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As a crucial cognitive function, learning applies prediction error (the discrepancy
between the prediction from learning and the world state) to adjust predictions of
the future. How much prediction error affects this adjustment also depends on the
learning rate. Our understanding to the learning rate is still limited, in terms of (1) how
it is modulated by other factors, and (2) the specific mechanisms of how learning rate
interacts with prediction error to update learning. We applied computational modeling
and functional magnetic resonance imaging to investigate these issues. We found
that, when human participants performed a reward learning task, reward magnitude
modulated learning rate. Modulation strength further predicted the difference in behavior
following high vs. low reward across subjects. Imaging results further showed that this
modulation was reflected in brain regions where the reward feedback is also encoded,
such as the medial prefrontal cortex (MFC), precuneus, and posterior cingulate cortex.
Furthermore, for the first time, we observed that the integration of the learning rate and
the reward prediction error was represented in MFC activity. These findings extend our
understanding of adaptive learning by demonstrating how it functions in a chain reaction
of prediction updating.
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INTRODUCTION

The brain generalizes learned information to make predictions of the future. To improve the
accuracy of these predictions, the learning process must incorporate new information to reflect the
up-to-date states of the environment. The integration of new information involves two key factors:
the prediction error that measures the discrepancy between current prediction and the observed
environmental state, and the learning rate that determines to what degree the prediction error is
applied to updating the prediction.

Prediction error has been thought to be calculated by the dopaminergic activity in the
ventral tegmental area (VTA), then spreading to other brain regions via the afferent connections
from the VTA (Schultz et al., 1997). Consistent with this theory, many functional magnetic
resonance imaging (fMRI) studies have located brain structures in humans that reflect prediction
error (for review, see Garrison et al., 2013). For example, D’Ardenne et al. (2008) detected
activity related to the reward prediction error in the VTA of human participants. Outside
the VTA, several researchers have also documented activity related to reward prediction error
in regions that are connected to the VTA. Examples include subcortical structures such as
the striatum (O’Doherty et al., 2003; Seymour et al., 2004; Pessiglione et al., 2006; Glascher
et al., 2010; Jocham et al., 2011; Zhu et al., 2012; Eppinger et al., 2013) and nucleus
accumbens (Niv et al., 2012). Cortical areas such as the medial prefrontal cortex (MFC)
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(Jocham et al., 2011; Eppinger et al., 2013) also appear to be
involved.

A hallmark of learning is its flexibility, that is, the adaptive
employment of prediction error in adjusting the prediction. This
flexibility is attributed to the learning rate. To study this flexibility
in adaptive learning, recent studies have employed computational
models and algorithms to demonstrate how the learning rate
shifts following changes in the environment (Behrens et al., 2007;
Nassar et al., 2010; Payzan-LeNestour and Bossaerts, 2011; Jiang
et al., 2014, 2015; McGuire et al., 2014). A common finding is
that learning rate should favor recent information more, if there
is change in the environment, both to reflect the up-do-date
world state and to dampen the influence of outdated information.
By contrast, if the environment is stable, learning rate should
depend more on information sampled over an extended period of
time (as opposed to recent information), so that learning is more
robust against noise. In the brain, this change in the learning rate
is associated with the anterior cingulate cortex (ACC) (Behrens
et al., 2007), the anterior insula and adjacent inferior frontal gyrus
(IFG) (McGuire et al., 2014; Jiang et al., 2015), and the MFC
(McGuire et al., 2014).

However, many questions regarding the mechanisms of the
learning rate remain unanswered. One question is whether other
factors (besides volatility or rate of change in the environment)
mediate the learning rate. In reward learning tasks, a possible
candidate factor is reward feedback, known from past research to
affect the subsequent strategy of humans performing a gambling
task (Gehring and Willoughby, 2002; Yeung and Sanfey, 2004).
Similarly, humans seem to use asymmetric learning rates
for positive and negative prediction errors (Niv et al., 2012;
Gershman, 2015). Another important, yet unanswered, question
is how the learning rate and the prediction error are integrated
to drive learning. In the reinforcement learning model (Rescorla
and Wagner, 1972), the updating of prediction at time i+ 1
(denoted as1pi+1) is the prediction error (PEi) multiplied by the
learning rate (αi) at time i; thus, 1pi+1 = αi × PEi. Therefore,
this joint effect of learning rate and prediction error on updating
prediction can be tested as their interaction.

We hypothesized that: (1) the learning rate would be mediated
by reward feedback; and (2) the integration of the learning
rate and the prediction error would occur in the MFC, which
is associated with both factors. To test these two hypotheses,
we proposed a Bayesian model that provides computational
mechanisms explaining how reward feedback influences the
learning rate. Crucially, this model inferred the learning rate
using the actual choices made by participants and the resulting
reward, thus it accounts for individual differences and yield
inference of the subjective learning rate. We further applied the
model estimates to fMRI data, and provide new evidence of the
neural substrates supporting these two hypotheses.

MATERIALS AND METHODS

Subjects
Twenty-nine college students participated in this study. All
participants had normal or corrected-to-normal vision. Two

participants did not finish the task and were excluded from
analysis, so the sample for behavioral analysis consisted
of 27 participants (14 females, 20–24 years old, mean
age = 22 years). In addition, four participants were excluded
due to synchronization failure (the fMRI scanning and task did
not start simultaneously) in at least one run, so the onsets of
events in the behavioral task could not be mapped to the fMRI
data. Data from two more participants were excluded due to
normalization failure (i.e., SPM produced distorted normalized
images after the normalization step; see below). Therefore, the
final sample of fMRI analysis consisted of 21 participants (10
females, 20–23 years old, mean age = 22 years). This study
was approved by the institutional review board of Chengdu
University of Information Technology.

Apparatus and Experimental Design
The task used in this study was programmed using Psychophysics
Toolbox Version 31. The stimuli (i.e., a red square and a green
square) were displayed on a back projection screen. Participants
viewed the display via a mirror attached to the head coil of the MR
scanner and responded using two MR-compatible button boxes,
one for each hand.

Figure 1A depicts the flow of events in the behavioral task
trials. In each trial, participants chose between a red square and a
green square to accumulate reward points, which determined the
monetary reward they received after the task. At the beginning
of each trial, a fixation cross appeared at the center of the
screen, along with the two colored squares to the left and right
of the cross for an exponentially jittered interval (4–5.5 s, step
size = 0.5 s), during which the participants chose one square
by pressing the button on the same side as the selected square.
Once a response was made, the unselected square disappeared.
After this interval, the reward gained (either 1 point or 5 points,
corresponding to a low reward or a high reward, respectively)
was presented at the center of the screen for 1 s, followed by the
fixation cross shown for another exponentially jittered inter-trial
interval (4–5.5 s, step size = 0.5 s), following which the stimulus
display for the next trial appeared. If the participant did not
respond, the trial was scored as no response. In case of no response
(<0.3% of all trials), no points were gained and a message “+0”
was shown. The lack of response in these trials precludes the
inference of the mental states, therefore, the no response trials
were excluded from behavioral and imaging analyses. The total
points gained in the current run were displayed at the bottom of
the screen throughout the task.

