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We aimed to determine if resting state functional magnetic resonance imaging (fMRI)
acquired at pre-treatment baseline could accurately predict breast cancer-related
cognitive impairment at long-term follow-up. We evaluated 31 patients with breast
cancer (age 34–65) prior to any treatment, post-chemotherapy and 1 year later.
Cognitive testing scores were normalized based on data obtained from 43 healthy
female controls and then used to categorize patients as impaired or not based
on longitudinal changes. We measured clustering coefficient, a measure of local
connectivity, by applying graph theory to baseline resting state fMRI and entered these
metrics along with relevant patient-related and medical variables into random forest
classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was
predicted by classification algorithms with up to 100% accuracy (p < 0.0001). The
neuroimaging-based model was significantly more accurate than a model involving
patient-related and medical variables (p = 0.005). Hub regions belonging to several
distinct functional networks were the most important predictors of cognitive outcome.
Characteristics of these hubs indicated potential spread of brain injury from default
mode to other networks over time. These findings suggest that resting state fMRI
is a promising tool for predicting future cognitive impairment associated with breast
cancer. This information could inform treatment decision making by identifying patients
at highest risk for long-term cognitive impairment.

Keywords: breast cancer, chemotherapy, connectome, resting state fMRI, random forest, cognition

INTRODUCTION

Breast cancer and its treatments can have neurotoxic effects in some patients, resulting in
acute, persistent and/or late onset cognitive impairments such as difficulties with attention,
memory, processing speed, executive function and verbal fluency (Wefel et al., 2015). Defining
cognitive impairment has historically been a challenge for cancer-related neurotoxicity as well as
other neurologic syndromes. The Diagnostic Statistical Manual-5 (DSM-5) includes a category,
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‘‘mild neurocognitive disorder’’ (Saykin et al., 2013; Sachs-
Ericsson and Blazer, 2015), which is often used in clinical practice
for patients with cancer-related cognitive impairment. Currently
there is no diagnostic criteria specific to patients with cancer,
however, the International Cognition and Cancer Task Force
(ICCTF) recommends an approach for defining cancer-related
cognitive impairment (Wefel et al., 2011), which we employed in
this study. Clinically, the ICCTF definition corresponds to ‘‘mild
to moderate impairment’’, which is consistent with the DSM-5
criteria for mild neurocognitive disorder and with the level of
deficit commonly observed in patients with cancer (Wefel et al.,
2015). A previous study observed that the ICCTF definition is
almost twice as sensitive to impairment as other methods (Vardy
et al., 2017) andwe have shown that it corresponds withmeasures
of brain network connectivity (Kesler et al., 2015, 2016).

There are many potential etiologies for cancer-related
cognitive impairment, but the final common biologic pathway
is altered brain structure and function, which can be evaluated
using neuroimaging. In addition to providing valuable insights
regarding these neural mechanisms, baseline neuroimaging
biomarkers can serve as predictors of future outcome. Several
examples of this application exist in other conditions including
predicting Alzheimer’s disease conversion, development of
dyslexia, and response to interventions such as cognitive
rehabilitation (Strangman et al., 2010; Hoeft et al., 2011; Moradi
et al., 2015; Thompson et al., 2015). Cancer-related cognitive
impairment is one of the only syndromes where a potential brain
injury is known in advance and is therefore ideal for prediction
of outcome from early or pre-treatment, baseline data. This
information could be practice-changing by assisting oncologists
with treatment decision-making based on a patient’s individual
risk for negative cognitive effects.

Resting state functional magnetic resonance imaging (fMRI),
which is one of the most sensitive neuroimaging techniques
currently available, is non-invasive and simple to acquire (Kesler,
2014). Resting state fMRI data characterize spontaneous, spatially
and temporally coherent functional activity in the brain and
are typically used to measure intrinsic functional network
connectivity (Raichle, 2011). Intrinsic functional networks reflect
various cognitive states, represent the majority of energy
usage in the brain and are associated with the expression
of genes that regulate synaptic function (Fox and Greicius,
2010; Shirer et al., 2012; Buckner et al., 2013; Richiardi et al.,
2015). We previously demonstrated that resting state fMRI
data in combination with machine learning can be used to
automatically distinguish chemotherapy-treated breast cancer
survivors from chemotherapy naïve survivors and healthy
female controls (Kesler et al., 2013). Others have shown that
resting state fMRI is sensitive to brain networks that recover
following chemotherapy vs. those that do not (Dumas et al.,
2013).

