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To understand speech, listeners have to combine the words they hear into phrases and

sentences. Recent magnetoencephalography (MEG) and electrocorticography (ECoG)

studies show that cortical activity is concurrently entrained/synchronized to the rhythms

of multiple levels of linguistic units including words, phrases, and sentences. Here we

investigate whether this phenomenon can be observed using electroencephalography

(EEG), a technique that is more widely available than MEG and ECoG. We show

that the EEG responses concurrently track the rhythms of hierarchical linguistic units

such as syllables/words, phrases, and sentences. The strength of the sentential-rate

response correlates with how well each subject can detect random words embedded in

a sequence of sentences. In contrast, only a syllabic-rate response is observed for an

unintelligible control stimulus. In sum, EEG provides a useful tool to characterize neural

encoding of hierarchical linguistic units, potentially even in individual participants.

Keywords: EEG, entrainment, speech, phrase, hierarchical structures

INTRODUCTION

A critical feature of human language is that it can concatenate smaller units, e.g., words, into
larger structures, e.g., phrases, and recursively bind such units into larger structures like sentences,
governed by the constraints of a grammatical system (Chomsky, 1957; Fitch and Friederici, 2012;
Berwick et al., 2013; Everaert et al., 2015). During speech comprehension, the acoustic speech signal
is first mapped onto phonetic features, which are then deployed to retrieve lexical information
(Poeppel et al., 2008). To understand sentences, words have to be further combined into phrases
and sentences, based on tacit grammatical knowledge (Townsend and Bever, 2001; Phillips, 2003).
A number of studies have investigated the cortical network involved in the process of combining
words into phrases and sentences (Friederici et al., 2000; Lerner et al., 2011; Pallier et al., 2011;
Nelson et al., 2017). Those studies have shown increased activation in a distributed network
involving the inferior frontal gyrus and the superior and middle temporal gyri when words
combine into phrases. In terms of the neurophysiological processes, studies have shown that when
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syllables combine into words, the first syllable in a word elicits
larger electroencephalography (EEG) responses at latency of
around 100 ms (Sanders et al., 2002) and that cortical activity
tracks the rhythms of both syllables and words (Buiatti et al.,
2009; Kabdebon et al., 2015; Farthouat et al., 2016; Batterink and
Paller, 2017).

When investigating phrase-level neurophysiological
processing, an EEG component, i.e., the closure positive shift
(CPS), is observed at the boundary of prosodic phrases, which has
been interpreted as a marker for phonological level processing
of phrases (Steinhauer et al., 1999; Li and Yang, 2009). Recent
magnetoencephalography (MEG) and electrocorticography
(ECoG) experiments show that low-frequency cortical activity
is concurrently entrained, i.e., synchronized, to the rhythms of
multiple linguistic units, e.g., words, phrases, and sentences, even
without any prosodic cues at the phrasal/sentential boundaries
(Ding et al., 2016). Furthermore, within a linguistic structure,
the power of electrophysiological activity shows a sustained
increase or build up in the theta, beta (Bastiaansen et al., 2010;
Bastiaansen and Hagoort, 2015; Ding et al., 2016), gamma (Peña
and Melloni, 2012), and high-gamma bands (Ding et al., 2016;
Nelson et al., 2017). Neural tracking in different frequency bands
may reflect the neural coupling across frequencies (Lakatos et al.,
2005; Canolty et al., 2006), but it has also been suggested that
beta and gamma bands may preferentially process syntactic
and semantic information (Bastiaansen and Hagoort, 2015;
Ding et al., 2016). These results indicate that during listening
to connected speech, the brain can construct phrasal/sentential
structure purely based on grammatical cues and entrain cortical
rhythms to track the rhythms of these internally constructed
linguistic units.

Concurrent cortical entrainment to hierarchical linguistic
units provides a plausible neural marker to characterize how
linguistic structure building is affected by factors, such as
attention and memory and also affords a measure to study
developmental and aging effects on linguistic structure building.
One limitation of this neural marker, however, is that it has only
been validated using MEG and ECoG, which are not commonly
available recording techniques. Here we test whether cortical
tracking of hierarchical linguistic units (Figure 1A) can also be
observed using EEG.

METHODS

Subjects
Sixteen native American English speaking New York University
undergraduate students (4 males; 2 left-handed; age range 18–
22) participated in this study. They were given course credit
for participation. The institutional review board of New York
University approved the study protocol, and written informed
consent was obtained from all participants before the study.

Stimuli
The stimuli and procedures were identical to experiment 6
(sentence condition and shuffled sequence condition) of a recent
MEG study (Ding et al., 2016). In the sentence condition, each
English sentence contains 4 monosyllabic words (Figure 1A).