This task consisted of eight runs of 40 trials each. The
participants were instructed to gain as many points as possible.
Additionally, the participants were informed that at each trial,
one color was more likely to lead to high reward than the other
color. Further, we told participants that the more highly rewarded
color would reset at the beginning of each run, and might change
during the course of a run. Unbeknownst to the participants,
at any trial, the sum of the two colors’ probabilities of getting
a high reward was always 1. This constraint was used to keep
the chance level of getting high reward at 50%. In order to

1http://psychtoolbox.org/
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FIGURE 1 | Task, experimental design and the graphical representation of the flexible learning model. (A) An example trial. Two color squares were presented on the
screen for an interval, during which the red square was chosen, causing the green square being removed from the screen. The choice of the red square resulted in a
gain of five points, which was displayed on the screen after the interval. The trial ended with a presentation of a fixation cross. (B) The four different time courses of
the probability of getting high reward by selecting the red square used in this task. (C) The graphical representation of the generative model. Each node represents
the state of a model variable. The edges show the flow of the information.

create a wide range of high reward probabilities for the more
rewarded color, we created two conditions (four runs for each
condition, with the order of runs counterbalanced both within
and across participants, Figure 1B): In a hard run (i.e., probability
shifted within a run thus making the more rewarded color
difficult to track), the underlying probability of getting a high
reward by selecting the red square, changed every four trials,
either in the order of 0.2, 0.4, 0.6, 0.8, 0.6, 0.4, 0.2, 0.4, 0.6, 0.8,
or its reverse. In an easy run, this probability of getting high
reward by selecting the red square remained fixed at 0.2 or 0.8
(two runs for each probability) throughout the run. This design
ensured that the mean probability of getting high reward by
selecting either color constantly was 0.5 (because the two colors
were equally likely to be the more rewarding one) across this
task.

Procedure
All participants gave written informed consent before
participating in the study. They then read the instructions
for the task, performed a practice run to ensure that they
understood the task, and underwent the scanning session. The
scanning session consisted of one anatomical scan, eight runs
of functional scans while the participants performed the task,
one resting-state functional scan, and one diffuse tensor imaging
(DTI) scan. The resting-state and DTI scans were not used in
this study. After the scanning session, the participants received
monetary compensation (a fixed amount for participation and a
variable amount based on the score of a randomly selected run).

Dynamic Analysis
In order to assess how trial history modulated future choices of
color, and whether/how this modulation changed as a function
of the reward received at the most recent trial, we conducted
a response dynamic analysis (Lau and Glimcher, 2005). We
started by dividing all trials into two sets, depending on whether
the reward received at the previous trial was high or low.
Subsequently, for each set, we constructed a linear model in the
following form:

sn = cn−1 sn−1 + cn−2 sn−2 (1)

where sn, sn−1, and sn−2 represented the color choice (red = 1,
green = −1) at trial n, n−1, and n−2, respectively. This model
only considered the two most recent trials, because of the fact
that, in hard runs, the reward probability changed every four
trials. For each set, we used this model and behavioral data to
estimate cn−1, and cn−2, which were the dependence of the choice
at trial n on trial n−1 and n−2, respectively. To estimate cn−1, and
cn−2, a design matrix with two regressors was constructed. The
two regressors represented normalized trial-wise color choice
in the past trial and two trials ago. This design matrix was
then regressed against the vector encoding normalized trial-
wise color choice to obtain estimates of cn−1, and cn−2. In
the end, we compared the cn−1, and cn−2 estimates between
the two sets (i.e., whether reward at trial n−1 was high or
low).
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The Flexible Learning Model
To simulate how individuals learn the color that leads to better a
chance of receiving high reward, we adapted the flexible control
model that Jiang et al. (2014, 2015) have shown captures the
flexible learning of control demand in a changing environment.
This flexible learning model is also structurally similar to the
model used by Behrens et al. (2007). In that study, subjects
repeatedly bet on one of two options, only one of which leads to
reward at each trial. The probability of reward may stay constant
(stable condition) or flip (volatile condition). To simulate the
task, the Behrens et al. (2007) model tracks the belief of the
volatility (rate of change in reward probability) and the belief
of reward probability. After each trial, the winning option
is revealed to the model. Using this information the model
updates the beliefs based on Bayesian inference. Crucially, the
participants’ choices are not used in the model. In practice,
even given the same trial sequence, different participants are
likely to produce different patterns of behavior due to their
different mental states (e.g., the belief of volatility and which
option is better). However, in this case, due to the fact that the
models in Behrens et al. (2007) and Jiang et al. (2014) do not
use subjects’ behavior to infer the mental states, these models
are unable to account for individual differences in behavior
and will yield identical model estimates of mental states for all
participants. To account for individual differences, the present
model includes the participants’ choices of colors, which reflect
the participants’ specific beliefs about the states of the task.
Therefore, when two participants underwent the same trial
sequence but produced different choices, the present model
would consider the differences in choices and produce different
model estimates.

The flexible learning model represented in Figure 1C has five
variables, namely (1) the flexible learning rate, α, that quantifies
the model’s (or a participant’s) belief concerning the relative
weight of the most recent information (i.e., reward and choice
of color observed) in learning; (2) the probability, p, of the red
square leading to high reward; (3) observed selection of color, s
(either 0 or 1, coded to correspond to green or red, respectively);
(4) observed reward, r (either 0 or 1, coded to correspond to
low or high reward, respectively), and (5) observed outcome, o,
which is determined by s and r and encodes whether the selection
resulted in the expected outcome (see below). The terms s and o
are included to infer the hidden model belief states of α and p. The
subscript i denotes the state of a variable at trial i. The dynamics of
the distribution of learning rate across trials is defined such that
the transition of the flexible learning rate is most likely to remain
in its previous state; if it changes state, however, it is equally
likely to jump to any other value, following a uniform probability
distribution

p(αi+1|αi) = 1 − k + kδ (αi+1 − αi) (2)

where k is the probability of the learning rate remaining the same
as on the previous trial and 0 < αi, k < 1. δ(αi+1 − αi) equals to
1 if αi+1 is the same as αi and equals to 0 otherwise.