We recently demonstrated subtle disruption of intrinsic
functional network organization in patients newly diagnosed
with breast cancer who were evaluated prior to any treatment,
including surgery (Kesler et al., 2017a). These findings indicate
that resting state fMRI can detect brain changes that are likely
associated with aspects of tumor pathology and/or pre-existing

patient characteristics that are important for cognitive trajectory.
These early neural deficits may make the brain more vulnerable
to the effects of chemotherapy, other adjuvant treatments and/or
aging, resulting in long-term cognitive impairment.

The application of machine learning algorithms (Jordan and
Mitchell, 2015) frequently provides increased prediction
accuracy since these models tend to be nonparametric
and able to learn complex interactions among predictors.
These characteristics are especially important when studying
cognition since brain function arises from complex interactions
among various neuronal communities. Additionally, machine
learning approaches tend to be more suitable than traditional
statistical methods for problems such as cancer-related cognitive
impairment that involve a large number of potential predictors
(Strobl et al., 2007). There are many different machine learning
approaches. Random forest modeling uses random subsets of
features to grow an ensemble of decision trees that predict the
outcome of interest for classification and regression problems
(Breiman et al., 1984; Breiman, 2001). We have previously
demonstrated that random forest models are highly useful
for evaluating cancer-related cognitive impairment (Kesler
et al., 2016, 2017b). For example, we showed that random
forest models are superior to traditional linear models for
examining the relationships between neuroimaging metrics
and cancer-related cognitive impairment (Kesler et al.,
2016).

In this study, we aimed to predict chronic cognitive
impairment (observed at 1 year post-chemotherapy) from
baseline intrinsic functional network characteristics obtained
prior to treatment initiation. There are many different
characteristics of intrinsic functional connectivity that can
be measured from resting state fMRI. Based on our prior
studies of breast and other cancers (Kesler et al., 2015, 2016,
2017b), we focused on clustered connectivity (i.e., clustering
coefficient), a property of brain networks derived from graph
theoretical analysis (Rubinov and Sporns, 2010). We examined
the accuracy of regional clustering coefficients for predicting
categorical cognitive impairment (impaired, unimpaired) by
entering them into random forest classification models. We
hypothesized that regional clustering coefficients alone or in
combination with patient/medical factors would more accurately
predict future cognitive outcome than patient/medical factors
alone.

MATERIALS AND METHODS

Participants
As part of our ongoing, prospective longitudinal study of
breast cancer and cognition, we enrolled 31 newly diagnosed
patients with primary breast cancer age 34–65 years and
43 frequency matched healthy control females (Table 1).
Patients were assessed prior to initiation of any treatment
(including surgery with general anesthesia), 1 month after
completing chemotherapy and again 1 year later. Controls
were assessed at yoked intervals. Participants were included
in the present study if they had completed both the baseline

Frontiers in Human Neuroscience | www.frontiersin.org 2 November 2017 | Volume 11 | Article 555

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kesler et al. Predict Cancer Cognition

TABLE 1 | Participant data at pre-treatment baseline shown as mean (standard deviation) unless otherwise noted.

Breast cancer (N = 31) Healthy controls (N = 43) t/X2 p

Age 48.58 (8.61) 50.05 (10.1) 0.673 0.503
Age range 34.74–65.73 25.78–64.24
Education 16.87 (2.86) 17.56 (2.40) 1.08 0.281
Post-menopause 31% 42% 0.357 0.550
Months between 1st and 2nd assessment 5.54 (0.91) 5.30 (0.94) 1.02 0.313
Months between 2nd and 3rd assessment 12.22 (1.68) 12.61 (1.02) 1.03 0.313
Number of chemotherapy cycles 7.25 (4.68)
Radiation therapy 65%
Endocrine therapy 71%
Stage at diagnosis (I, II, III) 16%, 65%, 19%

and 1 year follow-up assessments (see Kesler et al., 2017a or
Supplementary Methods). Chemotherapy regimens included
doxorubicin, cyclophosphamide and paclitaxel (N = 16),
cyclophosphamide, doxorubicin and fluorouracil (N = 2),
cyclophosphamide and paclitaxel (N = 9), doxorubicin,
carboplatin and paclitaxel (N = 2), fluorouracil, epirubicin
and cyclophosphamide (N = 2). The Stanford University
Institutional Review Board approved this study and all
procedures performed were in accordance with the ethical
standards of the Declaration of Helsinki. Written informed
consent was obtained from all participants included in the
study.

