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Error amplification (EA) feedback is a promising approach to advance visuomotor skill.
As error detection and visuomotor processing at short time scales decline with age,
this study examined whether older adults could benefit from EA feedback that included
higher-frequency information to guide a force-tracking task. Fourteen young and 14
older adults performed low-level static isometric force-tracking with visual guidance of
typical visual feedback and EA feedback containing augmented high-frequency errors.
Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also,
the discharge behaviors of motor units and pooled motor unit coherence were assessed
following the decomposition of multi-channel surface electromyography (EMG). EA
produced different behavioral and neurophysiological impacts on young and older
adults. Older adults exhibited inferior task accuracy with EA feedback than with
typical visual feedback, but not young adults. Although stabilogram diffusion analysis
revealed that EA led to a significant decrease in critical time points for both groups,
EA potentiated the critical point of force fluctuations <1F2

c>, short-term effective
diffusion coefficients (Ds), and short-term exponent scaling only for the older adults.
Moreover, in older adults, EA added to the size of discharge variability of motor units
and discharge regularity of cumulative discharge rate, but suppressed the pooled motor
unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between
open-loop and closed-loop controls for force-tracking. Contrary to expectations, the
prevailing use of closed-loop control with EA that contained high-frequency error
information enhanced the motor unit discharge variability and undermined the force
steadiness in the older group, concerning declines in physiological complexity in the
neurobehavioral system and the common drive to the motoneuronal pool against force
destabilization.

Keywords: motor control, force fluctuations, visuomotor processing, aging, electromyography

Abbreviations: ∆tc, critical point of time; <1F2>, mean-squared value of the force fluctuations; <1F2c>, critical point
of force fluctuations; Ds, short-term effective diffusion coefficient; Dl, long-term effective diffusion coefficient; EEG,
electroencephalography; EMG, electromyography; FZ, Fisher’s Z value; Hs, short-term scaling exponent; Hl, long-term
scaling exponent; ISIGAV, grand average of mean inter-spike interval; ISI CVGAV, grand average for coefficient of variance
of inter-spike interval; MSE, multi-scale entropy; MVC, maximal voluntary contraction; RE, real error; RF, real force;
RMS, root mean square; T, target signal; VE, visualized error; VF, visualized force; ZC0–4 HZ, motor unit coherence
peak in the range of 0–4 Hz; ZC13–35 HZ, motor unit coherence peak in the range of 13–35 Hz.
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INTRODUCTION

Impairment of force steadiness control is linked to unsafe
visuomotor tasks in older adults (Lodha et al., 2016). For
degenerative changes in the neuromuscular system, force output
of the elderly manifests with greater size (Vieluf et al., 2015)
and regularity (Vaillancourt and Newell, 2003; Sosnoff and
Newell, 2008) in force fluctuations. An age-related increase
in force fluctuations indicate impairment of precision force
control for force production (Temprado et al., 2017), partly
because prolonged delay in a feedback loop interferes with
timely responses to tracking deviation (Kennedy and Christou,
2011; Tracy et al., 2015). The force regularity increment
with aging supports a loss of physiological complexity in
the neurobehavioral system (Vaillancourt and Newell, 2003;
Rey-Robert et al., 2011), pertaining to ineffectiveness of
using visual information for force gradation (Ofori et al.,
2010). As force fluctuations reflect an additive accuracy
control mechanism to remedy trajectory deviations (Slifkin
et al., 2000), dimensional changes in force fluctuations with
advanced age links to a decline in error detection with
feedback and/or feedforward processes (James and Kooy, 2011)
depending on the environmental contexts (Morrison and
Newell, 2015). From the neurophysiological aspect, age-related
increase in force fluctuations is primarily attributable to
increase in motor unit discharge variability (Laidlaw et al.,
1999; Tracy and Enoka, 2002; Tracy et al., 2005), underlying
altered properties of spinal motor neurons and greater
variability of descending drive to motor neurons (Hunter et al.,
2016).

Several recent studies have claimed that virtually displaying
worse outcomes, or error amplification (EA) feedback, promises
to better optimize a visuomotor task than does actual feedback.
Visual EA is thought to inflate response conflicts and facilitate
attentional focus on the motor task via error-monitoring
networks (Calhoun et al., 2002). The EA feedback has been
shown to improve point-to-point visuomotor tasks for healthy
elderly (Bouchard et al., 2015) and neurological patients
(Abdollahi et al., 2014), as well as a continuous static force-
tracking task for young adults (Hwang et al., 2017). For young
adults during static isometric contraction, visual EA could
better stabilize force output with the enhanced complexity of
force fluctuations, corollary to a larger coefficient of variation
for inter-spike intervals and a greater motor unit coherence
at 13–35 Hz (Hwang et al., 2017). In addition, EA produces
a strategic feedback-feedforward mode shift during sinusoidal
force tracking (Chen et al., 2017). Visual EA suppressed the
phasic discharge of motor units with the target signal, in
favor of the use of a feedback process to steer force control.
However, we must not be overoptimistic toward EA, especially
when the older adults perform a continuous visuomotor task.
The reason is apparent that older adults might not be able to
exploit rich spatial information in visual feedback to optimize
force control (Kennedy and Christou, 2011; Jordan et al., 2013;
Park et al., 2017). In fact, age differences in force variability
appeared to be minimal in the absence of visual feedback
(Tracy et al., 2007). It cannot be denied that the EA could lead

to information overload for the elderly considering impaired
visuomotor processing. Besides, older adults are less capable
of inhibiting functionally-irrelevant information (noise) that is
concurrently exaggerated by amplification process (James and
Kooy, 2011).