Given the random sequencing of the task, it is not possible
to make a precise prediction of the more rewarding color (e.g.,

predicting that the probability of the more rewarding color being
red is 0.8 with 100% certainty, whereas this probability has
0 chance to be 0.799 or 0.801). Hence the prediction should
be approximate, leading to a smooth distribution of pi. For
example, a high likelihood of pi being 0.8 should also imply
a high likelihood of pi at values close to 0.8. Hence, we used
a propagation process to smooth the distribution of pi in the
following manner:

vi+1 =
1
αi+1

− 2 (3)

pi+0.5 ∼ Beta
(
pivi+1 + 1, vi+1 − pivi+1 + 1

)
(4)

where pi+0.5 denotes the belief of the red color being the more
rewarding color after the propagation process.

Up to this point, this model is identical to the flexible
control model. The choices of equations and processing steps
have been validated in Jiang et al. (2015). The following steps
were conceptually similar to the flexible control model and were
tailored to suit the current task. Specifically, after propagation,
pi+0.5 is updated using a standard reinforcement learning rule
with αi+1 playing the role of learning rate:

pi+1 ∼ pi+0.5 + αi+1 (oi − pi+0.5) (5)

where oi denotes the outcome at trial i. Thus, oi is 1 (i.e.,
supporting that the red color is associated with a better chance
of obtaining high reward) when the chosen color is red and the
reward is high, or when the chosen color is green and the reward
is low. Otherwise, oi is 0, indicating that the outcome does not
support the red color being the more rewarding color. At this
point, the expectation of distributions p(pi+1) and p(αi+1) are
used, respectively, as estimates of the probability of the red square
being the more rewarding one and the learning rate for behavioral
and fMRI analyses.

When the actual selection and outcome were observed, the
model beliefs were updated in the following manner:

p
(
k, αi+1, pi+1|s1, . . . , si+1, o1, . . . , oi+1

)
∝ p

(
k, αi+1, pi+1|s1, . . . , si,, o1, . . . , oi

)
p(si+1, oi+1|pi+1) (6)

where

p
(
si+1, oi+1|pi+1

)
= p(oi+1|si+1, pi+1)p

(
si+1|pi+1

)
= (1 − |oi+1 − pi+1|)(1 − |si+1 − spi+1|) (7)

In Eq. (7), |oi+1 − pi+1| quantified the discrepancy between
estimated and actual outcomes; and |si+1 − spi+1| quantified the
discrepancy between estimated and actual human behavior (i.e.,
actual selection of color, please see Eq. (8) for the definition of
sp), which was then used to fit the model to human behavior
in order to better infer the participant’s mental states and
accounts for individual difference in reward learning. Therefore,
p
(
si+1, oi+1|pi+1

)
integrated the prediction error of the outcome
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and the prediction error of behavior (i.e., which color was
selected), in order to infer the participants’ internal states.

Using Eqs. (6 and 7), we updated the joint distribution of
k, αi+1, pi+1 with new observations si+1, ri+1 and oi+1. This
updated joint distribution was then fed into the simulation of the
next trial (i.e., trial i+2).

To apply this model to simulate a participant’s behavior,
the participant’s trial-by-trial color selections and the received
reward were submitted to this model to generate trial-by-trial
estimates of αi and pi. Specifically, the model maintained a
joint distribution of p(k, αi, pi), which initialized as a uniform
distribution at the beginning of each run. The distribution of a
single variable, such as p(αi), could be calculated by marginalizing
the joint distribution. At the beginning of trial i, we used
Eqs. (2–5) to update p

(
k, αi, pi

)
and produce estimates of αi

and pi. After the reward and the participant’s choice of color
were observed, Eqs. (6 and 7) were applied to update the joint
distribution of p

(
k, αi, pi

)
. The simulation then entered the

next trial. Note that in the flexible learning model, αi and pi
represent random variables (i.e., probabilistic distributions). As
mentioned above, in the following analyses, we only used the
mean values of αi and pi. So, from this point on, we refer αi
and pi to the mean of their corresponding random variables
in order to keep the description of the methods and results
concise.

After the trial-wise estimates of αi and pi were generated, the
model’s prediction of the probability of selecting the red color
at trial i, or psi was determined using the following softmax
function:

psi =
1

1+ e−(β1 + β2pi)
(8)

Where β1 and β2 were hyper parameters that were estimated
by fitting psi to the actual choices of color made by each
participant.

Similar to Jiang et al. (2015), the flexible learning model and
the softmax function were estimated iteratively using an EM
algorithm. This algorithm started with p = ps and estimated trial-
wise αi and pi based on Eq. (2–7) (E step). Then si and the
estimates of αi and pi were used to estimate psi, β1 and β2 (M
step), which were used in the E step in the next iteration. These
two steps continued until the estimates of the hyper parameters
converged. In this study, we implemented these procedures using
Matlab. The scripts are available on request.

Model Validation
To probe whether the flexible learning model accounted for
behavioral data (i.e., actual color choices) better than typical,
non-flexible reinforcement learning models, we performed model
comparisons among four models: (a) the flexible learning model,
(b) a reinforcement learning model with one fixed learning rate
(RL_1 model), (c) a reinforcement learning model with one fixed
learning rate for easy conditions and one for hard conditions
(RL_2 model), and (d) a reinforcement learning model (PE-M)
whose learning rate scales with the magnitude of prediction
error (i.e., the learning rate is α|r − p|, where α is a base
learning rate and |r − p| is the prediction error magnitude based
modulation on α), which is similar to Pearce and Hall (1980).

For models (b–d), the optimal learning rate(s) were obtained by
an exhaustive search in the range of 0.01–0.99 (step size = 0.01)
for each participant. Each reinforcement learning model was also
connected to a softmax function to predict behavior. The free
parameters in these softmax functions were estimated similarly
to the softmax function in the flexible learning model. Thus,
the flexible learning model had two free parameters (β1 and β2)
for each participant; the RL_1, RL_2, and PE-M models had
three (one learning rate plus β1 and β2), four (two learning
rates and β1 and β2), and three (one base learning rate plus
β1 and β2) free parameters, respectively. Thus, compared to
the flexible learning model, the RL_1 and RL_2 models had
one and two more free parameters (i.e., the learning rates),
respectively.