Cognitive Impairment Assessment
Cognitive function was measured using the following
standardized tests: Rey Auditory Verbal Learning Test
(RAVLT) for verbal learning and verbal memory retention
(Schmidt, 2012), Comprehensive Trail Making Test (CTMT)
for attention, processing speed and executive function (Moses,
2004), and Controlled Oral Word Association (COWA) for
verbal fluency (Ruff et al., 1996). This is consistent with the
testing battery recommended by the ICCTF for harmonizing
studies of cancer and cognition (Wefel et al., 2011). This is
also the battery we have shown previously to be sensitive to
cognitive deficits in patients with breast cancer (Kesler and
Blayney, 2016; Kesler et al., 2017a). Psychological distress
(depression, anxiety, cognitive fatigue) was assessed using
the Total Score from the Clinical Assessment of Depression
(CAD; Aghakhani and Chan, 2007). We also examined
self-ratings from our Mobile Cognitive Assessment Battery
Adjustment Index, a questionnaire regarding functional capacity
(i.e., occupational, home, leisure and social function (Kesler
and Blayney, 2014)). Additional self-report questionnaires, as
well as several non-standardized, experimental computerized
tests, were administered but are not reported here (total testing
time = 1.5 h).

Test scores were converted to z-scores based on the control
group’s mean and standard deviation. Cognitive impairment was
defined as having any two z-scores of −1.5 or lower or any one
z-score of −2.0 or lower, based on the ICCTF recommendations
(Wefel et al., 2011) and our prior studies (Kesler et al., 2015,
2016, 2017b). A patient was categorized as impaired if her
performance was impaired at both baseline and 1 year follow-up
(persistent impairment) or if she demonstrated impaired

performance at 1 year follow-up that was not present at baseline
(late onset impairment). As noted above, we have previously
demonstrated that this impairment definition is associated
with measures of brain network organization. Impairment was
also moderately associated with elevated symptoms on the
Adjustment Index (r = 0.29, p = 0.059), suggesting further
ecological validity.

Neuroimaging Acquisition and
Preprocessing
Neuroimaging data were acquired using a GE Discovery MR750
3.0 Tesla whole body scanner (GE Medical Systems) on the same
day as the cognitive testing session (see Supplementary Methods
for further details). Functional connectivity preprocessing was
performed with Statistical Parametric Mapping 8 (SPM8)
and CONN Toolboxes as previously described (Kesler et al.,
2013, 2014, 2017a; Kesler and Blayney, 2016). The resulting
connectivity matrices were binarized to minimum connection
density and submitted to graph theoretical analysis using
our Brain Networks Toolbox1. As in our previous studies,
90 regions of interest (ROIs) were defined using the Automated
Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002)
and we measured the clustering coefficient of each brain
ROI. Clustering coefficient is the ratio of connections to all
possible connections among a region’s neighbors (Rubinov and
Sporns, 2010). We have previously demonstrated significant
clustering deficits in patients with breast and other cancers
(Bruno et al., 2012; Hosseini et al., 2012; Kesler et al., 2015,
2016).

Statistical Analysis
Incidence of cognitive impairment was compared between
groups using a two-sample test for equality of proportions (Chi
squared, two-tailed). Change in CAD and Adjustment Index
scores were evaluated using paired t-test.

For random forest classification, the square root of the
number of features were split at each node and an ensemble
of 500 trees was grown by bootstrapping the features with
replacement. Feature selection/reduction was conducted on a
training set (A + B) consisting of a 75% random sample of
the breast cancer group obtained after stratified class sampling.
Recursive feature elimination was used to remove minimally

1https://github.com/srkesler/bnets.git
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FIGURE 1 | Random forest models. We tested and compared three different
random forest models for predicting 1 year post-chemotherapy cognitive
outcome from pre-treatment data. ROIs, connectome regions of interest.

contributing features and optimize the models. Recursive feature
elimination was conducted on this set with A = training data
and B = testing data with leave-one-out cross-validation across
100 random partitions of A and B. Features that provided the
best accuracy across these partitions were used to re-train a
model on A + B with out-of-bag error estimation (Liaw and
Wiener, 2002). The resulting model was then applied to the
held-out 25% of the breast cancer group to test prediction
accuracy.

