction/adduction were found
to beminimal during the pointing task, and thus theseDOFswere
not included in the analysis.

Limb Dynamics
To calculate joint torques, an inverse dynamic model of the
subject’s arm was constructed in Simulink (MathWorks). The
model comprised 5 DOFs as described above and three segments
approximating inertial properties of the arm, forearm, and hand.
Motion of the trunk was found to be minimal during the task,
thus the model had the trunk fixed in space. Inertia of the
segments was approximated with a cylinder of the length equal
to that of the corresponding segment and a 3 cm radius. The
masses and centers of mass for each segment were determined
by their anthropometric ratios to the subjects’ segment lengths
and weight (Winter, 2009). The model implemented equations of
motion that can be summarized as follows:

τN = τM + τIT + τG (1)

where τN is a vector of net torques that produce movement; τM
is a vector of active torques due to muscle contractions; τIT is
a vector of passive interaction torques; τG is a vector of passive
torques caused by gravity.

Angular kinematics averaged per movement direction and per
subject was used in the subject-specific inverse model to calculate
muscle torques, similar to that in Russo et al. (2014). This is
equivalent to rearranging the Equation (1) as follows:

τM = τN − τIT − τG (2)

The computed muscle torques are proportional to the sum of all
moments generated by muscles spanning the joints:

τM =

∑N

i=1
Ri × Ai (3)
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where Ri is moment arm of muscle i about a given DOF, and
Ai is activation of muscle i. The numerical quality of inverse
dynamic simulations was checked by running the same model in
forward dynamics mode using the calculated torques as inputs
and simulated angular kinematics as outputs. The simulated and
experimental joint kinematics was compared, and the mean ±

standard deviation of the root-mean-squared differences between
them was 0.05± 0.02 radians across all DOFs.

As described in the Introduction, muscle activity is often
separated into static and phasic components. Here we propose to
use the gravitational and dynamic components of muscle torque
to define the static and phasic components of EMG respectively.
This can be represented as follows:

Ai = Di + Gi (4)

and substituting Equation (4) into (3) gives,

τM =

∑N

i=1
Ri × Di +

∑N

i=1
Ri × Gi (5)

Because torques are additive, the muscle torques obtained using
the inverse model can be separated into two components
(Gottlieb et al., 1997; Russo et al., 2014) as described in the
Introduction above. To estimate the dynamic component of
muscle torques responsible for motion production and inter-
joint coordination without gravity, the inverse model was run
without simulating external gravitational force (the parameter
for gravitational force in the physics engine was set to 0). This
resulted in the following:

τMD = τN − τIT (6)

where τMD are muscle torques that would produce the same
motion without gravity as that recorded in the presence of
gravity. Example of such torques would be the sum of muscle
moments produced during motion in microgravity environment.
Another example are torques necessary for planar movements in
a horizontal plane, where the force of gravity is perpendicular
to the plane of motion (Debicki and Gribble, 2005). Then the
component of muscle torque that is needed to compensate for
gravity (τMG) can be estimated as the difference between muscle
torques with and without gravity as follows:

τMG = τM − τMD, or

τM = τMD + τMG (7)

Below, τMD is referred to as MD torque, while τMG is referred to
MG torque for simplicity.

The relative contribution of MG and MD torques to the
overall muscle torques τM based on Equation (7) was calculated
as the shared variance between each torque component and
muscle torque for a corresponding DOF. The coefficient of
determination (r2) was used to quantify shared variance between
MG and muscle torques and separately between MD and muscle
torques for corresponding DOFs per movement direction per
subject.

Dimensionality Reduction
To control for widespread correlations between biological
signals, EMG and dynamic data were reduced in dimensionality
using PCA. Rectified EMG signals were normalized to movement
duration, averaged per movement direction, and low pass
filtered at 10 Hz. To ensure that muscle activations were
unitless, maximum contraction values were calculated for each
muscle across all movement directions and used to divide
mean EMG for each movement direction. The resulting data
matrix was comprised of 336 columns (12 EMG signals
for 14 movements toward each virtual target and 14 return
movements) and 1000 rows representing samples in time. To
ensure that MD and MG torques were unitless, the maximal
amplitudes across all movement directions were used to divide
torques for each movement direction. The MD and MG
torque data matrices were comprised of 140 columns each
(torques for 5 DOFs for 14 movements toward each virtual
target and 14 return movements) and 1000 rows representing
samples in time. All data were demeaned; eigenvalues and
eigenvectors were obtained using singular value decomposition
in Matlab. Eigenvectors were direction independent waveforms
in time, while eigenvalues represented projections of signals
onto the eigenvectors per muscle or DOF per movement
direction.