In order to control for over-fitting and to provide generalizable
results, we conducted cross-validation, which is a common
practice in assessing learner performance in machine learning
and multi-voxel pattern recognition. Specifically, we divided the
runs into two-fold. For the flexible learning model and RL_1
model, each fold consisted of data from two easy runs and two
hard runs; for RL_2 model, easy and hard runs were processed
separately, so each fold had two runs from the same difficulty
condition. To assess model performance, one-fold served as the
training set to estimate the free parameters that best accounted
for the training set. These estimated free parameters were then
applied to the other fold (test set) to produce a trial-by-trial
sequence of simulated probability of choosing the red color.
Because the training and test sets were independent, this cross
validation effectively reduced over-fitting. We repeated this
procedure after exchanging the training and test sets. In the end,
each model had a simulated trial-by-trial probability of choosing
the red color. The performances of these simulations were then
compared across models: For each model and each participant,
we calculated the Bayesian information criterion (BIC) in the
following manner:

BIC = nln
(
σ2

e
)

(9)

where n is the number of trials and σ2
e is the error

variance (Priestley, 1981) between model simulations and human
behavior. Importantly, in calculating the BIC, we omitted the
penalty for having additional free parameters, so that we only
compared how well each model accounts for the behavioral data.
It should be noted that this omission did not give the flexible
learning rate any advantage in the model comparison, because
it indeed had fewer free parameters than the other models.
According to the definition of BIC, smaller prediction errors
translated into lower BIC values, so the model with the lowest
BIC had best performance.

Statistical Analyses on Behavioral and
Model Data
Repeated measure ANOVAs, two-tailed t-tests, and linear
correlation analysis were conducted using SPSS or Matlab to
analyze the behavioral and model data (see below for details).
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Image Acquisition
Images were acquired on a GE MR750 3.0T scanner. The
anatomical images were scanned using a T1-weighted axial
sequence parallel to the anterior-commissure-posterior
commissure line. Each anatomical scan had 156 axial slices
(spatial resolution = 1 mm × 1 mm × 1 mm, field of
view = 256 mm × 256 mm, time repetition [TR] = 8.124 ms).
The functional images were scanned using a T2∗-weighted
single-shot gradient EPI sequence with a TR of 2 s.
Each functional volume contained 43 axial slices (spatial
resolution = 3.75 mm × 3.75 mm × 3.3 mm, field of
view = 240 mm × 240 mm, TE = 28 ms, flip angle = 90◦). Each
fMRI run lasted for 416 s (208 TRs). During image acquisition,
software monitored head movement in real-time. When the head
movement exceeded 3 mm or 3◦ within a run, the scanning for
that run was re-started using a new trial sequence.

Image Analysis
The images were preprocessed using SPM122. The first five
volumes of each run were discarded before preprocessing. The
remaining volumes were first realigned to the mean volume
of the run, and went through slice-timing correction. The
anatomical scan was co-registered to the mean volume, and
then normalized to the Montreal Neurological Institute (MNI)
template. The normalization parameters were applied to the slice-
time corrected functional volumes, which were resampled to
the spatial resolution of 3 mm × 3 mm × 3 mm). Finally, the
resampled functional volumes were smoothed using a Gaussian
kernel (FWHM= 8 mm).

We carried out a general linear model (GLM)-based analysis
on the preprocessed fMRI data at each voxel for each individual
(i.e., first-level analysis in SPM). This GLM consisted of up to 10
regressors, divided into three groups. The first group consisted
of three regressors time-locked to the onset of the color squares
at each trial: the stick function of each trial; α (the lack of a
subscript indicates that this variable refers to the trial-by-trial
time course of this variable); and the predicted reward probability
of the chosen color (i.e., p or 1 − p, if the participant later
chose red or green, respectively). We chose to time-lock α to
the onset of the color squares to ensure that by that time the
learning rate had been updated. The second group consisted of
five regressors time-locked to the onset of the feedback at each
trial: the stick function; the reward feedback, r; the signed reward
prediction error, pe (r − p if red square was chosen, r − 1 + p
if green square was chosen); the updating in learning, α× pe;
and the α× r interaction that accounted for the behavioral
pattern of post-high reward increase of learning rate (see below).
The last group consisted of two regressors time-locked to the
response at each trial: the stick function and the response (left
or right). All regressors were concatenated across the eight
runs of this experiment. The regressors were also normalized
to remove the confounds from mean and magnitude. The time
courses of model estimates (e.g., α, p) were obtained using the
model parameters fit at the individual level. Therefore, the fact
that the imaging analyses included fewer participants than the

2http://www.fil.ion.ucl.ac.uk/spm/

behavioral analyses did not change the model estimates for each
participant.

To gauge the encoding strength of a variable (represented
as a regressor), its regressor was first regressed against other
regressors in the same group (i.e., sharing the same onset time)
to remove shared variance so that the results could be uniquely
attributed to the variable of interest. For example, to compute
the encoding strength of α, the trial-by-trial time course of α was
regressed against the other regressors in the same group. Then
the post-regression α replaced the original α in the GLM.

This GLM was then convolved with SPM’s hemodynamic
function and appended with nuisance parameters, including six
head movement parameters (translations and rotations relative
to x, y, and z axes) and grand mean vectors for each run to
remove run-specific baseline fMRI signal. The resulting GLM
was subsequently fit to the preprocessed fMRI data to estimate
the coefficient for the variable of interest’s parametric modulator,
which reflected the variable’s encoding strength (one estimate at
each voxel of each individual’s data). To remove nuisance results
at white matter and cerebrospinal fluid voxels, the statistical
results were filtered using a gray matter mask obtained by
segmenting the template and only keeping voxels with gray
matter concentrations greater than 0.01. Finally, we conducted
group-level t-tests on the estimates of encoding strength across
participants to assess the group-level encoding strength (i.e.,
second-level analysis in SPM).

Control for Multiple Comparisons
Statistical results were corrected for multiple comparisons at
P < 0.05 for combined searchlight classification accuracy and
cluster extent thresholds, using the AFNI ClustSim algorithm3.
Specifically, 10,000 Monte Carlo simulations were conducted,
each generating a random statistical map based on the
smoothness of the map resulting from the group-level t-tests.
For each randomly generated map, the algorithm searched
for clusters using a voxel-wise P-value threshold of <0.001.
The identified clusters were then grouped to produce a null
distribution of cluster size. As a result, the ClustSim algorithm
determined that an uncorrected voxel-wise P-value threshold
of <0.001 in combination with a searchlight cluster size of
78–84 voxels (depending on the specific contrast) ensured a false
discovery rate of<0.05.

RESULTS

Behavioral Results
Twenty-seven participants performed the reward learning task
(see Materials and Methods). At each trial, participants chose
between a red square and a green square, and received either
a high or a low reward based on the probability of high
reward associated with the chosen color. Importantly, at each
moment, one color had a better chance leading to a high
reward than the other color (the sum of the two probabilities
was always 1). In order to maximize reward, the participants

3http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html
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must learn which color was more rewarding. To create a
wide range of belief regarding the more rewarding color,
the task contained two conditions. In the “easy” condition,
the more rewarding color and its probability of yielding
high reward remained constant at 80% throughout a run.
Conversely, in the “hard” condition, the more rewarding color
and its probability of obtaining high reward varied across time
(from 20 to 80%, step size = 20%). Across the whole task,
each color had a 50% chance of being the more rewarding
color.