The first two words form a noun phrase (adjective/pronoun
+ noun) and the last two words form a verb phrase (verb +

noun). English words were synthesized independently using the
MacinTalk Synthesizer (male voice Alex, in Mac OS X 10.7.5).
Each monosyllabic word was adjusted to 320 ms in duration.
In each trial, 12 sentences were presented without any acoustic
gap between sentences (continuous, isochronous presentation).
Therefore, each trial is 15.36 s in duration. Thirty trials were
played, eight of which contained outliers. An outlier trial was
the same as a normal trial except that 3 consecutive words
from a roved position were replaced with 3 random words. The
behavioral response was correct in 72% (SD = 9%) trial for the
sentence condition.

In the control condition, each syllable in the sentence
condition was cut into 5 slices (72-ms in duration with a 10-
ms overlap between neighboring slices, which is smoothed by
a 10-ms linear ramp) and slices at the same position within a
sentence were shuffled across sentences. The control stimulus
is not intelligible speech but has similar acoustic properties
as the 4-syllable sentences (Figures 1B,C). Detailed procedures
of how the control stimuli were made are described in Ding
et al. (2016). The control stimulus has the same duration as
the sentence stimulus and 30 trials were presented. Eight trials
contained outliers consisting of 4 randomly chosen English
words embedded in the stimulus. The behavioral response was
correct in 81% (SD= 14%) of the trials for the control condition.
The behavioral score of one subject (33%) clearly differed from
other subjects. If this subject was excluded, the mean correct rate
was 84% (SD= 6%).

The spectrogram of an example segment of a stimulus
is shown Figure 1B for both conditions. The spectrogram is
calculated using an auditory model (Yang et al., 1992). The
power spectrum of the temporal envelope of the stimuli is
shown in Figure 1C. The temporal envelope is the average of
the spectrogram over frequencies, and the power spectrum is
calculated using the Discrete Fourier Transform (DFT) without
any smoothing window. The power spectrum in Figure 1C is
averaged over all 15.36-s duration trials. The stimulus envelope
shows a spectral peak only at the syllabic/word rate.

Procedures
The experiment was conducted in a quiet room. The sentence
condition and the control condition were presented in separate
sessions and the order of these two sessions was counterbalanced
over subjects. The participants were instructed to distinguish
normal trials from outlier trials by pressing a response keys at
the end of each trial.

EEG Recording
EEG was continuously recorded with a 128-channel EEG system
(EGI, Inc., Eugene, OR), digitized at a sampling rate of 1,000Hz
(bandpass filter= 0.01–400Hz) and referenced to the vertex (Cz).
The impedance of electrodes was kept below 40 kO (Ferree et al.,
2001). EOG artifacts were removed from the EEG recordings
using ICA (Delorme and Makeig, 2004). Specifically, the 128-
channel EEG signals were dimension reduced to 80 components
using PCA and then the 80 principal components were
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FIGURE 1 | Stimulus. (A) Linguistic structure of the sentence stimuli. Each sentence contains a two-word noun phrase and a two-word verb phrase. All words are

monosyllabic. (B) Auditory spectrogram of an example segment of the sentence stimulus (upper) and the control stimulus (lower). The acoustic control stimulus has

spectro-temporal properties similar to the sentence materials. (C) Power spectrum of the stimulus envelope. Both the sentence stimulus and the control stimulus

show temporal modulations at the syllabic rate, i.e., 1/0.32Hz, but not at the phrasal or sentential rates.

further decomposed using ICA. An independent component was
removed if in its topography the mean power over the most
frontal 14 channels was more than 10 times stronger than the
mean power over all other channels.

The EEG signal was lowpass filtered to 25Hz, since the signals
of interests are in the low-frequency region, at 1/1.28, 2/1.28, and
4/1.28Hz. Data were re-referenced offline to a common average
reference. The response to each trial was epoched. The recorded
data from the first sentence of each trial was removed to avoid the
transient EEG response to sound onset.

Response Power and Inter-Trial Phase
Coherence
The EEG response in each trial was converted into the frequency
domain using the DFT. After the first sentence was removed,
each trial was 14.08 s in duration (9 sentences × 1.28 s/sentence)
and therefore the frequency resolution of the DFT of the entire
trial is 0.071Hz, i.e., 1/14.08Hz. If the DFT of the response
in trial k is denoted as Xk(f ), the evoked power spectrum is
shown in equation (1), where K is the total number of trials.
Xk(f ) is complex-valued Fourier coefficient and is a function

of frequency f. The evoked power reflects the power of EEG
responses that are synchronized to the speech input. It is the same
as the power spectrum of the EEG response waveform averaged
over trials.