We tested three different models (Figure 1). Model 1 included
only the following baseline patient and medical features:
age, education, cancer stage at diagnosis, minority status,
menopausal status and CAD score. Model 2 combined the above
patient/medical features with clustering coefficients for three
brain regions; right middle orbitofrontal gyrus, right inferior
parietal lobule (RIPL) and right mesial superior frontal gyrus.
We previously showed these regions to have subtly altered
clustering prior to treatment in patients with breast cancer
(Kesler et al., 2017a). For Model 3, we tested an expanded feature
set that included clustering coefficients for all major cortical
and subcortical regions (N = 90) in addition to patient/medical
features.

The significance of model accuracy was evaluated using a
two-sided exact binomial test in addition to the area under the
curve (AUC) of the receiver operating characteristic (ROC).
Feature importance was determined using mean decrease in Gini
index (Wright et al., 2016; Kesler et al., 2017b). To determine
the most accurate model, we compared model AUCs using the
bootstrapping method described by Hanley and McNeil (1983).

Brain regions identified as important predictors were
evaluated for network hub status based on degree, betweenness
centrality and/or clustering coefficient greater than 1 standard
deviation above network mean (Sporns et al., 2007). We
also evaluated modularity to provide insight regarding
hub relationships. Modularity involves decomposing the
brain into non-overlapping groups of regions (modules)
that have maximal within-group connections and minimal
between-group connections (Sporns and Betzel, 2016).
Hubs were further classified as provincial or connector type
based on module participation coefficient per previously
established criteria (Guimerà and Amaral, 2005; Sporns et al.,
2007).

Because there is no standard definition of cognitive
impairment, we supplemented classification analysis with
random forest regression to determine if features identified
by classification could accurately predict individual cognitive
test z-scores at 1 year follow-up. Regression model accuracy
was determined using the adjusted R squared statistic. Feature
importance for regression models was determined using percent
increase in mean squared error. All statistical analyses were
performed in the R Statistical Package (R Foundation) including
the ‘‘randomForest’’, ‘‘caret’’ and ‘‘pROC’’ libraries.

RESULTS

Cognitive Impairment
Patients with breast cancer demonstrated 55% (N = 17/31)
incidence of cognitive impairment and healthy controls
demonstrated 26% (N = 11/43). The difference in
incidence was significant (X2 = 6.56, p = 0.010). Of those
impaired in the breast cancer group, 59% (N = 10/17) had
persistent impairment while 41% (N = 7/17) had late onset
impairment. Depression, anxiety and fatigue decreased over

TABLE 2 | Cognitive testing z-scores for patients with breast cancer.

Test name Mean (standard deviation)/range

Pre-treatment Post-chemotherapy 1 year post-chemotherapy
N = 31 N = 23 N = 31

RAVLT A1 −0.452 (1.00) −0.326 (0.928) −0.428 (0.944)
−2.92 to 1.28 −2.10 to 1.70 −1.99 to 1.21

RAVLT A6 −0.329 (1.40) −0.227 (0.836) −0.308 (1.08)
−3.07 to 1.58 −1.48 to 1.28 −3.33 to 1.30

CTMT 1 −0.469 (0.842) −0.454 (0.952) −0.478 (1.01)
−2.68 to 1.17 −1.94 to 0.966 −2.10 to 2.30

CTMT 5 −0.251 (0.894) −0.322 (1.12) −0.421 (1.07)
−1.70 to 1.13 −2.31 to 1.37 −2.08 to 1.41

COWA −0.314 (0.904) −0.434 (0.844) −0.040 (0.707)
−2.15 to 1.55 −1.96 to 1.11 −1.79 to 1.21

RAVLT, Rey Auditory Verbal Learning Test; CTMT, Comprehensive Trail Making Test; COWA, Controlled Oral Word Association.