Participants chose the more rewarding color more frequently
than chance-level (i.e., 50%) for both conditions: easy condition:
84.0 ± 1.5%, t(26) = 23.05, P < 0.001, one-sampled t-test; hard
condition: 60.5 ± 1.2%, t(26) = 9.12, P < 0.001, one-sampled
t-tests (Figure 2A). Those outcomes indicate that participants
followed the task instructions to learn the more rewarding
color. Additionally, participants chose the more rewarding color
more frequently in the easy condition than the hard condition,
t(26)= 13.80, P < 0.001, paired t-test (Figure 2A).

To further probe how the participants adjusted their choice
of color based on the reward received, we tested the frequency
of the participants repeating their previous color choice. Because
the more rewarding color was more likely to remain the same
as on the previous trial than to switch to the other color, the
participants should repeat their choices more frequently than
chance level (50%). As expected, the overall frequency of choice
repetition was significantly higher than chance [68.4 ± 1.8%,
t(26) = 38.10, P < 0.001, one-sampled t-test]. To further test
the differences in the frequency of choice repetition among
experimental conditions, we conducted a repeated measure 2
(received reward: high, low) × 2 (difficulty: easy, hard) ANOVA
(Figure 2B). This ANOVA revealed a significant main effect of
received reward, F(1,26) = 291.74, P < 0.001, driven by a higher
frequency of repeating color choice after receiving a high reward
(89.3 ± 1.8%) than after receiving a low reward (47.6 ± 2.6%),
suggesting that high reward enhanced the participants’ belief that
the selected color was the more rewarding one. The main effect
of difficulty was also significant, F(1,26) = 69.37, P < 0.001,
driven by higher likelihood of repeating color choice in easy
condition (72.2± 1.8%) than hard condition (64.7± 2.0%). This
difference possibly reflected the fact that the more rewarding
color changed more frequently in hard than easy condition.
The reward type × difficulty interaction was not significant
[F(1,26)= 0.66].

We also conducted an additional dynamic analysis (Lau and
Glimcher, 2005) that compared how the choice of color at trial
n relied on the interaction between trial history and the reward
received at trial n−1 (Browning et al., 2015). The results are
shown in Figure 2C: although the contribution of color choice
at trial n−2 to color choice at trial n did not vary as a function
of reward feedback at trial n−1, t(26) = 0.31, paired t-test, the
contribution of color choice at trial n−1 differed significantly
between reward feedback levels, t(26) = 17.16, P < 0.001,
paired t-test. Specifically, when receiving a high reward at trial
n−1, color choice at trial n−1 had a positive influence (i.e.,
promoting choice repetition) on the choice at trial n, reliance:
0.72± 0.04, t(26)= 20.30, P < 0.001, one-sample t-test, whereas

this influence became negative if the reward was negative (i.e.,
promoting choice change), reliance:−0.12± 0.04, t(26)=−3.00,
P = 0.006, one-sample t-test. This analysis again confirmed that
the reward received at the current trial modulated how likely the
choice would be repeated at the forthcoming trial.

In hard runs, it may be possible that the participants became
aware of the change patterns of the rewarding probability and
proactively altered their learning rate to adapt to the change. If
this were true, task performance in hard runs should increase
with time on task. We conducted a repeated-measures one-
way ANOVA on the four hard runs’ probability of choosing
the more rewarding color, and did not find a significant
change of performance across runs, F(3,24) = 0.08 (Figure 2D).
Furthermore, we tested the effect of within-run learning of
change patterns. To this end, we compared the probability of
choosing the more rewarding colors among the three trials (No.
9, 21, and 33; Figure 1B) that are immediately after the change
of the more rewarding color (i.e., p changed from 0.4 to 0.6 or
vice versa). If the participants learned the change patterns and
proactively adjusted to the change, we expected an increase in
the probability of choosing the more rewarded color across the
three trials. However, a repeated-measures one way ANOVA did
not find any effect, F(2,25) = 0.08 (Figure 2E). Collectively, the
participants appeared not to be able to apply the change patterns
to boost their performance in this task.

A closer look at the time course of the participants’ choices
(Figure 2F) showed that, in easy runs, the probability of
choosing the more rewarded color kept increasing, suggesting the
participants readily learned the underlying reward probability.
However, the probability of choosing the more rewarded color
fluctuated in hard runs, due to the change of the underlying
reward probability. A general trend in the hard condition was a
sudden drop in the ability to identify the more rewarded color
following the change of the more rewarded color (i.e., after trials
#9, 21, and 33, similar to Figure 2E), and a gradual recovery that
suggests that the participants continued to learn the current more
rewarded color.

Model Comparison
In order to model human behavior in this task and to infer
latent learning related states, we employed a flexible learning
model (see Materials and Methods) that self-adjusts the learning
rate, α, and the belief that the red color was the more rewarded
color, p, based on observed color choice and received reward.
To ascertain that this model accounted for the behavior better
than conventional reinforcement learning models, we conducted
a model comparison analysis among the flexible learning model
and reinforcement learners with one fixed learning rate (RL_1),
reinforcement learners with two fixed learning rates (RL_2, one
learning rate for each difficulty condition), and reinforcement
learners whose learning rate scales with the magnitude of
prediction error (PE-M). The flexible learning model accounted
for trial-by-trial color choice best in the four models (i.e., the
flexible learning model had the lowest BIC) for all participants
(Figure 3A). Therefore, we concluded that the flexible learning
model explained variance in human behavior better than
conventional reinforcement learners in this task. Consequently,
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FIGURE 2 | Behavioral results. (A) Group mean ± standard error of the percentage of choosing the more rewarding color, plotted as a function of run difficulty.
(B) Group mean ± standard error of the percentage of repeating the previous trial’s choice, plotted as a function of reward magnitude and run difficulty. (C) Group
mean and standard error of the dependence of the choice at trial n on choice history, plotted as a function of whether a high reward was received at trial n−1 and
trial n−2. (D) Group mean and standard error of the percentage of choosing the more rewarding color, plotted as a function of the temporal order of hard runs.
(E) Group mean and standard error of the percentage of choosing the more rewarding color, plotted as a function of the three trials (No. 9, 21, and 33) that
immediately follow the change of the more rewarding color in hard runs. (F) Group mean and standard error of the percentage of choosing the more rewarding color,
plotted as a function of trials in easy and hard runs separately.

we focused on the flexible learning model in the following
analyses.