As the effect of visual EA on force control for the older
adults could not be emanated directly from the theoretical
realm, this study aimed to examine whether EA feedback could
improve the force control of a low-level static force task for
healthy elderly participants in both behavioral and neural aspects.
In particular, we specified paradigm shifts in the feedback
and feedforward processes via force fluctuation dynamics and
characterized variations in motor unit discharge with multi-
electrode surface electromyography (EMG) technology and
decomposition procedures. When visual feedback consisted
of rapid changes in error information (such as involuntary
tremulous movements), unlike the young adults, it was
hypothesized that: (1) the elderly might not benefit from EA
to stabilize force on account of their relative reliance on a
degenerated feedback system; (2) the elderly might exhibit
enhancement of discharge variability and reduction in discharge
complexity of motor units with high-frequency EA; and (3) the
elderly using high-frequency EAmight exhibit a decline in motor
unit coherence at 13–35 Hz critical to maintain steady-state force
control with precision. Our findings are of values for the use
of video tracking systems to train visuomotor skills for older
adults.

MATERIALS AND METHODS

Participants
Fourteen young adults (7 males and 7 females; mean age:
24.9 ± 0.7 years) and 14 older adults (6 males and 8 females;
mean age: 68.2 ± 1.0 years) volunteered to participate in
this study. All participants were right-handed with normal
or corrected vision, and none had symptoms of neurological
or neuromuscular diseases. This study was approved by
Institutional Review Board (IRB) at the National Cheng Kung
University (NCKU) Hospital, Taiwan. All subjects gave and
signed written informed consent in accordance with the
Declaration of Helsinki.

Experimental Procedures
The participants performed force-tracking tasks under error
feedback conditions with a normal amplification factor (the
control condition) and a high amplification factor (the
error enhancement condition). Each condition contained three
experimental trials interleaved with 3-min pauses, and all
experimental trials were executed in a randomized order. The
force-tracking tasks required the participants to couple a static
low-level force (20% of maximal voluntary contraction (MVC))
with isometric index abduction on a 27-inch monitor (spatial
resolution: 1920 × 1080 pixels). Prior to the experiment, the
MVC of the first dorsal interosseus was measured after three 5-s
contraction trials separated by 3-min pauses. The highest force
value of each trial was averaged to obtain the MVC.
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After a rest period of 20 min of the MVC test, all the
participants were given three practice trials in each feedback
condition. They were instructed to produce an isometric force
by pushing their index finger against a force transducer (Model:
MB-100, Interface Inc., Atlanta, GA, USA) connected to a
custom-made amplifier (gain = 10, cut-off frequency = 20 Hz).
The spatial resolutions (25 pixels per 1% MVC) of the display
target signal and force output were identical for the two
experimental conditions. The representation of visual resolution
was designed to minimize the effects of visual angle and
the group-dependent strength difference on visual information
(Kennedy and Christou, 2011). The participants were instructed
to reach the target force within 2 s after a latent period of 3 s and
then to maintain the force at 20% of MVC for 34 s (Figure 1). It
took 44 s to complete an experimental trial. The time window
of interest was the 7th to 37th seconds of the experimental
trial, during which force output was presumed to be relatively
stable. The participants were guided with perceived errors in
the control and EA conditions (Chen et al., 2017; Hwang et al.,
2017). In the EA condition, the visualized force (VF) output was
mathematically transformed so that the size of the visualized
error (VE) was virtually augmented by 100% as compared to
real error (RE) (VE = 2∗RE) (Figure 1). The use of EA factor
of two was empirically determined in the laboratory, because
an excessive EA factor could cause visual perceptual conflicts
and visual information overload. In the control condition, the
participants were provided with RE (VE = RE). However, the
participants in this study could perceive more execution errors
of higher frequency components than could participants in our
previous work, which did not include force components above
6 Hz to calculate the VEs. The inclusion of higher frequency
components (6–20 Hz) in this study was expected to increase the
information load in the EA condition. The real force (RF) output
was sampled at 1 kHz with a custom program on a LabVIEW
platform (National Instruments Inc., Austin, TX, USA).

Electromyographic Recordings and
Decomposition
Muscle activity of the first dorsal interosseus was recorded with
a multi-electrode surface EMG system (Bagnoli sEMG system,
Delsys Inc., Natick, MA, USA). The analog EMG signals from
each pin-sensor were amplified (gain = 1000) and filtered with a
bandwidth of 20–450 Hz (De Luca et al., 2015a). A high sampling
rate of 20 KHz was used to avoid phase skew across EMG
channels (De Luca et al., 2006). The binary spike events of motor
unit discharge that coded the activations of all motor units with
values of 0 or 1 were characterized after EMG decomposition
using EMG works v.4.1 (Delsys Inc., Natick, MA, USA),
according to a previous proof-of-principle using an artificial
intelligence framework (De Luca et al., 2006; Nawab et al.,
2010). The most recent studies have repeatedly shown that the
computation algorithm can produce convincing decomposition
results that discriminate overlapping action potentials for static
isometric contraction (Nawab et al., 2004; De Luca et al.,
2015b) via independent verification methods (Hu et al., 2013).
The validity of the EMG decomposition for each motor unit

was assessed with the Decomposition-Synthesis-Decomposition-
Compare test (De Luca et al., 1982, 2006), and motor units of
low decomposition accuracy (<90%) were discarded. Previous
studies have reported that the averaged decomposition accuracy
using the same algorithm ranges from 92.5% to 97.6% (De Luca
et al., 1982, 2006).

