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Part of the process of EEG microstate estimation involves clustering EEG channel

data at the global field power (GFP) maxima, very commonly using a modified

K-means approach. Clustering has also been done deterministically, despite there being

uncertainties in multiple stages of the microstate analysis, including the GFP peak

definition, the clustering itself and in the post-clustering assignment of microstates

back onto the EEG timecourse of interest. We perform a fully probabilistic microstate

clustering and labeling, to account for these sources of uncertainty using the closest

probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer

perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target

labels, to then allow for probabilistic labeling of the full EEG data instead of the usual

correlation-based deterministic microstate label assignment typically used. We assess

the merits of the probabilistic analysis vs. the deterministic approaches in EEG data

recorded while participants perform real or imagined motor movements from a publicly

available data set of 109 subjects. Though FCM group template maps that are almost

topographically identical to KM were found, there is considerable uncertainty in the

subsequent assignment of microstate labels. In general, imagined motor movements

are less predictable on a time point-by-time point basis, possibly reflecting the more

exploratory nature of the brain state during imagined, compared to during real motor

movements. We find that some relationships may be more evident using FCM than

using KM and propose that future microstate analysis should preferably be performed

probabilistically rather than deterministically, especially in situations such as with brain

computer interfaces, where both training and applying models of microstates need to

account for uncertainty. Probabilistic neural network-driven microstate assignment has a

number of advantages that we have discussed, which are likely to be further developed
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and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic

neural network-driven approach to microstate analysis is likely to better model and

reveal details and the variability hidden in current deterministic and binarized microstate

assignment and analyses.

Keywords: EEG, probabilistic microstates, K-Means, Fuzzy C-Means, multi-layer perceptrons, motor imagery

INTRODUCTION

Electroencephalography (EEG) is one of the most widely
used and practical brain imaging modalities. While there are
well-recognized and fundamental limitations to EEG spatial
resolution, it is the easiest to access, cheapest andmost portable of
the two main high temporal resolution brain activity-recording
technologies (the other being magnetoencephalography or
MEG), ensuring that EEG has remained themost viable approach
to monitoring brain activity “in the field” (Casson et al., 2010;
Burle et al., 2015). While many approaches exist for analyzing
EEG, for example, in Brain Computer Interfaces (BCIs), over the
last decade the multivariate approach of microstate analysis has
surged in popularity; providing a relatively simple but expressive
way of providing a functional description of the global brain state
and neural dynamics (Lehmann et al., 1987; Khanna et al., 2015).
In the simplest and most common case, microstate analysis
proceeds as shown in Figure 1 below:

First, the global field power (GFP) is computed over the
time series of interest. The GFP represents the spatial standard
deviation across all channels and is a reference-free measure,
in that regardless of how the channels are referenced, leads to
the same result (Khanna et al., 2015). This makes it useful in
determining certain global and reference-invariant properties
from the EEG. In particular, maximum points on the computed
GFP curve should constitute points of maximal signal-to-noise
ratio (Lehmann et al., 1987; Khanna et al., 2015). By using
the EEG samples only at those GFP maxima, we maximize
the signal-to-noise ratio of the template maps that we are to
compute from the EEG. The GFP-maxima-derived EEG samples
are then typically fed into a clustering algorithm,most commonly
a modified K-Means (KM) algorithm, which ignores polarity,
first proposed and developed in (Pascqual-Marqui et al., 1995).
The resulting cluster centroids computed by this modified-
KM algorithm represent template maps that can be assigned,
according to topological similarity, back onto each of the EEG
samples/time points of the full EEG time series. These microstate
template maps are typically computed over the whole group and
across conditions, thus representing group template maps. There
are different approaches to categorizing/assigning each point in
the EEG time series a microstate label, but the most common
approach is some type of spatial correlation between the group-
level template maps and the subject-level EEG time points (Van
De Ville et al., 2010; Drissi et al., 2016). This assignment of
label to the current EEG time point by using the maximally
correlated of all the templatemaps is deterministic and equivalent
to selecting the template that matches best according to the
maximum likelihood of the template map-derivation model
used. Since the original proposal of this KM-based approach in

(Pascqual-Marqui et al., 1995), other researchers have also used
other ways in deriving template maps/microstate maps that
differ from the standard K-means (KM) approach—most notably
ICA (Musso et al., 2010; Yuan et al., 2012) and agglomerative
hierarchical clustering (Britz et al., 2010; Van De Ville et al.,
2010). However, all approaches currently used are fundamentally
throwing away information and over-simplifying the underlying
dynamics and models by being deterministic. While microstates
assignment has been defined as “all-or-none” and belonging to a
given microstate scalp topography template is considered binary,
this has certainly missed on some of the uncertainty in the
underlying dynamics and the assignment of a given template to a
given timepoint in the EEG timecourse.

Over the interval of ∼100ms, the measurable scalp
topography is reported to be relatively stable, and so the brain is
considered to be in a quasi-stable microstate (Pascqual-Marqui
et al., 1995; Khanna et al., 2015). Therefore, any assigned state
label is assumed to be unchanging for approximately 80–120ms.
After a period of time on the order of this duration, the scalp
electrical topography rapidly (but not randomly—but rather
probabilistically) shifts to one of the other configurations or
microstates for roughly the same amount of time. Furthermore,
as the EEG signal involves large amounts of oscillatory activity,
only the actual scalp topography of microstates is considered,
regardless of the polarity (i.e., flipping polarity of a map is
considered to still be part of the same microstate, as the relative
topography is unchanged, when the polarity of the signal is
ignored). This is a large part of the motivation behind the
modification of the standard K-means algorithm as developed
in and proposed by (Pascqual-Marqui et al., 1995). One of
the issues of using a standard K-Means algorithm is that EEG
points with highly similar scalp topography but with inverted
polarity are in general going to be classified as belonging to
different map clusters. The dynamics of microstates (such as the
exact microstate label, the duration, or the specific transition
frequencies/probabilities between microstates) change between
cognitive conditions, tasks, age, sex, and pathologies (Britz et al.,
2010; Lehmann et al., 2010; Musso et al., 2010; Khanna et al.,
2015; Drissi et al., 2016; Milz et al., 2016). They have also been
found to have scale-free dynamics and strong relationship to
various blood oxygen level dependent (BOLD) fMRI (functional
magnetic resonance imaging) networks (Musso et al., 2010; Van
De Ville et al., 2010). Microstates seem to predict the activity of
certain resting state networks (RSNs) and task networks, despite
the slower temporal scales of BOLD imaging. We have previously
(Dinov et al., 2016) found some weak suggestive evidence that
microstate dynamics may be predictive of and predicted by
EEG avalanche/cascade dynamics. The latter have been shown
to exhibit scale-free behavior across orders of magnitude, both
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FIGURE 1 | The Figure illustrates the main elements involved in defining microstate template maps E. We start with the actual EEG data (A), compute, at each time