Model-Based Behavioral Analysis
The flexible learning model generated trial-by-trial estimates of
α and p, which drove the learning of the more rewarding color
(Figure 3B). To test whether these model estimates reflected
behavioral patterns, we first conducted a repeated measures 2
(chosen color: red, green)× 2 (difficulty: easy, hard) ANOVA on
the p estimates (Figure 3C). That analysis revealed a significant
main effect of color choice, F(1,26)= 507.48, P < 0.001, whereby
red square choices were associated with higher p estimates (i.e.,
stronger belief that red was the more rewarding color) than
green square choices, with p estimates in red square choices:
0.64 ± 0.01 and estimates in green square choices: 0.36 ± 0.01.
This result matches the model’s specification that p was associated
with the red square. In other words, this result showed that
the participants tended to choose the more rewarded color
predicted by the model. Additionally, we discovered a significant
interaction between chosen color and difficulty, F(1,26)= 177.49,
P < 0.001, driven by a smaller effect of chosen color on p
estimates in hard (0.35± 0.01) than easy (0.21± 0.01) conditions.
This reduced effect may reflect the fact that the more rewarded
color was more difficult to learn in the hard condition. The
main effect of difficulty was not significant. Next, to confirm that
p guided the prediction of chosen color in the right direction,
we found that the responsible parameter β2 (see Materials and

Methods) was greater than 0 for all participants (i.e., higher p
leads to higher probability of choosing the red square; range:
4.5–25.0).

Recall that participants repeated the choice of color more
frequently following a high reward than a low reward. The flexible
learning model accounted for this result in two ways: First, the
pattern of simulated probability of repeating the previous choice,
calculated by applying trial-based p estimate to Eq. (8), then
comparing the result to the previous choice, should resemble
Figure 2B. Second, the model accounts for this observation by
increasing α after high reward to augment the current selection’s
influence on selecting (the same) color in the next trial. To
test these model predictions, we conducted separate 2 (received
reward: high, low) × 2 (difficulty: easy, hard) ANOVAs on the
probability of repeating the previous choice (Figure 3D) and
α estimates (Figure 3E). Similar to the behavioral results, the
first ANOVA yielded a significant main effect of both reward
type, F(1,26) = 384.22, P < 0.001, driven by a higher likelihood
of repeating a color choice after high reward (90.0 ± 1.7%)
than low reward (47.2 ± 1.2%); and a main effect of difficulty,
F(1,26) = 20.11, P < 0.001, driven by a higher likelihood of
repeating color choice after an easy condition (70.2± 1.4%) than
hard condition (67.1± 1.5%). The interaction was not significant
[F(1,26)= 0.19].

Also consistent with the model prediction, the second
ANOVA revealed a main effect of reward type, F(1,26) = 265.37,
P < 0.001; learning rate estimates were higher after high reward
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FIGURE 3 | Model-based behavioral results. (A) Model comparison results. From left to right, each bar represents group mean Bayesian information criterion (BIC)
and mean standard error of the flexible learning model (FLM), reinforcement learning model with one (RL_1) learning rate and two (RL_2) learning rates (one for each
level of difficulty), and a reinforcement learning model whose learning rate scales with the magnitude of prediction error (PE-M). (B) Sample time courses of the
learning rate and the expected probability that high reward for the red square. The locations of asterisks indicate high or low reward received at each trial. (C) Model
belief that red was the more rewarding color, plotted as a function of difficulty and the chosen color. (D) Model simulation of the percentage of choice repetition,
plotted as a function of reward magnitude and difficulty. (E) Model belief of the learning rate, plotted as a function of reward magnitude and difficulty. (F) Individual
increments of the probability of choice repetition (following high reward minus following low reward), plotted against the individual increments (following high reward
minus following low reward) of the model estimates of the learning rate. The dotted line depicts the trend line.

(0.167± 0.002) than low reward (0.150± 0.001). No other effects
were significant, F(1,26) < 2.76, P = 0.11. As a control analysis,
we also tested whether the prediction error of reward is a better
predictor than the magnitude of reward for selecting the same
response in the next trial, given their high correlation. To this
end, we used a binary vector to represent whether the color
selection was repeated in the next trial for each participant; and
compared how much variance in this vector could be explained
by trial-wise reward magnitude vs. trial-wise prediction error
of reward. For all participants, reward magnitude was a better
predictor than prediction error (additional variance explained
by reward magnitude ranged from 2.5 to 13.5%). The results
supported the notion that reward magnitude is a more likely
driving factor for repeating selection than reward prediction
error.

Finally, to test how α accounted for individual differences in
repetition of color choice, we conducted the linear correlation
analysis between the increase of α (high reward – low reward) and
the increase of the frequency of choice repetition (high reward –
low reward) across participants, and found a strong positive
linear correlation (r = 0.86, P < 0.001; Figure 3F). Note that in

Eq. (2), we did not constrain which way the learning rate should
go conditioned on the type of reward (high or low) received (i.e.,
the model is not pre-defined to show the increase of learning rate
following high reward). Furthermore, the same model was fit to
individual behavior data. Therefore, the individual difference in
the amount of learning rate increase following high reward is
solely attributable to the participants’ behavior. In other words,
the results in Figure 3F indeed indicate that the change in the
likelihood of choice repetition was captured by the change in
learning rate estimates. Given that the flexible learning model
takes the participants’ choices of colors as input in order to
account for individual differences, this model revealed individual
differences in raising the learning rate following a high reward in
relation to a low reward. According to the reinforcement learning
algorithm, the learning rate is also the weight of the current
choice on determining the next choice. Therefore, participants’
increasing the learning rate more after a high reward than a low
reward will let a choice that led to high reward have more weight
on determining the next choice (i.e., more likely to repeat the
choice), as compared to a choice that led to low reward, thus
producing the correlation in Figure 3F.
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Taken together, these results suggested that the flexible
learning model estimates of α and p captured the behavioral
patterns. Therefore, the model provided meaningful learning-
related information for the following imaging analyses.

Imaging Results
Using trial-by-trial model estimates derived from the flexible
learning model, we examined the encoding of model variables
and their interactions in the brain, based on data obtained
from fMRI scans while the participants performed the task
(Table 1). We found that the learning rate reliably co-varied
with fMRI signals in the left IFG and adjacent anterior insula
(P < 0.05, corrected; peak MNI coordinates: −51, 17, 11,
Figure 4A). Although not statistically significant after controlling
for multiple comparisons, three scattered ACC clusters (size:
7–13 voxels) showed encoding of the learning rate at the
P < 0.001 (uncorrected) level (Figure 4A). Given that the
learning rate in the flexible learning model reflected the volatility
in the task, these ACC clusters were consistent with earlier
findings from Behrens et al. (2007). No other clusters surpassed
significance threshold.