Data Analysis
The force signal was conditioned with a low-pass filter (cut-
off frequency: 6 Hz). The resulting force was susceptible to
most visuo-motor processes (Slifkin et al., 2000; Vaillancourt
et al., 2002) and down-sampled at 100 Hz (Figure 1). In
terms of % MVC, the total error was the root mean square
(RMS) value of mismatches between the target signal and
RF output. The constant error was the difference between
the averaged force output and the target signal. The size
of force fluctuations was defined as the RMS value of the
RF output after removal of a linear trend. Force fluctuations
were assumed to be wide-sense stationary (time-invariant mean
and auto-covariance; Collins and De Luca, 1993), so the
stabilogram diffusion analysis was used to characterize the force
fluctuation dynamics by the power-law relationship between
the mean-squared value of the force fluctuations (<1F2>)
and the time interval (∆t) in which these values occurred.
The stabilogram diffusion analysis can detect parametric shifts
of open-loop and closed-loop controls for a posture system
due to aging (Addamo et al., 2010; Toosizadeh et al., 2015)
and visual information changes (Collins and De Luca, 1995).
The Stabilogram diffusion analysis was calculated by using
the following equation:

〈
1F2

〉
=

〈
[x (t +1t)− x (t)]2

〉
, where

<•> indicates the mean of the time series. The computation
of ∆F2 was repeated with increasing ∆t values ranging from
0 s to 5 s. The diffusion plot was the mean square force
fluctuations <1F2> against the time intervals ∆t (Figure 2A).
The regression slopes for the short-term and long-term regions
of the diffusion plot were two effective diffusion coefficients (Ds
and Dl) that described the stochastic activity of the open-loop
and closed-loop force control mechanisms, respectively. The
critical point of time (∆tc) was the intersection of the two
regression lines of the diffusion plot, and variations in the
critical point of force fluctuations (<1F2c>) reflected a paradigm
shift between open-loop and closed-loop behaviors (Collins
and De Luca, 1993; Toosizadeh et al., 2015). The short-term
and long-term scaling exponents (Hs and Hl) were linear
fits of the log–log plot of the stabilogram diffusion analysis
(Figure 2B). A scaling exponent greater than 0.5 indicates that
the system is governed by the open-loop process and that the
data series of the past and future are positively correlated (Collins
and De Luca, 1993, 1995). Conversely, a scaling exponent
smaller than 0.5 indicates that the data series of the past and
future are negatively correlated, as regulated by the closed-loop
process.

Decomposition processing on the overall EMG data of 44 s
was used to identify binary spike trains that coded the timing
of motor unit discharges (Figure 3). The mean inter-spike
interval of a motor unit was the averaged time intervals of
the motor unit spike train in the time window of interest,
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FIGURE 1 | Illustration of modulation of error augmentation feedback. With mathematical transformation, the VF outputs in the error amplification (EA) condition
virtually double the size of the real execution error displayed in the control condition. In the control condition, the participant was provided with real error (VE = RE), as
the VF output was identical to RF output. In the EA condition, the force output displayed on the monitor (VF) was transformed with VF = 2∗RF − T. The size of the
perceived tracking error was augmented by two times in the EA condition (VE = T − VF = T − (2∗RF − T) = 2∗(T − RF) = 2∗RE). For a given experimental trial, the
rightest plot displays VF at about 25th second in the control (black line) and EA (blue line) conditions. VF, visualized force; VE, visualized error; RF, real force; RE, real
error; T, target signal.

and the grand average of mean ISI (ISIGAV) was the average
mean inter-spike interval for all motor units. The variability
of the inter-spike interval for an individual motor unit was
characterized by the coefficient of variation (ISI CV). The
grand average of ISI CV (ISI CVGAV) was the population
mean of the ISI CV of all motor units. As force behaviors are
tuned to pooled motor unit discharge, we estimated cumulative
discharge rate by convolution of the cumulative spike trains
of all identifiable motor units with a Hanning window of
400 ms in duration (Figure 3). The resulting low-frequency
cumulative discharge rate reflects an effective neural drive
to a muscle, and force fluctuation dynamics can be largely
featured with cumulative discharge rate during static isometric
contraction (Negro and Farina, 2012; Farina et al., 2016). The
size and complexity of the cumulative discharge rate variability
was determined with RMS and multi-scale entropy (MSE)
following down-sampling process at 100 Hz and removal of
its linear trend. The MSE accounts for complexity of signals
over different time scales, proposed by Costa et al. (2005).
Based on the sample entropy, this method quantifies the
regularity of a time series via a multiple coarse-grained time
series by the scale factor τ . For a one-dimensional time series
of cumulative discharge rate {xi. . . xn}, MSE first constructs
multiple coarse-grained time series by the scale factor τ .
y(τ )j = 1/τ