point, the GFP according to the equation in (B). If we plot the resulting GFP curve, we would only have a single GFP curve as in (C). If we then extract the EEG

samples only at GFP peaks (GFP maxima), we feed those samples (of higher SNR than neighboring regions) into a clustering algorithm—typically K-Means, depicted

in (D). The resulting microstates (i.e., clusters) have a characteristic spatial distribution across the EEG sensors, as in (E).

in simultaneous EEG-fMRI (Fagerholm et al., 2015) and in
separate EEG (Benayoun et al., 2010; Palva et al., 2012) studies.

As such, microstates relate to a number of other measures of
brain dynamics in theoretically, cognitively and clinically useful

ways. Microstates are therefore an exciting multi-faceted area of

neuroimaging, experimental, clinical and cognitive neuroscience
research, which we are now exploring.

Although microstates are defined using data-driven

clustering, they typically result in a consistent set of topographic

maps that are “canonical” or commonly reported in the

literature; Figure 4B shows 4 such canonical microstates,
commonly found reported in the relevant literature. However,

there are nevertheless many issues with most clustering

approaches that will be briefly mentioned. While we focus here

on K-Means, many of these remarks are valid for other clustering
(and non-clustering) techniques too. Many of the algorithms

employed for deriving template maps are susceptible to local
optima, physiological relevance (or lack thereof) of the number

and type of clusters chosen, the amount of data required to
obtain good results, the many (sometimes strong) assumptions
the algorithm makes, and others. As such, there are a number of
algorithmic and data-related sources of noise that are currently

not taken into account, which could be informative in further
delineating brain microstate properties. As such, we highlight
three (of probably more) issues here that are problematic with
the current approach to microstate studies:

• GFP peak detection will detect very small “hills” (that barely

differ from neighboring GFP points) as GFP maxima (as they
technically are maxima compared to the surrounding GFP
points). However, such GFP peaks will only represent a small
(possibly negligible) difference in SNR. Such points should
not be included straightforwardly into whatever clustering or
grouping method is used during template map building. They
could be weighted differentially, for instance. This may reduce
the certainty in any given label assignment, depending on
how close or how far we are from such GFP “small maxima.”
There may be other GFP-related effects on the microstate
predictability.

• If KM or similar clustering algorithms are not run with
sufficiently many replications or for sufficiently many
iterations, the solutions found will not be optimal for the
chosen number of clusters and the data set in question. This
would should then increase uncertainty in the downstream
analysis steps.
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• Even if the global minimum of the error function used in the
algorithm is found, there may be overlap and more or less of
similarity between the clusters and the “optimum” solution
may not be mathematically, biologically and physiologically
realistic if we assume that a given time point belongs
strictly to one cluster. Overlap between clusters would be
indicative that the notion of “the closest/most similar cluster”
may be misleading and removing informative detail about
the underlying dynamics or predictability/certainty of the
microstates. It is well known that KM is notoriously bad at
finding “correct” clusters in many data distributions.

In this paper, we used a standard (non-modified) K-Means
algorithm and ensured post-clustering that the final maps were
not duplicate due to polarity inversion. We then applied an
alternative probabilistic clustering approach, an analog to K-
means, called fuzzy C-means (FCM), which naturally extends
KM to incorporate probabilistic cluster label assignments to
each point, giving the degree of membership to each of the
found clusters/templates for each point. We did not use the
modified K-Means of (Lehmann et al., 1987) but instead used
the standardMATLAB K-Means implementation and eliminated
one template map found that was an inversion of one of the other
templates. Standard KMwas used to allow for an easier and more
direct comparison to FCM, as the standard KM is almost identical
to FCM except for two terms. While FCM will suffer from many
of the same issues as KM, it does not assume deterministic and
absolute membership to any given cluster and solves one of the
major issues of KM. Probabilistic cluster assignments therefore
allows us to quantify how certain or uncertain we are in any
given microstate label assignment and subsequent analysis of
microstates relying on those microstate labels. As such, this is
an improvement on standard deterministic approaches and it
provides a good probabilistic method to compare against KM,
the latter being one of the most commonly employed clustering
methods in the field.

We trained Multi-Layer Perceptrons (MLPs) with the data to
be clustered serving as inputs and the cluster labels serving as
the target values to use for the supervised training. The rationale
for using MLPs was to probabilistically assign a template/cluster
to each EEG time point from the real and imagined motor
movement data. This now allows us to very quickly (e.g., in

real-time settings) and robustly assign probabilistic microstate
labels to the EEG time series. A neural network-drivenmicrostate

assignment approach also allowed us to quantify in a novel and

straightforward way the relationship between the mean GFP
of a subject and the predictability of the current microstate

assignment as assigned by the MLPs.
While EEG has had some limited use outside of clinical and

research contexts, it has typically relied on standard EEG analysis,

usually involving some kind of classification on specific types of
input data (e.g., classification on motor imagery) or, even more

commonly and historically, some fourier/band amplitude-based

measure of relaxation. While these have shown some usefulness
for very simple applications, there is only very limited use of EEG

technology outside of clinical, research and experimental settings

or for more complex requirements. Though the technology

is now relatively widespread, easy to use and affordable,
one reason for the lack of broader application in real-world
settings may be the lack of an easily and readily interpretable,
or meaningful, and easily derivable measure from the EEG.
We were interested in investigating approaches to improving
EEG microstate usefulness for portable EEG applications, as
microstates are beginning to be better understood, are easily
computable and potentially useable in real-time. In particular,
the development and use of a fully probabilistic framework
for microstate assignment and analysis, as we propose here,
should allow for the variability or uncertainty in the current
microstate assignment to be taken into account in future models
of microstate dynamics.