To evaluate the contribution of gravity and dynamic torques
to muscle activation, the first eigenvectors that captured the most
variance in MD and MG data were used to decompose EMG
data. Projections of EMG data onto the torque eigenvectors, the
z-scores, were calculated using dot product. The EMG data were
then reconstructed back from the obtained z-scores and torque
eigenvectors. The coefficient of determination (r2) was used to
quantify the quality of EMG reconstruction. Separate r2 were
calculated to evaluate the amount of shared variance captured by
each of the torque eigenvectors.

Statistical Analysis
Statistics on r2-values was done using repeated measures analysis
of variance (rANOVA) in MATLAB. A single rANOVA model
was fitted to the r2 from EMG decomposition and the r2 from
torque components across all signals and movement directions
per subject. The model utilized a within-subject design with
three factors. The first factor grouped data based on torque
(PCA eigenvalues) or muscle (EMG decomposition z-scores).
The second factor grouped data based on the type of component
(dynamic or gravitational). The movement factor grouped data
based on the direction of movement (14 unique directions in
Figure 1). Post-hoc multiple comparisons were used to further
examine significant interactions. Linear regressions between the
r2 from EMG decomposition and the r2 from torque components
were used as measures of the contribution of MG and MD
torques to EMG. The rANOVA was also repeated on r2-values
for only active EMG signals, for which the peak of mean
EMG activity was >30% of maximal peak across movement
directions.

Data trends are reported using means ± standard deviations
across subjects, which are included in the Results section below
unless otherwise specified.
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RESULTS

The motion in virtual reality was highly consistent, as
demonstrated by the low standard deviations of angular
kinematics across the 15 repetitions of each movement
(Figure 2A). The mean endpoint error was 0.04 ± 0.01m
across subjects. The kinematic profiles showed typical motor
invariance with bell-shape velocity profiles with peaks ranging
from 1.2 to 3.3m per second, and accompanying acceleration

and deceleration phases (Figure 2A). The movements were
produced by active muscle torques, whose temporal profiles were
subdivided into gravitational MG and dynamic MD components
as described in the Methods (Figure 2B). The MG component
waveform changed in a single direction during a givenmovement
and was the source of the offset in the muscle torque waveforms.
The waveform of the MD component was largely similar to the
angular acceleration waveform. As expected, muscle activity was
more variable across subjects, but most muscles did follow a

FIGURE 2 | Example motion signals and muscle activity, for a single subject. Columns show signals from movements to four different targets. Targets are numbered

as in Figure 1. Movements in the first 2 columns are adjacent to each other and orthogonal to those in the other 2 columns (see Figure 1). Lines are averages across

15 repetition of the same movement; shaded areas are standard deviations. (A) The temporal profiles of kinematic signals for two DOFs, shoulder flexion/extension

(S F/E) and abduction/adduction (S Ab/Ad) are shown. (B) Dynamic signals calculated from signals in (A). Muscle torques (torM) are the sum of MG and MD

components. (C) EMG signals from three muscles for the corresponding movements. Muscle abbreviations are as described in the Methods section.
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reciprocal pattern of activation for movements in the opposite
directions (Figure 2C, first 2 columns vs. the last 2 columns).

The linear dependencies across torque components and across
EMGs were examined using PCA as described in Methods. In
MG torques across all movements, a single principal component
accounted for 96 ± 1% of variance. The second principal
component accounted for 4 ± 1% of variance, and the rest
accounted for progressively less variance. For MD torques
across all movements, a single principal component accounted
for 92 ± 2% of variance. The second principal components
accounted for 6 ± 2% of variance. In contrast, for EMG the
first three principal components accounted for a comparable
amount of total variance, 72 ± 6%, 12 ± 3%, and 5 ±

2% of variance accounted for by the principal components 1
through 3, respectively. The waveforms (eigenvectors) of the first
and second principal components of EMG were very similar
to the first principal components of MG and MD torques,
respectively (Figure 3A). Therefore, we used the first principal
components of MG and MD torques to decompose EMG data
and calculate the variance accounted for by these dynamic
signals.