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2017 | Volume 11 | Article 555

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kesler et al. Predict Cancer Cognition

FIGURE 2 | Random forest classification of cognitive impairment at 1 year post-chemotherapy follow-up from pre-treatment predictors. Model 1: patient and medical
variables; Model 2: clustering coefficients from a priori brain regions and patient/medical variables; Model 3: clustering coefficients from 90 brain regions and
patient/medical variables. Top row shows receiver operating characteristic (ROC) curve. Bottom row shows relative feature importance. Features displayed are those
retained after recursive feature elimination. Higher mean decrease in Gini index indicates greater importance of that feature in the model. CAD, Clinical Assessment of
Depression; RMIOFC, right middle orbitofrontal cortex; RIPL, right inferior parietal; RMESF, right mesial superior frontal; RMTG, right middle temporal; LCAL, left
calcarine; RINS, right insula; LLING, left lingual; ROLF, right olfactory.

time based on patients’ self-ratings, but not significantly
(p > 0.725) and was not clinically elevated at any time
point. Self-rating of functional capacity decreased over time
but not significantly (p > 0.193). Cognitive testing and
self-report data are presented in Table 2 and Supplementary
Table S1.

Predicting Future Cognitive Impairment
Model 1: the final model retained all six features and
performed with 71% accuracy (p = 0.453, ROC = 0.67,
sensitivity = 0.75, specificity = 0.67, Figure 2). Model 2: the
final model retained the three brain regions as well as age,
minority status, menopausal status and CAD and demonstrated
88% accuracy (p = 0.070, ROC = 0.75, sensitivity = 1.0,
specificity = 0.75, Figure 2). Model 3: the final model retained

five brain regions (left lingual gyrus, left calcarine, right insula,
right middle temporal gyrus and right olfactory area) but no
patient/medical features and performed with 100% accuracy
(p = 0.008, ROC = 1.0, sensitivity = 1.0, specificity = 1.0,
Figure 2).

Comparing Classification Models
The AUC of Model 3 was significantly greater than the AUCs of
Models 1 (z = 2.83, p = 0.005) and 2 (z = 2.42, p = 0.015). Models
1 and 2 were not significantly different (z = 0.514, p = 0.607).

Predicting Future Cognitive Test Scores
Using the five brain regions from Model 3 above, individual
RAVLT verbal learning scores were accurately predicted with
an adjusted R2 = 0.79 (p < 0.0001). RAVLT verbal retention

TABLE 3 | Hub characterization for brain regions that predicted cognitive impairment.

Region Degree Betweenness Clustering Participation coefficient Hub Hub type

Left calcarine 19.81 444 0.54 0.47 No -
Right middle orbitofrontal 15.13 803 0.64* 0.53 Yes Connector
Right mesial superior frontal 20.13 1042* 0.50 0.58 Yes Connector
Right insula 19.77 998* 0.59 0.54 Yes Connector
Left lingual 21.03 615 0.53 0.39 No -
Right olfactory 15.26 732 0.60* 0.59 Yes Connector
Right inferior parietal 15.42 1077* 0.55 0.44 Yes Connector
Right middle temporal 24.48* 563 0.52 0.64 Yes Connector

∗Denotes values that exceeded 1 standard deviation above the network mean and thus indicate hub status. Connector hubs are defined as those with participation
coefficient greater than 0.3 and provincial hubs have a participation coefficient less than 0.3.
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FIGURE 3 | Brain regions whose clustering coefficients at pre-treatment predicted cognitive impairment at 1 year post-chemotherapy follow-up. Regions are shown
as spheres with color indicating module membership. Labeled regions are those that were included in random forest classification models and found to be predictive
of cognitive impairment. RMIOF, right middle orbitofrontal; RIPL, right inferior parietal; RMESF, right mesial superior frontal; RMTG, right middle temporal; LCAL, left
calcarine; RINS, right insula; LLING, left lingual; ROLF, right olfactory.

scores were predicted with an adjusted R2 = 0.78 (p < 0.0001).
The model for CTMT Trail 1 scores had an adjusted R2 = 0.70
(p < 0.0001). CTMT Trail 5 scores were predicted at adjusted
R2 = 0.75 (p < 0.0001). The model for COWA scores had an
adjusted R2 = 0.64 (p < 0.0001). The relative contributions of the
five clustered connectivity features to these regressionmodels are
provided in Supplementary Table S2.