METHODS

Overview and Data Used
We used motor imagery data from PhysioNet, contributed by
the Schalk lab (Goldberger et al., 2000; Schalk et al., 2004) that
is available for public use. It is fully anonymized data available
to all researchers for free use under the ODC Public Domain
Dedication and License v1.0. It consists of 109 subjects doing a
motor movement and imagery task. We have used a large subset
of their entire data set, consisting of the imagined and the real
motor movements of both hands or feet—i.e., for the task, they
either squeezed both of their hands or both of their feed, signified
by visual signals on a screen in front of them. We ignored the
eyes open, eyes closed, as well as left and right imagined and
real motor movements, leaving us with a total of the 109 subjects
with 3 replicate sets of imagined and real motor movements of
both hands or both feet (alternating within multiple task blocks
for each subject), i.e., 327 sets of EEG recordings for real motor
movements and 327 sets of EEG records for imagined motor
movements. The data was recorded with a 64-channel BCI2000
system according to the 10-10 in EDF+ format. There were
no electrooculogram (EOG) channels, so we used an automatic
EOG artifact removal method based on ICA, as described in
(Gomez-Herrero et al., 2006) for the cleaned-data version of the
analysis. We report in part both pre-cleaning and post-cleaning
results, as there are complementary results from both—though
the results from the artifact-cleaned data are reported more
fully. We supplied no manually-chosen parameters to the EOG-
cleaning method, letting it automatically derive the assumed-
optimal parameters in a fully data-driven way. The approach is
implemented as the Automatic Artifact Removal (AAR) plugin
in the EEGLAB toolbox, which we used for importing and using
the EDF+ EEG data files. We also manually verified for the
first three subjects’ data sets that the approach was working
well and comparable to a manual ICA-based removal of EOG
components, i.e. the AAR approach andmanually removing EOG
components from a manual ICA results in very similar maps
and cleaned EEG traces. Furthermore, the AAR-cleaned data
removed a number of ocular artifact template maps that were
previously present in the data, leaving us with maximally non-
artefactual maps for the cleaned data. The maps are show in
in Figure 5 for pre-cleaned template maps and 6 showing the
resulting 4 maps post-EOG and EMG cleaning.
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For both imagined and real motor movements, the subjects
had their eyes open and were looking at a screen, which instructs
them whether to open or close (or imagine doing so—for the
imagined movement cases) both of their hands into fists or curl
up both of their feet. We excluded a few of the data sets due to
missing, broken and noisy data, leaving us with 320 data sets for
real motor movements and 325 for imagined motor movements.
Given the high number of points (>1.5 million for both imagined
and real) the ratio of real to imagined data points are equal
enough (∼1:1) to not bias model training toward either imagined
or real motor movement data. We then computed the GFP and
fed the zscore-normalized EEG samples at the GFP maxima into
FCM and KM. One of each model (FCM and KM) was used for
imagined motor movement data and for real motor movement
data for a total of 4 models (FCM-imagined, FCM-real, for
imagined and real motor movements, respectively, and similarly
for KM with KM-imagined, KM-real). Figure 2 visualizes the
overall analysis just described here.

K-Means Clustering as the Standard to
Compare against
We first ran standard K-Means (kmeans++) with a pre-
determined number of clusters (k = 9) for a maximum of
5,000 iterations (or until convergence of MSE (of the Euclidean
distance) of all the points to their respective clusters) with 10
replicates on the raw EEG data. We present both raw/uncleaned
and cleaned results, in part to show that most of the template
maps found post-cleaning are also found in the uncleaned EEG
data. This is useful in that if neural networks can be developed
to assign template maps on uncleaned EEG data, this would
potentially allow for an even more real-time use of microstates.
The model (the 9 64-dimensional vectors representing the
template maps or centroids determined by the algorithm) is
chosen according to the set of clusters generated with the lowest
error from all the replicate runs. This strongly increases the
probability that the found models represent the global maximum
(as opposed to a local maximum) of the error function and
that they are therefore the “best” template maps that KM with
the given number of clusters can find. We repeated this a few
times to ensure that there is consistency in the results used.
We further noted that the lowest objective function error was
achieved on at least 3 of the 10 replicates for KM-real (3 for
the final run of KM-real used for the results), increasing the
likelihood that the repeating minimum of error found (on 3 of
the runs) is in fact the global minimum of error and therefore the
optimal clustering, given this data and this objective function—
i.e., this is the best clustering solution that KM can provide
for this data given this number of clusters chosen. Originally,
k = 4 number of template maps has been used, but in more
recent and “identified” 4 more or less meaningful template maps
using his modified K-Means algorithm. Since then k = 4 has
been used, but in more recent years, by comparing EEG and
fMRI, we’ve “identified” over 20 more or less meaningful maps.
Some of these are “new” and others are likely a combination or
sub-maps of the original 4 that Lehmann found. As with other
unsupervised approaches like ICA, using a very high number of

FIGURE 2 | Overview of our approach to derive probabilistic microstate

sequences. Briefly, we performed the same analysis on both imagined and real

motor imagery data and we report results for both uncleaned and cleaned

data, showing a similar story. After GFP computation and subsequent peak

detection, we Z-transformed the EEG data at those peaks, fed those

Z-transformed data points into 2 clustering algorithms (KM and FCM), then,

using the resulting labeled data points, we trained 2 MLPs for both imagined

and real motor imagery data (for a total of 4 MLPs), which were then used to

derive probabilistic microstate sequences for all 4 cases. We then look at

similarities and differences between the final probabilistic microstate

sequences.

clusters or components is likely to split a single well-behaved
(i.e., low within-group variance) cluster into multiple otherwise
related components. Also, maximizing for explained variance on
a given specific data set leads to over-fitting to that data set (and
decreasing generalization of the involved models). We plotted
the total distance of the points within a cluster (the sum of
the within cluster distances to their assigned cluster, summed
across all the clusters and all the points) for increasing values of
k (=the number of clusters used), using 10 replicates for each
cluster size. We did this for KM-real and KM-imagined and
let the resulting decision drive the decision for the number of
clusters to use in FCM, so as to make FCM’s results maximally
comparable to KM’s. This is shown in Figure 3A for the EOG-
cleaned data. We also plotted Silhouette plots (Kaufman and
Rousseeuw, 1990), which show the “goodness of belonging” of
any point to the given cluster, across a subset of the points for
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FIGURE 3 | (A) shows the error plot as a function of increasing k (number of clusters). (B) above shows a “Silhouette plot” that suggests that though the clustering

was “optimal,” it is, in fact, moderately uncertain, with most points not having a high Silhouette value at all (see the description of how this is computed). (B) strongly

suggests that a probabilistic clustering and assignment approach should be used, taking these inherent uncertainties into account.