The total variance accounted for by torque decomposition
of EMG was 55 ± 10% across subjects. Analysis of a subset of
variances for only active EMGs (see Methods) increased the total
variance accounted for by torque decomposition of EMG to 65±
15% across subjects. For individual muscles, the total and relative
variances accounted for by torque components was largely the
same (Figure 4). The relative variance in EMG accounted for
by each torque principal component was lower than the relative
variance that MG and MD torques contribute to the muscle
torque (rANOVA: difference = 21%; standard error = 1%; p <

0.001). Analysis of a subset for active EMGs showed a decreased
difference (rANOVA: difference = 12%; standard error = 3%; p
= 0.008). The dynamic principal component accounted for less
variance in EMG than expected fromMD contribution to muscle
torque (rANOVA: difference = 26%; standard error = 1%; p
< 0.001) and the gravitational component accounted for less
variance in EMG than expected fromMG contribution to muscle
torque (rANOVA: difference = 16%; standard error = 2%; p <

0.001). Analysis of a subset for active EMGs showed decreased
differences in both cases (rANOVA on MD vs. dynamic EMG:
difference = 19%; standard error = 3%; p = 0.005) compared
to those for gravitational components (rANOVA on MG vs.
gravitational EMG: difference = 6%; standard error = 2%; p
= 0.069). There was no average difference between the relative
contributions of the gravitational and dynamic components
across all movement and signals (rANOVA: difference = 5%;
standard error= 1%; p= 0.628).

As expected, the eigenvalues from torque PCA and z-
scores from EMG decomposition were directionally tuned
(Supplementary Figure). Consequently, the total variance
accounted for by torque decomposition of EMG varied across
movement directions (Figure 5A). The relative contribution of
gravitational component to EMG varied independently from
the relative contribution of MG component to muscle torque
across the different movement directions (Figure 5B). There was
an insignificant correlation between the mean contribution of

FIGURE 3 | PCA on torques and EMG. (A) Temporal activation profiles of

EMG and torque components. Average normalized activation profiles (solid

lines) and standard deviations (shaded area) across all subjects are plotted for

each eigenvector. (B) Example recorded and reconstructed signals from the

same subject and movements as in Figure 2. MG and MD torques were

reconstructed from their respective first principal components only. EMG was

reconstructed from the same torque components as described in Methods.

MG and MD torques and EMG were normalized and demeaned as described

in Methods. Reconstructed signals are labeled with * and marked with dashed

lines. S F/E stands for Shoulder flexion/extension torque.

gravitational component to EMG and MG to muscle torque
(Pearson correlation coefficient r = −0.07, p = 0.812). At the
same time, the relative contributions of both gravitational and
dynamic components to EMG were inversely correlated with the
contribution of MD to muscle torque (Figure 5C; r =−0.56, p=
0.039 for gravitational EMG component andMD; r=−0.62, p=
0.018 for dynamic EMG component and MD). There was also an
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FIGURE 4 | Variance accounted for by the individual components in EMG per muscle. Values are means across subjects and signals; boxes indicate ranges of 25 and

75 percentiles in data; error bars show standard deviations; red crosses indicate outliers. Plots in the left column show values across all EMG signals; plots in the right

column show values from a subset of EMG signals that were active >30% of maximal per movement per subject. (A) Total variance accounted for by torque

decomposition of EMG per muscle. (B) Relative variance accounted for by the gravitational principal component. (C) Relative variance accounted for by the dynamic

principal component.

inverse correlation between the total variance accounted for by
torque decomposition of EMG and MD contribution to muscle
torque (r =−0.58, p= 0.028).