The reward feedback was represented both positively (i.e.,
higher brain activity if reward was higher than expected) and
negatively (i.e., higher brain activity if reward was 1 point)
in the brain. Specifically, positive encoding of the feedback

was revealed in a widespread brain network, most significantly
in the MFC (P < 0.05, corrected; peak MNI coordinates: 0,
56, 17, Figure 4B) and the precuneus and posterior cingulate
cortex (PCC, P < 0.05, corrected; peak MNI coordinates: −15,
−49, 11, Figure 4B), whereas negative encoding of the reward
feedback was primarily found in the attentional control networks
(Figure 4B; all regions reported had Ps < 0.05 after correction
for multiple comparisons), including dorsal ACC (peak MNI
coordinates: −6, 26, 41), bilateral insular and surrounding IFG
(peak MNI coordinates:−30, 26,−7; 33, 23,−4), bilateral middle
frontal gyri (peak MNI coordinates: −48, 29, 32; 48, 29, 35), and
bilateral inferior parietal lobules (peak MNI coordinates: −45,
−49, 44; 45,−40, 44).

An alternative explanation was that these regions encoded the
reward prediction error, which was correlated with the reward
feedback. This is because a high reward always produces positive
prediction error and a low reward always produces negative
prediction error. One way to tease apart the contribution of
reward feedback from the contribution of prediction error would
be to regress them against each other and compare the encoding
strength of the residues. However, this regression may result
in strong anti-correlation between the residues and confound
the results. Therefore, as a control analysis, we constructed
two GLMs based on the original GLM, with one excluding
the reward prediction error regressor and the other excluding

TABLE 1 | Summary of fMRI results.

Location Peak MNI Peak t-value Cluster size (#voxels)

High reward > low reward

Middle Cingulate Gyrus, Posterior Cingulate Gyrus, Precuneus (−15, −49, 11) 11.16 787

Medial Superior Frontal Gyrus (0, 56, 17) 11.18 771

R. Precentral Gyrus, R. Rolandic Oper (33, −13, 38) 9.26 604

L. Hippocampus, L. Parahippocampal Gyrus, L. Fusiform Gyrus (−33, −37, −16) 9.36 555

R. Middle Temporal Gyrus, R. Superior Temporal Gyrus (57, 2, −10) 9.26 548

L. Middle Temporal Gyrus, L. Superior Temporal Gyrus (−51, −7, −7) 8.93 526

R. Hippocampus, R. Parahippocampal gyrus, R. Fusiform Gyrus (36, −22, −7) 10.28 449

R. Precentral Gyrus, R. Postcentral Gyrus, R. Rolandic Oper (−45, −10, 20) 9.15 360

L. Superior Occipital Gyrus, L. Middle Occipital Gyrus (−45, −79, 17) 7.77 338

R. Superior Occipital Gyrus, R. Middle Occipital Gyrus (33, −91, 8) 7.50 218

Negative encoding of reward feedback

L. Inferior Parietal Gyrus (−45, −49, 44) −7.21 306

L. Medial Superior Frontal Gyrus (−6, 26, 41) −8.7 291

R. Middle Frontal Gyrus (48, 29, 35) −6.38 282

R. Supramarginal Gyrus (45, −40, 44) −6.97 247

L. Middle Frontal Gyrus (−48, 29, 32) −7.77 106

L. Insula (−30, 26, −7) −8.43 92

R. Insula (33, 23, −4) −7.44 90

Interaction between feedback and reward prediction error

L. Orbital medial Frontal Gyrus, L. Medial Superior Frontal Gyrus (−3, 62, −7) 6.02 914

R. Precuneus, R. Posterior Cingulate, R. Fusiform Gyrus (30, −37, −16) 4.99 334

L. Fusiform Gyrus, L. Lingual Gyrus, L. Parahippocampal Gyrus (−27, −61, −4) 6.50 162

R. Superior Temporal Gyrus, R. Middle Temporal Gyrus (51, −55, 5) 4.98 150

L. Middle Temporal Gyrus, L. Inferior Temporal Gyrus (−48, −13, −16) 5.06 117

R. Rolandic Oper, R. Precentral Gyrus, R. Postcentral Gyrus (69, −10, 14) 5.09 98

Thresholds were set at P < 0.05, multiple comparisons corrected. MNI, Montreal Neurological Institute; L., left; R., right.
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FIGURE 4 | Imaging results. Positive encoding and negative encoding are shown in red and green, respectively. The ch2bet template from mricron was used to be
the reference brain to make figures from the statistical maps. (A) Encoding of the learning rate. The left panel shows the IFG/anterior insula region (P < 0.05,
corrected). The two other panels show the dACC clusters (P < 0.001, uncorrected). (B) Encoding of the reward feedback (P < 0.05, corrected). The lower left panel
shows the overlap (in purple) of the clusters in (A) and brain regions showing significantly stronger encoding of reward feedback than reward prediction error (in blue).
The lower right panel shows the overlap (in purple) of the clusters in (A) and brain regions significantly encoding of reward feedback when the reward prediction error
regressor was also included in the GLM (in blue). (C) Brian regions showing significant positive reward feedback × learning rate interaction (P < 0.05, corrected).
(D) An MFC region showing significant learning rate × reward prediction error interaction (P < 0.05, corrected).

the reward feedback regressor, and compared the encoding
strength (i.e., beta estimates) of the reward feedback with the
encoding strength of the reward prediction error throughout
the brain. By separating the regressors in different GLMs, we
addressed the anti-correlation issue by not regressing reward
feedback and prediction error against each other. The reward
feedback regressor displayed stronger encoding strength than
the reward prediction error regressor mostly in brain regions
showing positive encoding of the reward feedback (Figure 4B,
lower left panel, P < 0.05, corrected). Moreover, when both
reward feedback and reward prediction error were included in
the same model (again without regressing them against each
other) for direct comparison, the reward feedback still displayed
significant encoding strength in these regions (Figure 4B, lower

right panel, P < 0.05, corrected), whereas the reward prediction
error did not show significant encoding strength. On the other
hand, there was no significant difference in encoding strength in
the regions showing negative encoding of the reward feedback.