KM-real and KM-imagined, shown in Figure 3B (again for the
cleaned-version of the data). The silhouette value for a point i is
computed according to the Equation:

Si =

(

bi − ai
)

max
(

ai, bi
)

where bi is the minimum mean distance from the i-th point to
the points in the different clusters, minimized over all clusters.
ai is the mean distance from the i-th point to the other points
in the same cluster as this point. In other words, the silhouette
value gives a single value, for each point in the points plotted on
a silhouette graph, which gives us a measure of how well that
point was matched to a given cluster, according to all the other
points in that cluster and according to the points in the other
clusters. As Si ∈ [−1, 1], a value toward 1 indicates a very good
match of that point to its assigned cluster and a value closer to
−1 indicates a bad match (a much better match toward one of
the other clusters). A value of 0 indicates that the point could
equally well have been assigned to another cluster. The silhouette
plot thus provides an alternative view to how well the clustering
worked and how much overlap there is between clusters.

Figure 3B strongly confirmed our suspicions that the
deterministic clustering would be highly uncertain and should be
done probabilistically. Our decision for the number of template
maps to derive from the clustering of the EOG and EMG-cleaned
data was driven by these two criteria: where the “knee of the
curve” was, for the error curve in Figure 3A and looking at the
Silhouette plots for different possible values of k. We looked
at the Silhouette plots and the temp, and converged on k = 5
as that is where the knee of the curve is. Note that we have 4
template maps shown for the cleaned data (in Figure 6 below).
Two of the maps at k = 5 proved inversions of each other and as
maps are considered regardless of polarity, we combined them

(they had R = −0.998 for KM-real and R = −0.992 for KM-
imagined) into one, relabeling all the points of one as belonging
to the other cluster. We did this for both KM and FCM, as their
behaviors were highly similar. At k = 4, they did not converge
on the same 4 maps and at higher k, we find cluster centroid-
derived template maps get split into multiple maps, including
some noisier ones. For clarity, we show only the Silhouette plot
for k = 6 in Figure 3B. Note that while some of the issues of
microstate template derivation can be reduced with the modified
K-Means from (Lehmann et al., 1987), the results from that
algorithm and the FCM would be less meaningfully comparable.
The standard K-Means is able to identify the same underlying
microstate template maps, though it may sometimes consider
polarity-inverted maps to be two different templates. This can be
dealt with after the clustering by combining the two templates
and all the points assigned to one can be assigned to the other.
This is the approach we took.

Fuzzy C-Means to Probabilistically Cluster
the Data
We used the MATLAB Fuzzy Toolbox’s implementation
of the Fuzzy C-Means (FCM) algorithm (MATLAB, 2017,
MathWorks). The objective functionminimized is a modification
of the K-means objective function, as shown below:

J
(

X, m, k
)

=

N
∑

i=1

k
∑

j=1

Uij
m

∥

∥xi − cj
∥

∥

2

Compare this to the standard objective function to be minimized
in K-Means:

J
(

X, k
)

=

N
∑

i=1

k
∑

j=1

∥

∥xi − cj
∥

∥

2
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FIGURE 4 | (A) Above shows the ROC curves for the training set, validation set and the test set as derived from the input data in a randomized fashion according to a

75-15-15 split, for KM-real. We see that the MLP training was successful and good. (B) Shows the architecture of the softmax MLP used for all the MLP models here.

Note that the FCM objective function adds a membership
parameter m, which is a global parameter that specifies the degree
of fuzziness of the otherwise linear borders between clusters
(just as with standard K-means) and a membership matrix U,
which contains (after optimization/training of the algorithm),
for each data point to be clustered, the degree of membership
to every cluster center cj from the total of k clusters. For
m = 1, we have standard hard K-means, and for values of
m > 1, we have progressively fuzzier cluster separations, leading
to greater belonging to multiple clusters (and correspondingly
smaller values for any given cluster assignment to the given
point, especially for nearby and overlapping clusters). The
algorithm proceeds exactly analogously to standard KM, with the
same initialization (using the kmeans++ selection of the initial
centroids), and an iterative improvement of the clusters until
a small enough error is reached, at which point the algorithm
is considered to have converged. We repeated FCM 10 times
(10 replicates) for the final k = 5 runs (resulting ultimately in
k = 4 maps) and run it for a maximum of 1,000 iterations, or
until convergence. As with KM, each replicate converged well
before reaching the maximum number of iterations, always after
at most a few 100 iterations (the numbers of iterations needed
increase with increasing k, though stochastically so, due to the
randomized initialization of the cluster centroids). The replicate
with the lowest resulting objective function value reached during
optimization was chosen as the final model to feed into the
corresponding MLPs (FCM-imagined and FCM-real), exactly
analogously to the KM-based MLP training.

Softmax Multi-Layer Perceptron
Probabilistic Labeling of Microstates
Instead of clustering or running an effectively deterministic
decision on the state assigned to any given EEG time
point (by picking the template map that has the highest
correlation to the given time point), we used probabilistic neural

network models (softmax/logistic MLPs) to explore the following
questions

Is the most likely state label assigned with high certainty (>95%
probability) most of the time? How often is it or is it not? Can
we quantify in any new and interesting way the predictability of
the EEG microstate assignment to the mean GFP power?