∑jτ
i = (j−1)τ+1

xi, 1 ≤ j ≤ N/τ . N is the number of
data points in the time series. For scale one, the time series {y(1)}

is simply the original time series. The length of each coarse-
grained time series is equal to the length of the original time series
divided by the scale factor τ . Then, sample entropy was applied
to the resulting coarse-grained time series plotted as a function
of the scale factor τ , or MSE curve. The complexity of cumulative
discharge rate was denoted as the areas (MSE1–10 and MSE11–20)
under the MSE curve for short (1–10) and long (11–20)
time scales. Each time scale was 10 ms, in correspondence
with the down-sampling rate. The mathematical formula of

sample entropy was SampEn (m, r,N) = − log
(∑N−m

i = 1 Ai∑N−m
i = 1 Bi

)
,

where r = 15% of the standard deviation of the force channel,
m is the length of the template (m = 2), and Ai is the
number of matches of the ith template of length m + 1 data
points, and Bi is the number of matches of the ith template
of length m data points. N represented the number of data
point of the time series (Pethick et al., 2015). A lower value
represents greater regularity of force characteristics. In addition,
we calculated a single coherence spectrum between a given
pair of cumulative spike trains of five motor unit spike trains
(Rosenbaum et al., 2011; Farina et al., 2016). The computations of
pooled motor unit coherence were repeated and averaged across
500 random combinations of the single coherence spectrum from
all identifiable motor units. The magnitude squared coherence
values (C) were estimated with two unfiltered composite spike
trains using a 1-s Hanning window and an overlap of 90%

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Chen et al. Error Amplification Feedback for Elderly

FIGURE 2 | Diffusion plot. (A) The left plot is a typical linear-linear diffusion plot. The computed critical point (∆tc, <1F2
c>), short-term effective diffusion coefficient

(Ds), and long-term effective diffusion coefficient (Dl) are labeled. The critical point indexes the turning point of variation in open-loop and closed-loop control of the
stochastic dynamics for force fluctuations. The middle and right plots are pooled linear-linear diffusion plots of the young and old adults. (B) The left plot is a typical
log-log diffusion plot. The computed short-term scaling exponent (Hs) and long-term scaling exponent (Hl) are labeled. The middle and right plots are pooled log-log
diffusion plots of the young and old adults.

(Castronovo et al., 2015). The coherence values were converted
to Fisher’s Z (FZ) values (Amjad et al., 1997) to minimize an
intrinsic bias of the coherence estimates from each segment
profile following corrective subtraction of the mean coherence
between 100 Hz and 500 Hz (Castronovo et al., 2015). FZ
value is formulated as: FZ = tan−1

(√
C
)
. Following the z

transformation, we subtracted the mean coherence between
100 Hz and 500 Hz from each coherence profile because the
mean coherence contained no significant coherence (Witte et al.,
2007; Nawab et al., 2010). A pooled motor unit coherence, which
reflects common drive to the motoneuronal pool in the spectral
domain, contained two prominent spectral peaks in the range
of 0–4 Hz (ZC0–4 Hz) and 13–35 Hz (ZC13–35 Hz; Hwang et al.,
2017). All of the force variables and discharge variables of the
three experimental trials in the control and EA conditions were
calculated and averaged subject-by-subject. Signal processing
and statistical analyses were completed usingMatlab (Mathworks
Inc., Natick, MA, USA).

Statistical Analysis
The MVC values of index abduction of the young and older
groups were compared with independent t statistics. With
appropriate variable transformation to satisfy two-way repeated-

measures analysis of variance (ANOVA) was used to examine
the task effect (control vs. EA, within-subject factor) and group
effect (young vs. older, between-subjects factor) on the task/force
fluctuation variables, variables of stabilogram diffusion analysis,
and motor unit discharge variables. The level of significance
was 0.05. Post hoc testing was conducted in the presence of
significant interaction or main effects. A particular interest of
this study was differential modulations on force and motor
unit behaviors between the young and older adults due to EA.
Bonferroni corrections were used for determining the alpha level
of significance for post hoc tests (p = 0.0125). Data are presented
as group means ± 1 standard error of the mean. All statistical
analyses were performed in IBM SPSS Statistics (v19).

RESULTS

Task Error and Force Characteristics
Table 1 shows a summary of the results of performance variables
for the young and older adults. Constant error was independent
of both task and group effects (p > 0.05). In contrast, total error
of force-tracking was subject to task and group effects (p< 0.05),
with significant task × group interaction (p = 0.013). Post hoc
analysis indicated that only the older group exhibited a greater
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FIGURE 3 | Feature extraction of cumulative discharge rate. Cumulative discharge rate is summation of all motor unit spike trains following smoothing process and
removal of linear trend. The size and complexity of cumulative discharge rate are represented with root mean square (RMS) and multi-scale entropy (MSE).

total error in the EA condition than in the control condition
(p = 0.002). Also, total error of the older group was larger than
that of the young group in the EA (p < 0.001) condition. The
size of force fluctuations was also subject to both task and group
effects (p < 0.05), with a significant task × group interaction
(p = 0.019). Post hoc analysis indicated that only the older group
exhibited a greater size of force fluctuations in the EA condition
than in the control condition (p < 0.001). The size of force
fluctuations of the older group was larger than that of the young
group in the EA (p = 0.001) condition.