Characteristics of Predictive Brain Regions
As shown in Table 3, all but two of the eight brain regions
included in Models 2 and 3 were categorized as hubs
(e.g., globally connected regions) and all were connector
type hubs. Modularity analysis indicated that all regions from
Model 2 were in the default mode network while regions
from Model 3 were members of other networks including
sensory/motor, executive/attention and salience networks
(Figure 3).

DISCUSSION

The aim of this study was to determine if baseline, pre-treatment
resting state fMRI could be used to accurately predict long-term
cognitive outcome in chemotherapy-treated patients with breast
cancer. Based on our prior work, we measured clustering

coefficient, a characteristic of brain network connectivity
obtained from resting state fMRI data. We observed that
most patients (55%) demonstrated cognitive impairment
at 1 year post-chemotherapy follow-up. This incidence is
consistent with previous studies (Wefel et al., 2010, 2015). We
examined three different classification models for predicting
this impairment: Model 1 included only patient/medical
variables, Model 2 combined patient/medical variables with
clustering coefficients from selected, a priori regions, and
Model 3 included the entire brain with patient/medical
variables.

Model 1 results indicated that patient and medical factors,
particularly age and CAD score, were independently useful at
predicting impairment with 71% accuracy, although specificity
was suboptimal and the overall model was not significant. The
addition of clustered connectivity data improved accuracy to
85% with increased specificity, though this improvement was
not significant. Model 3 performed with perfect sensitivity
and specificity and included only clustered connectivity
of brain regions selected in a data driven manner. Model
3 was significantly more accurate than Models 1 and 2.
Further, regression models using Model 3 features were
associated with significant adjusted R2 values for predicting
individual test scores suggesting that the model may be
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relatively robust to impairment definition. Perfect (100%)
accuracy in machine learning applications is rare but not
unprecedented when neuroimaging features are included
(Gothelf et al., 2011; Marzelli et al., 2011; Weygandt et al.,
2012; Zhang et al., 2013). However, our model was built
using a small sample and therefore requires subsequent
validation.

Many of the regions selected in Models 2 and 3 have been
noted to be altered in prior studies of breast cancer as well as
other conditions that affect cognitive function (Kaiser et al., 2014;
Kesler, 2014; Lepage et al., 2014; Stouten-Kemperman et al., 2015;
Wang et al., 2016). These regions are known to be associated with
the cognitive domains we measured. For example, orbitofrontal
regions are involved in executive control and other cognitive
processes (Nestor et al., 2015; Ohtani et al., 2017). The
insula is a key region of the salience network, important for
various functions including attention, language, interoception
and social-emotional behaviors (Menon and Uddin, 2010; Seeley,
2010). Middle temporal gyrus supports memory, language,
semantic and visual processing, among others, and is part of the
ventral attention network (Deslauriers et al., 2017). One novel
finding was the importance of the right olfactory area. Olfaction
has a well-known and important role in memory through
conditional and emotional learning systems (Mouly and Sullivan,
2010) and as a site of ongoing adult neurogenesis (Lledo and
Valley, 2016). Cancer treatments, including chemotherapy and
radiation interfere with neurogenesis (Monje and Dietrich, 2012)
and have been associated with changes in olfactory function
in patients with breast and other cancers (Steinbach et al.,
2010).

Modularity analysis indicated that all Model 2 regions
were part of the default mode network, consistent with
prior studies (Fox et al., 2005; Seeley et al., 2007; Grayson
and Fair, 2017). Default mode network subserves a wide
variety of cognitive processes and is therefore characterized
by high connectivity and functional activity (Hagmann et al.,
2008; Cole et al., 2010; Lord et al., 2013). The ‘‘nodal
stress’’ theory of neurodegeneration suggests that high traffic
regions, like hubs of the default mode network, are more
vulnerable to aging, disease and injury (Zhou et al., 2012).
Our findings suggest that certain default mode network
hubs are injured by breast cancer and this injury does not
adequately recover over time and/or is exacerbated by adjuvant
therapies such that it is associated with long-term cognitive
impairment.