The softmax MLP architecture was a standard feed forward
neural network with 1 hidden layer of size 15, and a softmax
output layer of width 4 (the 006Eumber of microstates ultimately
used) giving probabilistic output where all outputs sum to
1 (i.e., the output function is softmax). One network was
trained for each set of clustered images (for FCM-imagined,
FCM-real, KM-imagined, and KM-real). Each softmax-MLP
was trained using a cross entropy loss function and scaled
conjugate gradient descent using a 15-15-70 division of the
data accordingly for the test-set, validation-set and training-
set, as implemented within the MathWorks MATLAB software’s
Neural Network Toolbox (MATLAB, 2017, MathWorks). The
division is done by picking out data uniformly randomly using
the “dividerand” data division function in the Toolbox. Each
network was trained for a maximum of 2,000 epochs, or
until a stopping criterion (according to a sufficient increase
in the validation error after having been previously low)
was reached. We re-run the analysis a number of times
and all MLP models had finished training sufficiently well
before reaching the 2,000 epochs, after a few 100 epochs in
fact. We also manually confirmed that each trained network
had low training, test and validation errors, as well as a
reasonable confusion matrix, before proceeding. We show
a typical representative example of the Receiver Operator
Characteristic (ROC) curves indicating the success in the
training, validation and test sets of KM-real, shown in Figure 4

below.
Figure 4 above shows a representative ROC curve for the

cleaned data MLPs. All trained MLPs had highly similar
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successful ROC curves however, also in the non-EOG and EMG
cleaned data.

Finally, note that the hidden units used standard optimal tanh
nonlinearity and the output units had values that sum to 1,
performing a softmax classification.

Template Map Matching and Re-Labeling
Because both KM and FCM are randomized models, and the
cluster/template labels are assigned randomly, the resulting
templates, though they may be corresponding/matching, have
different nominal labels. To simplify analysis and comparison
between models, we correlated all templates between models and
sorted the maps according to their correlations. This gave us a
mapping between the generated templates from any two models.
We re-labeled all the training data for the MLPs according to
the template labels of the FCM-imagined labels. This choice was
arbitrary and any of the four model templates could have been
chosen as the one to label against. Since the map correlations
were very high, either identical with R = 1 or very close to that,
the model output to re-label against was not important. This
step was important so that the subsequent MLP outputs for all
4 models (FCM-imagined, FCM-real, KM-imagined, KM-real)
all had comparable outputs, with the same label for the same
microstate.

General Linear Models (GLMs) to Look at
Relationships between the GFP and MLE
Probability
Finally, we fed the GFP and the mean probability of the MLE
label from the MLPs into general linear models (GLMs), one for
each data and model condition (i.e., FCM-imagined, FCM-real,
KM-imagined, KM-real), to model any relationships between the
prediction probability of the most likely label assigned by the
MLP for each model and the corresponding data’s mean GFP.

RESULTS

Template Map Similarities and Differences
between Real and Imagined Motor
Movements between FCM and KM
In Figure 5 we show pre-cleaning derived template maps.
Note that though the maps differ from post-cleaning template
maps (shown in the next Figure 6), the non-noise maps are
nevertheless successfully found. This was the case for both KM
and FCM, as the correlations between the pre-cleaning derived
template maps is mostly very high between the 4 models—
i.e., between the FCM models, KM models and between the
corresponding FCM and KM models for real and imagined (see
Figure 7). The notable exception is map 3 in KM-imagined,
which does not correlate well to most of the maps in KM-real
or the FCM-derived maps. However, some relationships and
template maps did not stand out as strongly without EOG and
EMG-cleaning (see Figure 5, where multiple noise maps were
also found). Perhaps somewhat surprisingly though, most of the
same templates were found, as shown in Figure 5, without any
EOG or EMG artifact cleaning on the data.

Figure 6 shows the final 4 template maps found after EOG
and EMG cleaning of the data. The maps are re-arranged
according to maximal similarity to the canonical microstates
A, B, C, and D sequence. Note that in both pre- and post-
cleaning, we found the three of the templates often found and
reported in the literature (shown in Figure 5B) that we call here
the “canonical” templates, in particular because they are found
using canonical (i.e., currently and typically used deterministic)
clustering approaches. This is in particular the case for the
first, second and fourth maps for KM-real, KM-imagined, FCM-
real and FCM-imagined. Note that the labels on the Figure 6

correspond to the different labels assigned by each of the multiple
runs of the KM and FCM. However, map 3 in KM-imagined

FIGURE 5 | (A) Above shows the template maps found using FCM for imagined motor movements in pre-EOG and EMG cleaned data. Due to the very high

correlations between the templates found in imagined and real movement data, as well as between FCM and KM (see Figure 6), we only show these templates.

(B) was adapted from (Britz et al., 2010). Note that some of the found template maps are almost identical to the typical (what we call here “canonical”) maps found by

others. For example, our template 3 maps to A in 5b, 5 to C from 5b, 8 maps to B in 5b. Template map 4 may map to canonical template D. This shows that, perhaps

somewhat surprisingly, lack of EOG and EMG cleaning does not prevent the convergence to the underlying microstate template maps.
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FIGURE 6 | The figure shows all the EOG and EMG-cleaned maps as found by KM and FCM. Note that the maps are highly similar but KM-imagined in (B) did not

converge (even after multiple repetitions) on quite the same map as KM-real in (A) for one of them. During development of this work and prior to the results we report

here, we found this behavior of K-Means to occur often and rarely, if ever, for FCM, which is shown in (C,D).

(which is presented as the 2nd map in the sequence) is less clearly
relatable to any of the 4 canonical maps. It is perhaps similar to
and identifiable as map 10 in Yuan et al. (2012). We suggest an
explanation for this lack of correspondence of KM-imagined to
the canonical template B (bottom right to top left diagonal scalp
distribution) in the discussion.