Pooled linear-linear and log-log plots of stabilogram diffusion
analysis are shown in Figures 2A,B, respectively. Table 2
summarizes the results of ANOVA statistics for all variables
of stabilogram diffusion analysis. ∆tc varied significantly with
manipulation of error factor (p = 0.001), and ∆tc of the older
(p = 0.008) groups was smaller in the EA condition than

in the control condition. <1F2c> and Ds were subject to a
significant effect of task × group interaction (p < 0.05). Post hoc
analysis further revealed that <1F2c> and Ds were differently
modulated for the two groups. <1F2c> and Ds were greater
in the EA condition than in the control condition only for the
older adults (<1F2c>: p = 0.004; Ds: p = 0.001). Hs was a
function of task effect (p = 0.005), and post hoc test indicated
EA enhanced Hs of the older group (p = 0.002). None of the
<1F2c>, Ds, and Hs of the young adults were dependent on the
manipulation of EA (p > 0.05). Besides, Dl and Hl did not vary
with the main effects and interaction effects of task and group
(p> 0.05).

Discharge Patterns of Motor Units
The average numbers of decomposed motor units for older
adults in the control and EA conditions were 26.7 ± 1.1 and

TABLE 1 | The results of analysis of variance (ANOVA) statistics to contrast performance variables between the young and old groups in the control and EA conditions.

Task performance Control EA Statistics

Constant error Young − 0.203 ± 0.041 − 0.187 ± 0.027 Group: F(1,26) = 0.41, p = 0.529, η2 = 0.015;
Task: F(1,26) = 0.01, p = 0.960, η2 = 0.003

(% MVC) Old − 0.219 ± 0.063 − 0.249 ± 0.042 Group × Task: F(1,26) = 1.15, p = 0.293,
η2 = 0.005

Total error Young 0.492 ± 0.036 0.480 ± 0.032 Group: F(1,26) = 9.72, p = 0.004, η2 = 0.261;
Task: F(1,26) = 5.29, p = 0.030, η2 = 0.017

(% MVC) Old 0.687 ± 0.069 0.842 ± 0.101∗∗ Group × Task: F(1,26) = 7.18, p = 0.013,
η2 = 0.023

RMS of force fluctuations Young 0.404 ± 0.033 0.415 ± 0.033 Group: F(1,26) = 7.94, p = 0.009, η2 = 0.221;
Task: F(1,26) = 7.88, p = 0.009, η2 = 0.032;

(% MVC) Old 0.572 ± 0.064 0.753 ± 0.102∗∗∗ Group × Task: F(1,26) = 6.24, p = 0.019,
η2 = 0.025;

Total error is jointly determined by constant error and the size of force fluctuations. ∗∗EA > control, p < 0.005; ∗∗∗EA > control, p < 0.001.
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TABLE 2 | Parameters of stabilogram diffusion analysis of static force tracking for young and old groups in the control and EA conditions.

Control EA Statistics

1tc (s) Young 0.393 ± 0.016 0.359 ± 0.016 Group: F(1,26) = 0.68, p = 0.417, η2 = 0.024; Task: F(1,26) = 13.73, p = 0.001, η2 = 0.064
Old 0.411 ± 0.024 0.369 ± 0.028† Group × Task: F(1,26) = 0.14, p = 0.711, η2 = 0.000

<1F2
c> (%MVC2) Young 0.401 ± 0.064 0.359 ± 0.016 Group: F(1,26) = 1.18, p = 0.287, η2 = 0.038 ; Task: F(1,26) = 4.37, p = 0.046, η2 = 0.051

Old 0.397 ± 0.069 0.620 ± 0.084∗∗ Group × Task: F(1,26) = 5.71, p = 0.024, η2 = 0.067
Ds (%MVC2/s) Young 0.587 ± 0.106 0.572 ± 0.106 Group: F(1,26) = 1.36, p = 0.254, η2 = 0.043 ; Task: F(1,26) = 6.87, p = 0.014, η2 = 0.079

Old 0.582 ± 0.124 1.068 ± 0.191∗∗ Group × Task: F(1,26) = 5.77, p = 0.024, η2 = 0.067
Dl (%MVC2/s) Young − 0.005 ± 0.004 − 0.004 ± 0.003 Group: F(1,26) = 0.01, p = 0.919, η2 = 0.000; Task: F(1,26) = 0.78, p = 0.384, η2 = 0.028

Old 0.000 ± 0.002 − 0.008 ± 0.004 Group × Task: F(1,26) = 2.55, p = 0.122, η2 = 0.092
Hs (%MVC2/s) Young 0.939 ± 0.004 0.941 ± 0.004 Group: F(1,26) = 0.51, p = 0.483, η2 = 0.018; Task: F(1,26) = 9.17, p = 0.005, η2 = 0.050

Old 0.938 ± 0.004 0.949 ± 0.005∗∗ Group × Task: F(1,26) = 0.51, p = 0.483, η2 = 0.020
Hl (%MVC2/s) Young − 0.025 ± 0.009 − 0.018 ± 0.009 Group: F(1,26) = 0.35, p = 0.560, η2 = 0.012; Task: F(1,26) = 0.44, p = 0.514, η2 = 0.014

Old 0.001 ± 0.013 − 0.024 ± 0.010 Group × Task: F(1,26) = 3.55, p = 0.071, η2 = 0.112

∆tc, critical point of time; <1F2c>, critical point of force fluctuations; Ds, short-term effective diffusion coefficients; Dl, long-term effective diffusion coefficients;
Hs, short-term scaling exponent; Hl, long-term scaling exponent. †EA < control, p < 0.01; ∗∗EA > control, p < 0.005.