For movements in different directions, the muscle torques
are accompanied by different amounts of relative contribution
from MG and MD torques. We found that there were many
instances, in which one or the other torque component tended
to dominate the overall muscle torque, which is reflected in
a distribution of r2-values along the maximal and minimal
values (Figure 6, blue). However, this was not the case for the
distribution of r2-values for the contributions of torque principal
components to EMG (Figure 6, red). Surprisingly, the relative
contributions of both torque principal components to EMG
varied together in all muscles across all movement directions.
This relationship was well fitted with a linear regression (p <

0.001 for all subjects), the slopes of these regressions ranged from
0.66 to 0.87 across subjects. This linear relationship between the
contributions of the gravitational and dynamic torque principal
components to EMG across all subjects was also present when
only active EMG signals per movement per subject were selected
(Figure 7).

DISCUSSION

The transformation from muscle activation to motion is non-
linear and includes at least second order differential dynamics.
The transformation includes non-linear muscle properties
and Newton-Euler equations of motion (Winter, 2009). This
dynamics is often thought to be imbedded by the CNS either in
the forms of internal models (Lackner andDizio, 1994; Shadmehr
and Mussa Ivaldi, 1994; Gomi and Kawato, 1997; Wolpert and
Kawato, 1998; Sabes, 2000) or neural primitives (or synergies)
(Bizzi et al., 1991; Giszter et al., 1993; Mussa Ivaldi, 1999; Mussa
Ivaldi and Bizzi, 2000; for a review see d’Avella and Lacquaniti,
2013). Here, we do not try to resolve the problem of whether
the control has two components, static and dynamic. Instead,
we used the causal relationship between muscle contraction and
motion to investigate how limb dynamics is reflected in muscle
activity. We have demonstrated a method to compute phasic and
tonic components of EMG using muscle torques. We have found
that these components capture on average 55% of variance in
EMG signals. Although there is no novelty in a general statement
that gravity influences control signals, our novel result is the
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FIGURE 5 | Variance accounted for by the individual components in EMG and torques per movement direction. Values are means across subjects and signals; boxes

indicate ranges of 25 and 75 percentiles in data; error bars show standard deviations; red crosses indicate outliers. Plots in the left column show values across all

EMG and torque signals; plots in the right column show values from a subset of EMG signals that were active >30% of maximal per movement per subject. (A) Total

variance accounted for by torque decomposition of EMG per movement direction. (B) Relative variance accounted for by gravitational principal component. (C)

Relative variance accounted for by dynamic principal component.

quantitative measure of the amount of EMG variance captured
by gravitational and dynamic components of muscle torques. No
other study reported that. We will discuss our results within a
context of a general control schema that combines multiple views
on the organization of the motor control system (Figure 8).

The similarities in the waveforms of dynamic torques across
DOFs and movements have been previously reported and
interpreted as evidence of central planning (Hollerbach and
Flash, 1982; Gottlieb et al., 1997; Thomas et al., 2005). Here
we also show that a single principal component accounts
for most of the variance in MD and MG torque waveforms.
Similar single principal components were reported to capture
most of the variance in kinematics and in dynamic torques
during whole body reaching movements (Thomas et al., 2005).
Although, our results show that the kinematic waveform in the
Thomas et al. (2005) study may also be consistent with the
gravitational torque waveform. Our results further show that

the gravitational and dynamic components of muscle torque
explain on average 55% of EMG waveforms during goal-directed
reaching movements, with slightly more variance accounted for
by the gravitational component than the dynamic component
in active muscles. This is further supported by the similarity
between the first 2 principal components obtained from EMG
and the first principal components obtained from gravitational
and dynamic torque components separately (Figure 3). This is
consistent with previous work showing that the first two principal
components in EMG are related to static and phasic components
of EMG waveforms (Flanders and Herrmann, 1992). Thus, the
hypothetical neural control signals originating in the supraspinal
structures of the CNS and then combining at the spinal level with
sensory feedback may consist of two commands, a gravitational
and a dynamic command (Figure 8). These commands could
then underlie phasic and tonic components of EMG (Flanders,
1991; d’Avella et al., 2008). The supraspinal command that
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FIGURE 6 | The relative contribution of individual components to EMG and muscle torques per subject. Each plot shows data for a single subject. Each dot

represents a value per signal (muscle or DOF) per movement.