Probabilistic Analysis from Fuzzy C-Means
and the Softmax MLPs
We investigated the differences in the probabilistic MLP outputs
between the probabilistic FCM-derived and deterministic KM-
derived sequences. In particular, the empirical cumulative
distribution function (ECDF) between the two shows that there
is considerably higher variability in the assigned probability to
the MLE label for any given time point (see Figure 8A below
for this result for the raw and uncleaned EEG and Figure 8B

for the cleaned EEG) in the FCM models than for the KM
models (obviously, due to the non-probabilistic input to the KM
MLPs). The relationship between imagined motor movements
and real motor movements shows a similar difference for both

FCM and KM—namely, that imagined motor movements tend
to show a somewhat lower predictability (lower probability of
the MLE state assigned). This effect is shown to be significant
in the FCM-derived sequence, as over 40% of the points have
a lower than 90% probability assigned to them in the artifact-
contaminated data. For both imagined and real motor data, FCM
reveals that up to 10% of the points are assigned a probability
of only 60% to the most likely state (MLE state). Typically, the
rest of the probabilities (in order to sum to 1 for any given
prediction) tend to fall into only one or at most two of the
other states, and so a probability of 50–60% implies that in
those times, the second most likely template may in fact be the
correct template to assign to the given time point. Cleaning of
EOG and EMG did result in more certain predictions, though
with significant uncertainties remaining in both KM and FCM-
derived sequences. Again, note that imagined movement data
lead to higher MLP prediction uncertainties for both KM and
FCM-derived microstate sequences. This helps affirm that the
results are not purely algorithm-dependent. In both cleaned and
uncleaned data, we find that FCM suggests higher uncertainties
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FIGURE 7 | Correlation matrices between the cleaned template maps. Sub-figure (A) shows the template correlations between FCM-imagined and KM-imagined.

(B) shows the template correlations between FCM-real and KM-real. (C) shows the template correlations between KM-imagined and KM-real. (D) shows the

correlations between FCM-imagined and FCM-real. Note that the single lowest template correlation is due to the map 3 from KM-imagined.

in the final assigned microstates. We discuss this the potential
implications of this in the discussion below.

We then performed a subject-level analysis, exactly
analogously to the group-level results presented above,
investigating the relationship between the probabilities and
the GFP. As expected, there are strong relationships between the
GFP and the uncertainties in the microstates found—indeed,
the relationship was more pronounced than we expected (see
Figure 9 below). This confirmed part of our initial supposition
that the GFP will have a strong effect on the predictability
and certainty in the microstate prediction. We also find
(unsurprisingly) that the variance in the MLE predictions on a
subject-level correlate very strongly with the mean GFP for the
respective subject. When plotted (not shown for brevity) we find
that the prediction certainty varied least for subjects with the
highest mean GFP levels (compare to Figure 9).

DISCUSSION

Both the probabilistic FCM and the deterministic KM-derived
microstate sequences found highly similar templates, and

subsequent prediction probabilities as inferred by the respective
MLPs. We found all 4 of the “canonical maps” shown in
Figure 5B, which have been shown in a combined EEG-fMRI
study by Britz et al. (2010) to be highly correlated to certain
cortical areas, as revealed by BOLD fMRI imaging. In particular,
map A taken from that study was found to negatively correlate
to BOLD signals from areas involved in phonological processing,
and partly positively correlate to primary visual areas. Map B
was found to be negatively correlated to non-primary (extra-
striate) visual areas. Map C was found to correlate positively
with BOLD activation in fronto-insular areas involved in body
representation and map D was negatively correlated with BOLD
activation in fronto-parietal networks involved in attentional re-
orienting and switching. We did not significantly investigate the
dynamics of these foundmicrostates as the focus of this study was
primarily on predictability of microstates using new probabilistic
methods. The few microstate switching dynamics that we did
look into suggested some small differences between imagined
and real motor movement microstate transition probabilities
(not reported) in FCM-derived sequences but no significant
differences in the KM-derived sequences. We plan to investigate
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FIGURE 8 | (A) Here shows the probability of the maximum likelihood estimate (MLE) as assigned by the MLPs in the uncleaned data and (B) shows the results for

the cleaned data. Note the difference between the FCM-derived probabilities of the microstate sequences for both real and imagined movements, compared to the

KM-derived sequences, in both the uncleaned/raw EEG to the left and the cleaned EEG on the right. This is likely a result of the KM not taking into account similarities

and overlap between microstate templates and the specific locations of the EEG time series where these overlaps should be taken into account. Noteworthy is also

that both methods do however find a very similar difference between imagined motor movements (black line and the blue line) and real motor movements (red and

green lines). The real motor movements are somewhat more predictable in both the raw EEG and the cleaned EEG.

the microstate dynamics using probabilistic methods in detail
in subsequent studies. We may restrict analysis according to
the mean GFP of the subject, or only focus on regions of
the EEG with high enough GFP, as Figure 9 indicates a very
strong relationship between the mean GFP of the subject and
the certainty in the predictability for both KM and FCM and
for both imagined and real motor movements. The effect is
weaker for imagined motor movements but still strong (see
the top 2 sub-figures in Figure 9). While we were surprised
by the strength of the effect, this does confirm the literature’s
long-standing focus now on deriving microstates only at GFP
maxima. However, our results here strongly suggest to us that our
original hypothesis about the actual GFP strength, as opposed to
the fact that we are looking at a GFP peak, is what influences
the SNR. We suggest that the current approach of deriving
microstates at GFP peaks is in fact introducing noise as it
is fully based on the local properties of the signal. What we
believe current and future researchers should do is focus on all
EEG time points that are above some threshold level of GFP,
though a careful and thorough analysis of the relative merits
of a local peak-detection based approach (as currently done in
the literature) and a global mean GFP threshold-based approach
should probably be done to confirm empirically that this is indeed
the case.

Performing probabilistic analysis on EEG data shows us that
it does not seem to perform any worse than deterministic
clustering and may in fact be somewhat better—e.g., see the
template maps found in Figure 6. We also find that FCM
suggests a higher uncertainty in microstate assignment than KM,
which may be due to the probabilistic nature of the method
as it distributes the certainty of microstate label assignment
at least to some degree, or it could also be in part that
some microstate assignments are inherently uncertain and these

uncertainties are being picked up better. Note for example in
Figure 3B that the Silhouette plot strongly suggests that the
cluster assignments, despite being “optimal” (in the sense that K-
Means seemed to have converged to the global optimum there),
are highly uncertain. This was already strongly suggestive that
the deterministic KM-driven clustering is far from “perfect.”
FCM Silhouette plots (not shown) show very similar Silhouette
plots, which is unsurprising, as the FCM algorithm works very
similarly to KM and the maps we converged to are overall highly
similar. It would be worthwhile to compare how the modified
KM algorithm typically used in the literature would fare here,
as well as an equivalently modified FCM clustering approach.
We hope to report back in subsequent work on how a modified
FCM performs compared to the analogously modified KM
algorithm.