28.0 ± 1.4, respectively. The average numbers of decomposed
motor units for young adults in the control and EA conditions
were 27.0 ± 1.0 and 27.4 ± 1.2, respectively. Table 3 shows the
statistical results of ANOVA for motor unit discharge variables.
Both ISIGAV and ISI CVGAV were subject to marginally-
significant effect of task × group interaction (ISIGAV: p = 0.058;
ISI CVGAV: p = 0.050). To be prudent, post hoc analysis revealed
that only the discharge variables of the older adults depended
on the task effect, with significantly greater ISIGAV (p = 0.005)
and ISI CVGAV (p = 0.007) in the EA condition than in the
control condition. The discharge variables of the young adults
were insensitive to the task effect (p > 0.05). ISI CVGAV of the
older adults was greater than ISI CVGAV of the young adults in
the EA condition (p = 0.005).

Figure 3 shows a typical example of cumulative discharge
rate from an EA trial of an older adult. The contrasts of size
and complexity of cumulative discharge rate variability between
the young and older adults in the control and EA conditions
are shown in Figures 4A–C. In terms of RMS value, the RMS
of cumulative discharge rate was subject to task (F(1,26) = 4.95,
p = 0.035, η2 = 0.163) and group (F(1,26) = 5.93, p = 0.022,
η2 = 0.058) effects, with a significant interaction effect of group
and task (F(1,26) = 5.61, p = 0.026, η2 = 0.066). Post hoc analysis
revealed that RMS of cumulative discharge rate was greater in the
EA condition than in the control condition for the older adults
(p = 0.003), whereas the trend was not evident for the young
adult (p = 0.920). The group effect was noted in the EA condition,
and RMS of cumulative discharge rate of the older adults was
larger than that of the young adults (p = 0.002). Figure 4B shows
pooled MSE curves for young and older adults that represent the
complexity of cumulative discharge rate variability of different
time scales in the control and EA conditions. The short-time scale

MSE (MSE1–10) was subject to group (F(1,26) = 4.84, p = 0.037,
η2 = 0.140) and task (F(1,26) = 6.29, p = 0.019, η2 = 0.098;
Figure 4C). Only the MSE1–10 of the older adults was suppressed
with EA (p = 0.010) rather than MSE1–10 of the young adults
(p = 0.459). In the EA condition, MSE1–10 of the older adults was
smaller than that of the young adults (p = 0.011). The long-time
scale MSE (MSE11–20) was subject to a significant task effect
(F(1,26) = 5.58, p = 0.023, η2 = 0.086) and a marginally significant
interaction effect of task and group (F(1,26) = 2.99, p = 0.056,
η2 = 0.069), rather than group effect (F(1,26) = 2.04, p = 0.165,
η2 = 0.027). Post hoc analysis further revealed that MSE11–20 of
the older group was lower in the EA condition than in the control
condition (p = 0.011). MSE11–20 of the young group was not
dependent on EA (p = 0.487).

Figure 5A contrasts the pooled motor unit coherence
between the control and EA conditions for the young and
older adults. The pooled motor unit coherence of the older
adults was more modifiable to EA during force-tracking. The
group effect of ZC13–35 Hz was significant (F(1,26) = 6.25,
p = 0.019, η2 = 0.053), with marginally significant interaction
of task × group interaction (F(1,26) = 10.12, p = 0.056,
η2 = 0.034) and insignificant group effect (F(1,26) = 1.11, p = 0.310,
η2 = 0.037). Only ZC13–35 Hz of the older group was significantly
suppressed by EA (p = 0.004), but not that of the young adults
(p > 0.05; Figure 5B). However, ZC0–4 Hz did not vary with the
main and interaction effects of age and error size (p> 0.05).

DISCUSSION

The novel finding of this study was the age-related differential
impacts of visual EA on static force-tracking with visual

TABLE 3 | Mean and standard errors of discharge variables for the young and old groups in the control and EA conditions.

Discharge property Control EA Statistics

ISIGAV (ms) Young 56.69 ± 2.74 57.22 ± 2.86 Group: F(1,26) = 1.74, p = 0.199, η2 = 0.060; Task: F(1,26) = 5.60, p = 0.026, η2 = 0.024
Old 59.55 ± 4.21 66.75 ± 4.39∗ Group × Task: F(1,26) = 3.93, p = 0.058, η2 = 0.017

ISI CVGAV Young 0.215 ± 0.005 0.217 ± 0.005 Group: F(1,26) = 4.40, p = 0.046, η2 = 0.113; Task: F(1,26) = 4.46, p = 0.045, η2 = 0.104
Old 0.219 ± 0.008 0.324 ± 0.025∗ Group × Task: F(1,26) = 4.21, p = 0.050, η2 = 0.099

ISI, averaged inter-spike interval for a single motor unit; ISI CV, coefficient of variance of inter-spike interval for a single motor unit. ∗EA > control, p < 0.01.
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FIGURE 4 | Population means and standard errors for parametric variables of cumulative discharge rate in the control and EA conditions. (A) RMS; (B) MSE;
(C) MSE area of low (1–10) and high (11–20) time scales. Each time scale of the MSE curve is 10 ms, corresponding to down-sampling rate of 100 Hz.

feedback containing higher-frequency error information. The
high-frequency visual EA altered the strategic balance between
the open-loop and closed-loop controls to guide static force-

tracking. However, unlike the young adults, the older adults
exhibited inferior task accuracy, greater motor unit discharge
variability, lower complexity of discharge variability, and
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FIGURE 5 | Discharge coherence among motor units. (A) The contrast of the pooled motor unit coherence between the control and EA conditions for the young and
old groups. (B) The contrast of means and standard errors of the coherence peaks in the 0–4 Hz (ZC0–4 Hz) and 13–35 Hz (ZC13–35 Hz) bands between the control
and EA conditions for the two groups.

lower pooled motor unit coherence in the 13–35 Hz band
in the EA condition than in the control condition. In
contrast, the static force-tracking of the young adults was less
affected by high-frequency visual EA in the behavioral and
neurophysiological aspects.