FIGURE 7 | The relative contribution of individual components to EMG and muscle torques across subjects. Each dot represents a value per subject per movement

averaged across signals/DOFs. (A) Combined data across subjects. (B) Combined data across subjects, where only variance for conditions when EMG was active

>30% of maximal was selected before averaging.

FIGURE 8 | Schematic of a motor control schema. Red arrows indicate signals potentially containing gravitational command components. Overlapping arrows

indicate hybrid signals. IDM stands for inverse dynamic model, indicating a potential embedded limb dynamics.
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may include full or partial compensation for gravity may
constitute an anticipatory postural adjustment that accompanies
movement that originates in the brainstem (Massion, 1992)
or in the cerebellum (Sajdel-Sulkowska, 2013). Alternatively,
or additionally, the gravitational command may be a spinal
feedback response to changing gravitational load signaled by
proprioceptors (Figure 8). The mechanism responsible for the
feedback-driven compensation for gravitymay be akin to positive
force feedback during locomotion driven by afferent feedback
from Golgi tendon organs to maintain load bearing (Pearson and
Collins, 1993; Prochazka et al., 1997). These hypothetical neural
commands, wherever they originate, would optimally combine
(Chhabra and Jacobs, 2006; Gaveau et al., 2014, 2016; Vu et al.,
2016) to drive the musculoskeletal system.

Unexpectedly, our results have shown that muscle activity
waveforms consist of nearly equal contribution of gravitational
and dynamic components. We found a linear relationship
between the variance accounted for by the gravitational and
dynamic components of EMG that was robust across subjects
(Figures 6, 7). This relationship is not a direct reflection of
the relative contribution of torque components to muscle
torque. This suggests that the musculoskeletal system, such as
muscle moment arms around joints, muscle properties, and
the composition of motor units, contribute to the scaling of
muscle activity into appropriate moments (Gritsenko et al.,
2016). Furthermore, we found that both the gravitational and
dynamic components of EMG negatively correlated with the
contribution of MD component to muscle torque. This means
that the larger the contribution of MD to muscle torque, the
smaller EMG variance is captured by the components of muscle
torque. This may suggest that for more dynamic movements or
when gravitational torques are smaller than dynamic torques,
there is more co-contraction between muscles. Muscle co-
contraction implies a common signal across several antagonistic
muscles and is an important control strategy used to alter joint
stiffness or whole arm impedance (Darainy et al., 2004; Damm
and McIntyre, 2008). Furthermore, the dynamic component
contributed about equally to EMG of most muscles (Figure 4).
This suggests that the amount of co-contractionmay be estimated
from the relative contribution of the dynamic component to
muscle torque.

Recent studies have provided evidence that gravity is optimally
integrated into the neural control of movement (Crevecoeur
et al., 2009;Wang and Dounskaia, 2016). This may be interpreted
as contradictory to the idea of two command signals in EMG,
gravitational for static and dynamic for phasic. The contradiction
arises when the static component is thought to be eliminating
the effect of gravity on the limb, while the optimal control takes
advantage of gravity’s assistive action instead of counteracting
it (Wang and Dounskaia, 2016). Our data helps resolve this
contradiction. The static gravitational component in EMG
studied here does not necessarily completely counteract the force
of gravity on the limb. At the same time, allowing gravity to
passively move the limb does not mean that EMG in muscles

spanning the same or other joints would contain no gravity-
related signals. For example, for downward movements, gravity
could indeed substantially contribute to the movement reducing
muscle action. However, the gravity component would still be
present in active muscle torque and in EMG, because of the forces
required to maintain arm posture against gravity at the beginning
and/or at the end of movement. For our downward movement 9,
the was significant gravity-related torque present at the shoulder
(Figure 2). In fact, our segments usually do not move at linear
acceleration of 9.8 m/s2, which is the only case, other than in
a microgravity environment, when no gravitational component
in EMG would be expected. Therefore, the potential presence
of a separate gravitational neural command does not contradict
the fact that the CNS takes advantage of gravity to assist with
movements.

CONCLUSIONS

In conclusion, our results have shown that gravitational and
dynamic components of muscle torque represent significant
amount of variance in muscle activity. This suggests that these
torques may be used to estimate phasic and tonic components
of muscle activity and may offer insight into neural control
strategies.
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