We confirmed in another way that the variability in imagined
motor movement microstates is noticeably higher than in real
movement microstates. We used SOMs during the early stages of
this study to try to find on some other approach for empirically
determining the optimal number of clusters/templates. SOMs
can be argued to be an alternative method for microstate
analysis in that the technique was designed to re-represent high
dimensions data (in this case 64 dimensional) into 2 dimensions,
which is highly appropriate for the problem situation here.
This is particularly relevant to EEG data n that the channel
data, in particular when looked at topographically, as it is in
microstate analysis, is quasi-2D. We suggest therefore that the
SOM approach to clustering and deriving microstate template
maps is likely to prove fruitful and should be explored more
thoroughly. There are also interesting variants of SOMs, such as
growing neural gas or growing when required network (GWRN),
which could both be powerful additional alternative approaches
to be tried in future uses—as they have the ability to select the
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FIGURE 9 | The figure above shows the mean GFP (on the y-axis) vs. the mean probability of the maximum likelihood estimate state from the corresponding MLP (on

the x-axis), across subjects. The top (A,B) show these for imagined motor movements and the bottom (C,D) show these for real motor movements. Note that the

relationship is less noisy and stronger for the real motor movements for both FCM and KM. In particular, there are more subjects with significantly lower average

certainty in the microstate assigned in the imagined models than in the real motor movement models. We excluded one outlier point from the top two sub-figures in

the imagined motor movement data that had a mean GFP of close to 800, for a clearer comparison between the graphs.

required number of neurons/clusters in different ways than the
traditional cross-validation approach employed in the literature.

It is promising that the MLP predictability results correlated
so well with the mean GFP on a subject-level. This served as
a very strong “sanity check” that the neural-network driven
method is working well (though also the training, including some
amount of generalization ability, proceeded very successfully, as
Figure 3A indicates). Figure 9 shows that the prediction error
asymptotes at mean MLE probability of 1 (of course). This
asymptote that is neared but not quite reached at the highest
mean GFP level subjects suggests that all microstate assignments
are bound to be somewhat uncertain regardless of the method
employed. This approach to quantifying the relationship on
a subject-level between the GFP and the predictability of the
current microstate is, to the best of our knowledge, novel. For
one, it allows not only for a precise and fast assignment of
microstates but quantifying how certain we are that the brain is
in a given microstate at any given time point. In such cases where

any uncertainty exists (which is always the case, more or less),
that uncertainty should, in general, be quantified using some
type of probabilistic technique, as we have done. Interestingly,
this relationship is more variable for imagined motor movements
compared to real motor movements and, to a much lesser extent,
for FCM than for KM-derived sequences. We suggest that this
higher uncertainty in imagined motor movements is likely to be
due to the more exploratory nature of the cognitive state during
imagining of motor movements compared to the performing of
real motor movements.

Note that we did not make full use here of the probabilistic
nature of the FCM, as we used only the most likely (maximum
likelihood) labels derived from the FCM in training the
corresponding FCM MLPs. However, that in part defeats the
purpose of doing probabilistic clustering, as we are throwing
away significant information by focusing only on the most likely
template. There are a number of ways that the full probabilistic
vector of assignments from FCM can be fed to the FCM
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MLPs in order to make use of them—e.g., we can train non-
softmax regression MLPs using Mean Squared Error (MSE)
instead of cross entropy. While we have begun to explore this
approach, it is less directly comparable to the KM-driven MLP
training than what we have done here. However, it is also likely
to be more revealing of the underlying microstate dynamics
by making fuller use of the microstate uncertainties. Another
interesting venue to explore in delineating the variability in
microstate assignments would be to follow themodified K-Means
template cluster derivation by some probabilistic assignment
of microstates to the EEG time course—e.g., by running the
resulting vector of topographic correlations or the vector of
distance measure, derived using any of a number of non-linear
distance measures (e.g., using Dynamic Time Warping) through
a softmax, to derive probabilistic belonging to microstates. These
probabilistic vectors of template similarity to the current EEG
time point can then be fed, as described above, to train a multi-
output neural network to do regression with the chosen or
found templates as outputs and the belonging to each of them
as the target values. The use of neural networks for assigning
microstate labels as used here is, to the best of our knowledge,
novel. It opens a number of new avenues of potential research.
For example, we used a single hidden layer softmax MLP in
each case, but we are now investigating the use of deeper
networks in future work. Multiple layers may reveal underlying
hierarchical relationships, which deep neural networks are very
good at finding, especially for low-order polynomial hierarchical
relationships. Such relationships might reveal novel similarities
and differences between the templates and the underlying large-
scale functional networks. Also, we chose to model real and
imagined motor movements in separate neural networks, but
there are a number of combinations that we could have tried
as well. For instance, we could have modeled FCM and KM-
derived sequences together using the same MLP and investigated
the ability of one to model the peculiarities of the other method.
We could have done the same for real and imagined movements
as well. The latter could potentially suggest new correlations,
especially when combined with a deeper network, between
multiple cognitive states and how these correlations interact. We
also did not look into the different MLP dynamics in time—is the
predictability lower or higher earlier or later on in a task? Finally,
we did not explore how probable the most likely next microstate
label is given the current microstate label. Or: how many future
steps can we predict with somewhat certainty (e.g., probability >