Age-Related Exacerbation of Task
Precision with Error Amplification
It was clear that high-frequency EA had a negative impact
on the older adults, who showed less task accuracy with the
increased total error in the EA condition (Table 1). In contrast,
the young adults were much less affected by EA. The age effect
produced different impacts on task accuracy with EA, which
were primarily attributable to the size of force fluctuations rather
than to constant error (Table 1). Although the older adults
became incapable of maintaining force steadiness with EA during
force-tracking, the degree of force linear shifts from the target
signal, which was greatly impaired for the elderly with the
increased spatial resolution for representing the force on the
monitor, was independent of the age effect and EA (Sosnoff
and Newell, 2006; Kennedy and Christou, 2011). Hence, the
age-related decline in force steadiness with EA in this study

was not exactly attributable to excessive visuospatial information
(Kennedy and Christou, 2011; Tracy et al., 2015), as the spatial
resolutions of the monitor for the control and EA conditions
were identical. Instead, we specified that the impairment of the
EA-induced force steadiness of the older adults was a sequela
of age-related increases in visuomotor loop delay, especially
when the force-tracking control with EA relied comparatively
on the feedback process (Chen et al., 2017). Perceived errors (or
virtually-amplified errors) were more easily accumulated over
time in the feedback system, resulting in fluctuating force outputs
of the older participants (Miall et al., 1986, 1993). The evidence of
a scheme switch during EA is further discussed in the following
section.

Visual Error Amplification and the
Feedback-Prone Process
The relative significance of visuomotor control is modeled with
a continuum regime from feedback to feedforward, depending
on environmental contexts (Slifkin et al., 2000). A scheme
switch in static force control was examined with stabilogram
diffusion analysis, conceptually similar to the Hurst exponent.
As force fluctuation dynamics could be modeled with a two
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linear regression lines in the stabilogram diffusion plot, the
force fluctuation system should be regulated by two distinct
processes (feedforward and feedback processes) in parallel with
the postural control system (Collins and De Luca, 1993; Amoud
et al., 2007). In this study, short-term scaling exponent (Hs) was
in the range of 0.5–1. Short-range force fluctuation system was
persistent and subject to feedforward process, such that a high
value in the force fluctuations was followed by another high value
of force fluctuations. In contrast, long-term scaling exponent
(Hl) was smaller than 0.5. Long-range force fluctuations of the
past and future were negatively correlated, predominated by a
negative feedback loop.

The significant task effect of EA on critical point of time
(∆tc) and critical point of force fluctuation <1F2c> (Table 2)
implied an alteration in the steady-state force fluctuation
behavior due to EA. It is known that ∆tc reflects the timing
of stochastic activity when force fluctuations tend to drift away
from an equilibrium point in an open-loop control mode before
closed-loop feedbackmechanisms dominate the force fluctuation
behaviors. Therefore, a reduction in ∆tc in the EA condition
indicated the effective range of the interval (0-∆tc) to regulate
force fluctuations with the open-loop regime was shortened.
Concurrently, the effective range of the interval (>∆tc), during
which stochastic activity of force fluctuations exhibited a negative
correlation between its increment (anti-persistence) due to
feedback process, increased in the EA condition. The higher
dependency on the feedback mechanism to stabilize static force
in the EA condition is nicely compatible with our previous
work for rhythmic force-tracking (Chen et al., 2017). Of note,
unlike the young adults who showed a decreasing trend of
<1F2c> in the EA condition, the elderly exhibited an EA-related
potentiation of the critical point of force fluctuation (<1F2c>;
Table 2). The scenario suggests that closed-loop feedback of
the older adults in the EA condition was called into play
when the size of force fluctuation was greater than that in
the control condition. The delayed feedback process might link
to degenerated sensory systems to sensibly detect the force
errors for the older adults. In effect, the strategy of taxing
sensory feedback with EA was not suitable for the elderly
because their degenerated sensory systems could also exaggerate
feedback ambiguity and sensory conflicts (Bates and Wolbers,
2014).

According to the principle of stochastic resonance (Moss
et al., 2004), noise is not always negative for a controlled process.
Adding appropriate amount of noises can be helpful to perceive
sensory signals incapable of being detected (substhreshold
sensory information; Moss et al., 2004; McDonnell and Abbott,
2009). However, this study was not a case of noise benefits.
All participants in this study were able to clearly detect
execution errors on the monitor, and adding random noises
could simply produce uncertainty of visuomotor control. In
fact, the impact of uncertainty due to noisy visual errors
should be minimized via filtering process. For instance, if error
information contained high-frequency tremulous movements
(such as 8–12 Hz physiological tremor) that were augmented
via the EA process, error information above 0.4 Hz can hardly
be responded with a feedback mechanism due to visuomotor

delay (50–300 ms for humans; Miall et al., 1986, 1993; Joiner
and Shelhamer, 2009). Moreover, according to the inhibitory
deficit hypothesis, the elderly might fail to ignore functionally-
irrelevant visual stimuli such as high-frequency errors (Van
Gerven and Guerreiro, 2016). Namely, the noisy error feedback
interfered with adjustments to tracking deviations. Moreover, the
observation that EA increased the short-term effective diffusion
coefficients (Ds) and scaling exponent (Hs) was noted only in the
elderly (Table 2). Although it was not clear why the older adults
exhibited a greater positive correlation between the past and
future force fluctuation data in a short time interval, researchers
who have used stabilogram diffusion analysis to investigate
postural regulation attribute the parametric changes to stiffness
increases in the ankle joint with the antagonist co-activity in
compensation for muscle weakness (Collins and De Luca, 1995;
Toosizadeh et al., 2015).