E(f ) = |6kXk(f )|
2/K (1)

The inter-trial phase coherence is defined in equation (2), where
θk is the phase angle of each complex-valued Fourier coefficient,
i.e., θk = <Xk(f ).

R(f ) = (6kcos(θk))
2/K + (6ksin(θk))

2/K (2)

The induced power, i.e., the power of EEG responses not
synchronized to the speech input, is also calculated as the
following formula, where <X(f )> denotes the mean over trials.

I(f ) = 6k|Xk(f )− <X(f )> |2/K (3)

Significance Testing
The statistical significance of neural entrainment at a target
frequency was tested for evoked power and inter-trial phase
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coherence, respectively. In the power test, to remove the 1/f
trend of the response power spectrum, the response power at
each frequency was normalized by the neighboring 14 frequency
bins (7 bins on each side, which is equivalent to 0.5Hz). The
normalized power (equation 3), which can be viewed as a signal-
to-noise measure, is:

En(f ) = E(f )/6ωE(ω), |ω − f | <0.5Hz,ω 6= f (4)

where ω denotes frequencies around the target frequency f.
In the phase coherence test, phase coherence values are not

normalized by the neighboring frequency bins, since the inter-
trial phase coherence spectrum has no 1/f fall-off.

For the power test, the null hypothesis is that the power at
the target frequency is not significantly larger than the power
in neighboring frequencies. Under the null hypothesis, the
normalized power En(f ) is subject to an F(32, 448) distribution
for each channel. When the response power is averaged
over channels, since the EEG response is correlated over
channels, we conservatively assumes that the normalized power
calculated based on the power averaged over channels is also
subject to an F(32, 448) distribution. For the phase coherence
test, the null hypothesis is that the response phase is not
synchronized to the stimulus and the null distribution of θk is a
uniform distribution. Therefore, we employed the F-test and the
Rayleigh test, respectively, to evaluate the statistical significance
of the evoked power and phase coherence at each target
frequency.

For the response averaged over channels, the null distribution
of the evoked power or phase coherence cannot be easily
described by a parametric distribution due to the correlation
between channels. Therefore, the null distribution of normalized
power (or inter-trial phase coherence) is estimated based on
the response at non-target frequencies, i.e., the responses at
frequencies that are not harmonically related to the sentential
rate. The chance-level normalized power (or phase coherence) is
pooled over frequencies. When the significance test is applied to
individual subjects, the chance-level power (or phase coherence)
is pooled over subjects. The statistical significance of the response
at a target frequency is the probability that the target-frequency
response differs from a chance-level response.

A linear classification analysis is employed to test if the
topographic patterns at two frequencies or in two conditions
are significantly different. In this analysis, the topographic plots
averaged over half of the trials (e.g., the first or last 15 trials) are
used to train a classifier. Each subject is viewed as a sample. The
classifier’s performance is evaluated based on the data averaged
over the other half of the trials. A binomial test (N = 16,
probability: 0.5) is used to test if the classifier can discriminate
the two classes of topographic plots with higher than chance
performance.

RESULTS

We first analyzed the global field power of EEG responses
(Figure 2A). In this analysis, the power spectrum is calculated for
each electrode and then averaged over electrodes. In the grand

average over subjects, the response to sentences shows three clear
peaks at the sentential, phrasal, and syllabic rates, respectively
[P < 0.001, F(32, 448) = 8.9, 6.1, and 111.9, respectively]. The
response to the acoustic control shows a single statistically
significant peak at the syllabic rate [P < 0.001, F(32, 448) =

47.6]. The response at the sentential and phrasal rates are not
significantly stronger than the power in neighboring frequency
bins [P > 0.3, F(32, 448) = 1.1, and 1.1 respectively]. Comparing
the sentence condition and the control condition, it is revealed
that the response is stronger for the sentential condition at the
sentential [P < 0.001, F(32, 32) = 7.9], phrasal [P < 0.001, F(32, 32)
= 4.5], and syllabic rates [P = 0.03, F(32, 32) = 2.0].

To quantify if the neural response is phase-locked to the
stimulus, we calculated the inter-trial phase coherence. The
inter-trial phase coherence averaged over channels is shown in
Figure 2B. For the sentence condition, three peaks in the phase
coherence spectrum are observed at the sentential, phrasal, and
syllabic rates, respectively (P < 0.002, see Methods). For the
control condition, only one peak at the syllabic rate is observed
(P < 0.002).

The induced power, i.e., non-phase-locked power, of the EEG
responses is shown in Figure 2C. No spectral peak is observed at
the sentential, phrasal, or syllabic rate.