The regions in Model 3 most accurately predicted outcome
but had no overlap with those in Model 2; we did not previously
observe them to be different between patients with breast cancer
and healthy controls at pre-treatment baseline (Kesler et al.,
2017a). Whereas Model 2 regions were members of default
mode network, Model 3 regions were included in salience,
executive/attention and sensory/motor networks. These regions
may be very subtly vulnerable pre-treatment such that differences
are difficult to detect and/or alternative methods are required
to detect them. Otherwise, default mode network injury existing
at pre-treatment baseline might extend to other brain networks
via ‘‘trans-neuronal spread’’ (Zhou et al., 2012). The brain

regions included in Model 2 were all identified as hubs; regions
with high connectivity that are vital for network resilience and
regulation of information flow (Vertes and Bullmore, 2015).
Further, Model 2 regions were all connector type hubs, which,
unlike provincial type hubs, form bridges between different
networks (van den Heuvel and Sporns, 2013). Taken together,
these findings suggest that the initial site of injury involves
default mode network hubs that potentially spread the injury
to other networks via their connector status. Most Model
3 regions were also identified as hubs and as such would
be the most vulnerable areas of these ‘‘secondary’’ networks.
These mechanisms were not the primary focus of this study
and therefore further investigation of longitudinal changes in
connectome organization is required.

The main limitation of this study is the small sample size
which can result in model over-fitting. We conducted random
forest modeling using a conservative approach that included
cross-validation and careful separation of training and testing
samples. However, further evaluation of our models’ validity
requires a new, unseen and larger sample of patients to which
we can apply our algorithms. We are currently acquiring
such a sample and have also made our algorithms available
for others to apply to their own data as appropriate2. Other
considerations include our choice of brain parcellation scheme
and connectome property. The 90 AAL parcellation is one of
the most commonly used and is the one we have employed
previously in our studies of chemotherapy-related cognitive
impairment (Kesler et al., 2015, 2016, 2017a,b; Amidi et al.,
2017). As noted above, we focused on clustering coefficient
because we have shown this connectome property to be the most
consistently altered in patients with breast cancer. Future studies
with larger samples could include evaluation of alternative
connectome properties to determine if they improve predictive
models. These might include connectome properties derived
from other neuroimaging modalities such as diffusion tensor
imaging (DTI), for example. We used a cognitive testing battery
and impairment definition recommended by the ICCTF to
increase consistency across studies of cancer and cognition
including data pooling initiatives. Further investigation is
required to examine the effects of alternate tests and impairment
categories. Finally, other machine learning approaches may yield
different results. For example, support vector machine (SVM)
is a common method used in neuroimaging studies and we
have previously demonstrated its usefulness for distinguishing
chemotherapy-treated from chemotherapy naïve patients (Kesler
et al., 2013). However, SVMs are much more difficult to
interpret than random forest models, particularly in terms
of feature importance. Feature importance contributed to
evaluation of our hypothesis regarding relative importance of
patient/medical vs. neuroimaging features and was essential
for understanding specific brain network patterns involved in
cognitive impairment. Future studies could include comparison
of different machine learning approaches, which was beyond the
scope of this preliminary study.

2https://www.dropbox.com/sh/df3akk7wr4wl2uv/AACYvBdZnnThXLqT-
3OQgJxla?dl=0
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Patients undergoing chemotherapy tend to be monitored for
various toxicities including cardiac, hepatic and hematologic
problems, among others. Given the high incidence of cognitive
impairments, it seems reasonable that neurologic monitoring be
included as well. We have demonstrated that this impairment
can potentially be predicted from baseline, pre-treatment
data. Resting state fMRI may be a particularly promising
tool for this purpose, improving our ability to identify
patients at risk for long-term cancer-related brain injury. If
inclusion of resting state fMRI data continues to result in
the most accurate predictions of future cognitive outcome,
we have already demonstrated that it is feasible to obtain
these data from patients pre-treatment. Connectome metrics
derived from resting state fMRI show good to excellent
test-retest reliability (Braun et al., 2012; Cao et al., 2014;
Termenon et al., 2016). Our resting state fMRI acquisition
required only 7 min making this scan a practical possibility.
Prediction of cognitive outcome could inform treatment
decision-making and prioritize patients for early intervention.
With further validation, our findings could support the
use of one of our algorithms as standard of care for
patients with breast cancer to determine risk for cognitive
neurotoxicity.
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