Age-Related Variations in Discharge
Behaviors Due to Error Amplification
In general, only the discharge behaviors and cumulative
discharge rate of the older adults were tuned to EA; those of the
young adults were not. For the elderly, high-frequency EA added
to the motor unit discharge variability and inter-spike interval
(Table 3). The motor unit discharge of older adults has been
reported to be more susceptible to the amount of visuospatial
information during a visuomotor task (Vaillancourt et al.,
2002; Jordan et al., 2013). Consistent with this interpretation,
high-frequency EA for the elderly presumably brought about
more variant synaptic input (neural noises) to the motor neurons
for visual-motor corrections. This argument was also supported
by an age-related increase in RMS of cumulative discharge rate
of the elderly in the EA condition (Figure 4A). On the other
hand, the complexity of discharge variability was differently
organized with respect to age and task. The lower short-time
scale MSE1–10 for older adults (Figures 4B,C) collaborates the
loss of complexity hypothesis with aging, although none of
the previous studies have revealed this fact from complexity
measures of motor unit discharge variability (Rey-Robert et al.,
2011; Morrison and Newell, 2015). For older adults, it was
evident that high-frequency EA gave rise to anomalies in the
temporal organization of motor unit discharge dynamics, in view
of a lower short-time MSE1–10 and long-time MSE11–20 in the EA
condition than in the control condition. This scenario suggests
declining capacity with aging to use the faster time scales of
visual information (Sosnoff and Newell, 2008). When error size
in visual feedback was amplified, the elderly failed to preserve
stability and flexibility of motor unit discharge in face of the task
constraint, because exaggerated error information challenged
internal robustness of brain components that is less capable
of compensating for increased processing noise with larger
feedback delay times for the older adults (Heenan et al., 2014).
Of note, the task-reverent complexity reduction in discharge
variability of motor units for the young group was far from being
evident. This argument is supported by the EA-related reduction
in common oscillatory inputs in the 13–35 Hz band for the older
group (Figures 5A,B). The β-band motor unit coherence reflects
the interaction between cortical and spinal circuits, and its
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magnitude varies with the demands for sensorimotor integration.
The β-band motor unit coherence has been showed to increase
proportionally to greater amounts of visuospatial (Laine et al.,
2014) and error information (Hwang et al., 2017) for young
adults during a force-tracking task. Coincidentally, enhanced
β-band electroencephalography (EEG)-EMG coherence is linked
to steady-state force control with a higher degree of attentional
focus (Kristeva et al., 2007; Witte et al., 2007). If the β-band
motor unit coherence is a corollary to β-band EMG-EEG,
the reduction in β-band motor unit coherence with EA
implies that the older adults were distracted from performing
constructive force-tuning. Besides, we could not exclude the
possibility that an age-dependent variation in motor unit
discharge was a physiological consequence of increasing the
antagonist co-activity, in that older adults produce more motor
overflow to the antagonists during a cognitively-demanding
task than do young adults (Addamo et al., 2010). It was
rational to observe longer ISI, larger discharge variability, and
increasing Ds and scaling exponents with EA for the older
adults.

Methodological Considerations
First, EA is supposed to be an effective way to optimize static
force-tracking for young adults (Hwang et al., 2017). However,
the expected functional merits were not evident for the young
adults because we introduced high-frequency force components
(cut-off frequency: 20 Hz vs. 6 Hz, in this study vs. the previous
study, respectively) and a larger EA factor (2 vs. 1.5, in this
study vs. the previous study, respectively) to determine the
size of the error feedback. Hence, the functional merits of
EA for the young adults were partially counterbalanced by
the increase in noisy feedback and excessive EA factor. Newt,
one of the methodological advantages of using surface EMG
decomposition is that it can detect more active motor units than
intramuscular EMG can. Surface EMG decomposition has been

adopted by numerous studies (De Luca et al., 2006; Hu et al.,
2014;Martinez-Valdes et al., 2016; Chen et al., 2017; Hwang et al.,
2017), though the decomposition accuracy among the various
algorithms remains debatable (Farina and Enoka, 2011; De Luca
et al., 2015b). It is beyond the scope of this study to resolve the
issues of decomposition accuracy.

In conclusion, visual EA containing high-frequency error
information degrades the static force control of the elderly due to
ineffective information processing with the closed-loop system.
The use of visual EA adds to neural noises, in light of the increase
in the discharge variability of motor units. In reference to that of
the control condition, the cumulative discharge rate of the older
adults under the EA is more variant and less complex, in parallel
with behavioral changes in tracking force. Collectively, variations
in motor unit discharge due to augmentation of the virtual size
of high-frequency error information links to a reduction in the
common drive to the motoneuronal pool for force stabilization.
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