The EEG responses in the sentence condition were further
analyzed as follows. We first quantify whether the neural
responses to hierarchical linguistic units can be reliably detected
in single subjects. The response power from individual subjects
is shown in Figure 3A for each target frequency. The power at
each target frequency was normalized by the mean power in a
1-Hz neighboring frequency area (0.5Hz on each side of the
target frequency). At the sentential, phrasal, and syllabic rate
responses reached significance level (P < 0.05, FDR-corrected,
see Methods) in 62.5, 43.8, and 100% of the 16 participants,
respectively. The inter-trial phase coherence values of individual
subjects is shown in Figure 3B. Statistically significant phase
coherence was observed at the sentential, phrasal, and syllabic
rates in 62.5, 56.3, and 100%, respectively (P < 0.05, FDR-
corrected, see method). Neural entrainment to at least one
higher-level linguistic structure (i.e., phrase or sentence) is
detected in 68.8% (N = 11) and 81.3% (N = 13) of the subjects
for the power test and the phase test, respectively.

The spatial distribution of EEG power and phase coherence
over electrodes is shown in Figure 4. The syllabic response is
most salient around channel Cz. The sentential and phrasal
rate responses, however, are more salient near channels on the
right and left side of channel Cz. Such a distinction in spatial
distribution, however, is not consistent across subjects, since
a linear classifier fails to distinguish the topographic patterns
between the conditions shown in Figure 4 above chance level,
possibly due to the low-spatial resolution of EEG and large
individual differences.

Finally, we examine whether the EEG responses are correlated
with behavior (Figure 5). The sentential-rate response is found
to be significantly correlated with the performance of detecting
an outlier (i.e., 3 random words) embedded in a sequence of
grammatical sentences. No correlation with behavior is observed
at other frequencies.
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FIGURE 2 | EEG responses to sentences and the acoustic control (grand average over all subjects and channels). (A) The evoked power spectrum of EEG

responses. The bold black line shows the grand average over subjects, the two thin black lines delimit the 75th and 25th percentiles. Green lines show the data from

individual subjects. The responses to sentences show 3 peaks at the sentential (1/1.28Hz), phrasal (1/0.64Hz), and syllabic rates (1/0.32Hz), respectively. In contrast,

the responses to the acoustic control only show one peak at the syllabic rate. (B) The spectrum of inter-trial phase coherence. The phase coherence spectrum is

similar to the evoked power spectrum except that there is no 1/f power fall-off in the spectrum. Statistically significant inter-trial phase coherence means that the EEG

responses are phase-locked to the stimulus. (C) Induced power.
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FIGURE 3 | Neural responses to hierarchical linguistic structures in individual participants. The normalized evoked power (A) and inter-trial phase coherence (B) for

individual subjects at each target frequency. Participants showing a statistically significant spectral peak at each target frequency are marked by a star (P < 0.05,

FDR-corrected, see Methods).

FIGURE 4 | Topography of the neural responses at the sentential, phrasal,

and syllabic rates. Channels Cz, T7, T8, Fz, and Pz are marked by blue dots.

(A) The normalized evoked response averaged over subjects. The color bar

shows the normalized power in dB. The syllabic rate response is strongest

near channel Cz. In contrast, the sentential response is strongest between Cz

and T8 and the phrasal response shows a bilateral pattern on both sides of

Cz. (B) The inter-trial phase coherence averaged over subjects, shows a

pattern similar to the that of normalized evoked power.

DISCUSSION

This study shows that ongoing EEG responses can follow the
rhythmic structure of multiple linguistic levels, concurrently,

during listening to connected speech. These results demonstrate
that scalp EEG provides an effective tool to investigate the neural
tracking of hierarchical linguistic units in individual subjects.

Neural Representation of Hierarchical
Linguistic Units
Whether sentences are represented by hierarchically embedded
syntactic structures or linear Markov models during language
comprehension is a central question in cognitive science
(Chomsky, 1957; Townsend and Bever, 2001; Jackendoff, 2002;
Phillips, 2003; Frank et al., 2012; Everaert et al., 2015). Recently,
a number of studies have suggested that neural processing of
languages cannot be fully explained by a linear Markov model
and is consistent with hierarchical syntactic models. For example,
using fMRI, Brennan et al. tested how well BOLD signals in
each cortical area can be explained by a hierarchical models or
Markov models (Brennan et al., 2016). They found that while
hierarchical models predicted BOLD signals in the anterior and
posterior temporal lobes, a Markov model predicted activity in
a broader cortical network including the frontal lobe. Neural
entrainment to linguistic structures also provides a useful tool
to address how syntactic structures are represented in the brain.
For example, previous MEG data show that neural activity
can entrain to linguistic structures even without any statistical
cues for structural boundaries, demonstrating that statistical
cues are not the only cues for syntactic analysis (Ding et al.,
2016).
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FIGURE 5 | Correlation between neural response power and behavior for the sentence (A–C) and control condition (D). In the sentence condition, the sentential-rate

response is positively correlated with how well each subject can detect a sequence of random words embedded in a sequence of sentences. In (D), data from one

subject is not shown since the behavioral score (33%) is much lower than other subjects.