0.5) given the current microstate label and its certainty. Because
EEG and EEG microstates are both known to exhibit long-range
correlations and 1/f dynamics (Shew et al., 2009; Fagerholm et al.,
2015), reflecting the underlying large-scale BOLD-imaged brain
networks that are now thought to be the same phenomenon,
we expect that despite the highly variable and non-stationary
nature of the EEG signal, we would find diminishing but non-
trivial predictive ability many time steps in the future. The use
of probabilistic MLPs gives us a powerful and flexible method
for exploring these questions. We are now investigating some
of these issues, but wanted to share some of our methodological
results. The data set used is large and of high quality, and this
is helpful in training deeper neural networks or other models

with many parameters and we recommend use of this data set.
By performing multiple studies on the same data set, we can
also more easily compare results with others. We suggest that
this one would be a valuable reference data set, given the high
number of relatively clean data points and as such will likely be
using it for future microstate research ourselves. Furthermore,
we decided on presenting both uncleaned/raw EEG results and
the results from the cleaned/preprocessed data. The reason for
this was to suggest that cleaning may not be a necessary step
for microstate analysis if the right methods are used, which can
disentangle and assign template maps well enough regardless.
While we did not explore this point in detail, we show that most
of the dominant scalp topographies found, shown in Figure 6, are
also found in Figure 5 from the uncleaned data. Perhaps similarly
to how deep neural networks allow for automated feature
extraction without preprocessing and feature engineering, neural
networks may lead to a more automated microstate analysis
framework. Additionally, one particular interest of ours is that
of attempting to compute microstates from a very small number
of channels (e.g., a few, for example 5, as found in some
cheap and now widely-available commercial EEG headsets). Such
an approach would be both informative and practically useful
toward real-world applications. This would significantly increase
the real-world potential application of microstates. Deep and
other neural network architectures may help in this quest by
virtue of its powerful predictive and flexible abilities. While
(Khanna et al., 2014) showed that group-level microstates are
reliably identifiable with as few as 8 electrodes, the variability
of the microstate templates was far higher when the maps were
computed on a subject-level. As we propose in this paper, it is
also not clear that “reliability” of the maps found with standard
methods is We are now also exploring the use of this MLP-based
approach by using dense EEG (e.g., 64 channels as in here) but
attempting to model and predict microstate dynamics with only a
small subset of the channels and comparing the performance and
reliability between doing this with the raw EEG and with cleaned
EEG, using softmax deep neural networks.

One potential translational use of microstates in conjunction
with quasi-automatable real-time closed-loop learning
machine approaches such as reinforcement learning (RL).
A RL algorithm’s current state can be defined based on the
current microstate, providing a somewhat directly interpretable
definition of the states used in the RL system. Since RL and
microstate classification (especially with pre-trained neural
networks) can both run efficiently and in real-time, this suggests
a use of EEG microstates for more interpretable neurofeedback
BCI or BMI applications (in terms of being representative of
large-scale functional network activity as observed also through
fMRI, while having obvious advantages to not being fMRI). If
decisions are to be made based on the current global brain state
(e.g., for neurofeedback or BCI), it would be advantageous if they
were made probabilistically, rather than deterministically, given
that there is considerable uncertainty in microstate classification
and dynamics—and at least some of this uncertainty may be
informative of the underlying behavioral and neural dynamics,
as suggested by some of the differences between imagined and
real motor movements found here. In the present work, we
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found rare but existent occasions when the certainty in the most
probable label is around or even below 0.5. If critical decisions
are to be made based on brain state, they should not be made
carelessly in a low certainty state and the probability of the
current microstate label being correct should be taken into
account. This is especially relevant for BCI applications—and
most notably for strongly mission or life-critical real-world use
cases.

Due to some of the notable differences in the microstate
definition between probabilistic FCM vs. deterministic
KM, we suggest that future microstate studies at least use
multiple clustering methods in parallel, to compare how
the microstate behaviors are affected. “Small” differences
in clustering algorithms can potentially have cumulatively
significant effects in real-world situations. Using probabilistic
methods to both cluster and assign microstates should lead
to greater elucidation of the complex relationships between
microstates and other measures of brain dynamics (including,
but not limited to, BOLD, EEG cascades, mean GFP or, roughly
speaking, baseline EEG power variability, etc.). While many
methods will produce similar microstate sequences, superficially,
there may be “hidden” patterns in the data that can only be
shown using one method (here Fuzzy C-means) as opposed
to another (e.g., K-means). FCM is a natural extension and
modification of KM and the algorithm proceeds very similarly
to the K-Means algorithm, though it has a somewhat higher
running time and complexity than KM. An interesting alternative
that we explored the use of was Gaussian Mixture Models, but
it involves fitting more parameters and we could not get this
approach to perform sufficiently well to be compared against
KM. One approach to initialize the probabilistic GMMs is by
using the KM or FCM-derived centroids and variability inferred
from them as the means and variance-covariance matrices
for the GMM initialization. This is what (Lucia et al., 2007)
did in deriving topographic views of event-related potentials
from individual trials. Unfortunately, they assigned microstates
using the maximum posterior probability—i.e., the most likely
component of the trained GMM, thereby discarding most of
the probabilistic model’s usefulness. We did not pursue GMM
use in detail as the technique is less directly comparable to
KM. Nevertheless, such a probabilistic approach is a step in the
right direction. While our FCM-driven approach has the same
issue as their GMM maximum posterior probability template
assignment, one “redeeming” feature of our work here is that the
subsequent assignment and analysis is fully probabilistic.

To summarize, one possible picture that has emerged from
this probabilistic approach is that imagining motor movements
involves blurrier microstates and transitions between these. We
suggest that this is a general feature of cognitive states closer
to the exploratory resting state-like modes of brain dynamics,
as it is well known that, in general, resting state dynamics
involve faster changes and are closer to critical dynamics
than more focused cognitive states. Further careful microstate
studies will clarify the “hidden dynamics” of microstates and
their relationship to other neural phenomena and probabilistic
derivations of microstate templates as well as probabilistic
assigning and modeling microstate dynamics is likely to help in
this. While microstates have historically always been assigned
in a mutually exclusive fashion—i.e., that a given EEG time
point is either in one microstate or another—this is obviously
a gross oversimplification. While we do not suggest that a
global dominant brain state does not exist, as suggested by all
the previous microstate research, quantifying the uncertainties
involved in this binary assignment decision is surely going to
prove informative in better delineating the underlying brain
microstate dynamics. We therefore finish by highlighting the
importance of using neural networks as their flexibility and
computational simplicity, especially post-training, will allow for
new real-time and real-world uses of EEG microstates. It is also
conceivable that the use of deeper neural networks may find
hidden hierarchical dynamics of the microstates. We leave this
last and other issues we have raised to be examined in future work
by ourselves and others.

ONLINE CODE REPOSITORY
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