Neural Entrainment to Speech
When listening to speech, cortical activity is entrained to the
temporal envelope of speech (Luo and Poeppel, 2007; Kerlin et al.,
2010; Lalor and Foxe, 2010), which carries the acoustic rhythm
of speech. It has also been shown that cortical activity carries
phonetic information (Di Liberto et al., 2015). Furthermore,
as shown in this study using EEG and previous studies using
MEG and ECoG (Ding et al., 2016), cortical activity is also
entrained to the rhythms of higher level linguistic structures
such as phrases and sentences, in the absence of acoustic cues.
Therefore, during speech listening, cortical activity on different
time scales is concurrently synchronized to linguistic structures
of time scales. Therefore, a hierarchy of linguistic structures
are converted into neural dynamics on different time scales,
providing a plausible neural basis for the mental representation
of hierarchical linguistic structures and the interactions between
linguistic levels during speech processing (Townsend and Bever,
2001; Poeppel et al., 2008; Christiansen and Chater, 2016).

Although a syllabic-rate response is observed in both the
sentence condition and the control condition, it is weaker in the
control condition. This effect may reflect better neural tracking of
intelligible monosyllabic words. Alternatively, it is possible that
the subjects paid more attention in the sentence condition, which
enhances the syllabic/word rate response. The sentence condition
may require a higher level of attention, since the behavioral task
is more challenging in the sentence condition (∼70% correct rate
in the sentence condition vs. ∼80% correct rate in the control
condition).

To dissociate syntactic from prosodic processing, the current
study removes prosodic cues in speech. Natural speech, however,
contains rich prosodic information which facilitates syntactic
analysis. Therefore, neural tracking of phrasal and sentential
structures is likely to be more prominent in natural speech.
Furthermore, prosodic cues can also directly generate event-
related response tracking the structural boundaries, such as the
CPS (Steinhauer et al., 1999).
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Measuring Neural Tracking of Phrases and
Sentences Using EEG
In this study, 30 trials of sentence sequences (∼15 s each)
are presented and the neural tracking of higher-level linguistic
structures, i.e., phrases or sentences, can be detected in more
than half of the subjects using EEG. Therefore, the EEG-based
paradigm shown here provides a plausible way to measure
the neural encoding of higher-level linguistic structures. The
sentential and phrasal responses do not reach significance
in some subjects, possibly limited by the low SNR of EEG
recordings. The subjects in the current study are all young
adult native speakers without any language disorders, and
therefore individual differences in language ability should be
small, given such elementary processing demands. Nevertheless,
the performance of detecting random words embedded in a
sequence of sentences shows considerable individual differences,
which is likely to be driven by cognitive factors, e.g., attention,
rather than language ability. Indeed, a recent study shows
that neural tracking of phrasal and sentential structure is
diminished during sleep (Makov et al., 2017). Future experiments
are needed to elucidate the influence of tasks and cognitive
states on the neural tracking of phrasal and sentential
structures.

It is challenging to detect of low frequency neural activity,
since background neural activity generally has a 1/f spectrum.
Compared with the 4-Hz syllabic-rate response and the 1-
Hz sentential-rate response, however, the 2-Hz phrasal-rate
response is especially difficult to detect in individual subjects.
A possible reason is the following: The syllables have very clear
acoustic boundaries and therefore can drive strong auditory
responses. Each sentence is a syntactically and semantically

coherent unit and, in this experiment, different sentences
are syntactically and semantically disconnected. Therefore, the
sentences also have relatively clear perceptual boundaries. The
phrases within a sentence, however, are related both syntactically
and semantically, which makes the boundaries between them less
obvious than those between syllables and sentences.

Finally, since EEG is a commonly available non-invasive
neural recording technique, the current paradigm has the
potential of being developed into a tool to assess higher-level
linguistic processing in populations less able to engage in typical
laboratory research, including children and clinical patients. To
apply the current paradigm to a special population, however,
possibly requires adapting the sentence materials based on the
vocabulary familiar to the target population and elucidating how
attention and other cognitive factors may influence the neural
tracking of higher-level linguistic structures.
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