The key imaging analyses in this study concern how
the flexible learning rate interacts with feedback and reward
prediction error. The behavioral analysis revealed increased
learning rates following high reward. Accordingly, we tested
the interaction between the updated learning rate and the
reward feedback. Given the positive interaction (i.e., high reward
associated with high learning rate) found in the behavioral
data, we also expected this interaction to be positive in the
fMRI data. The results showed that the MFC (P < 0.05,
corrected; peak MNI coordinates: −3, 62, −7, Figure 4C)

Frontiers in Human Neuroscience | www.frontiersin.org 11 December 2017 | Volume 11 | Article 592

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00592 December 4, 2017 Time: 15:0 # 12

Wu et al. Learning Rate in Adaptive Reward Learning

and the precuneus and PCC (P < 0.05, corrected; peak MNI
coordinates: 30, −37, −16, Figure 4C) reported above also
showed positive learning rate × feedback interaction. Note that
our analysis removed variance shared between model estimates
and interactions prior to imaging analysis, so the overlapping
results reported are unlikely to be attributed to similarity
between model variables and their interaction terms. Finally,
we performed an fMRI analysis seeking brain regions encoding
the learning rate × prediction error interaction, and found
that only a left MFC region negatively encoded this interaction
term (P < 0.05, corrected; peak MNI coordinates: −3, 47, 32,
Figure 4D).

DISCUSSION

The brain adaptively adjusts its learning rate to incorporate
recent information in order to make more precise predictions
of the future. To address the question of how the learning
rate is adjusted, we applied a computational model based on
the reinforcement learning model with a flexible learning rate
to account for human behavior and brain activity in a reward
learning task. Unlike other studies (Niv et al., 2012) that traced
the reward probability for each option, the present study focused
on learning which option is more rewarding. This difference of
modeling strategy is because, regardless of the manipulation of
rewarding probability for individual options, the optimal strategy
for the task is always to select the most rewarding option. From
this perspective, a novel finding in behavioral analysis was that, in
the learning of the more rewarding color, the reward magnitude
modulated the learning rate, which further predicted a greater
likelihood that participants would repeat a previous choice after
obtaining high reward than low reward. In subsequent fMRI
analyses, this learning rate × outcome interaction was found
in brain regions where the reward feedback was also encoded.
Furthermore, to address how the learning rate mediates learning,
we probed the representation of the learning rate × prediction
error interaction, and found that the trial-by-trial fluctuation in
this interaction correlated with the fMRI activity in the MFC.

We started by validating the proposed flexible learning model.
Behavioral data was better explained by this model, as compared
to reinforcement learning models assuming fixed learning rates
(Figure 3A). This suggested that participants indeed adjusted
the learning rate during the task (Figure 3F). The result
that the flexible learning model outperformed a reinforcement
learning model whose learning rate scales with the magnitude
of prediction error also suggests that the change of learning rate
is not simply mediated by prediction error alone. The estimates
of learning rate can be influenced by response history and
the interaction between the choice of color and reward (e.g.,
repeating previous choice after high reward). This integration
also allows the model to account for individual differences
(Figure 3F).

The finding that the condition-mean learning rate did
not differ significantly between the easy and hard conditions
suggested that the learning rate adapted to changes at the trial
level rather than in a more tonic way (i.e., the block level).

This result is also consistent with the flexible learning model‘s
design principle of feedback-driven, trial-by-trial level learning.
Previous studies have shown higher estimate of learning rate
(volatility) in faster changing environment (Behrens et al., 2007;
Jiang et al., 2015). This study revealed additional contribution to
the learning rate from reward magnitude. Because the subjects
obtained higher reward in more frequently in easy condition
than hard condition, learning rate may be boosted higher in easy
condition. Taken together, the lack of difference in the learning
rate between easy and hard conditions may be a result of the
modulation of volatility and reward canceling out each other.

The fMRI analysis showed that the learning rate was encoded
in the ACC and the IFG (Figure 4A). The former finding
replicated the Behrens et al. (2007) study, which documents that
volatility (high volatility translated into high learning rate; see
Jiang et al., 2015 for details) is encoded in the ACC. The other
finding, that the learning rate was encoded in the IFG, echoes
previous studies demonstrating that the IFG activity reflects
strategy changes in reading (Moss et al., 2011) and memory-
encoding (Cohen et al., 2014). Additionally, the IFG is involved in
affective switching (Kringelbach and Rolls, 2003; Remijnse et al.,
2005), and task switching (Crone et al., 2006). The IFG finding in
the present study is also in line with the involvement of the IFG
in shifting learning rate/strategy.

A main finding in the behavioral results was that the
participants tended to choose the same color more often after
receiving a high reward than a low reward (Figure 2B). Given
the fact that the participants learned the more rewarding color
and chose it more often than chance level (Figure 2A), it is
likely that this difference of choice repetition is (in part) due
to the larger prediction error from unexpected low reward.
Additionally, this change may also be attributed to the learning
rate, which influences the updating of the prediction and hence
the choice at the next trial. This hypothesis was tested using
the flexible learning model, which treats both prediction error
and the learning rate as variables that can change after each
trial. Like the probability of choice repetition, the model estimate
of the learning rate in the subsequent trial increased with
reward magnitude. Moreover, the amount of increment in the
learning rate also predicted the increase of choice repetition
across participants, thus providing strong evidence that the
learning rate served as a mechanism leading to the more frequent
choice repetition after high reward. An alternative explanation is
that the increased prediction error magnitude that signaled the
importance of this trial led to the increase in the learning rate.
However, this explanation was not supported in that the learning
rate was indeed lower after low reward, when the prediction error
magnitude should be high (because the participants successfully
tracked the more rewarding color most of the time; Figure 2A).
According to the flexible learning model, increasing the learning
rate after receiving high reward would increase the influence
of the current high reward on future predictions of the more
rewarding color. As a result, the current color that yielded high
reward would be more likely to be selected than if a low reward
were received at the current trial. This finding is also related to
the literature of the exploration–exploitation tradeoff in reward
learning (Cohen et al., 2007), in that high reward is more likely to
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result in exploitation (i.e., repeatedly choosing the same color to
accumulate high reward).

To locate the neural substrates that support feedback
mediation of the learning rate, we first conducted an fMRI
analysis to test the encoding of the reward feedback. Large-scale
encoding of the feedback was observed (Figure 4B), including
both positive (i.e., high reward > low reward) encoding in
the MPFC, precuneus and the PCC, and negative (i.e., low
reward> high reward) encoding in the control network. Activity
in these regions is highly consistent with the findings reported
in Eppinger et al. (2013), who studied brain activity associated
with positive learning and negative learning. Specifically, positive
encoding of reward feedback may reflect reward valuation in the
brain (Grabenhorst and Rolls, 2011), whereas negative encoding
may suggest the engagement of the control network in error
processing (e.g., obtaining a low reward while anticipating a
high reward may be considered as an “error”) or performance
monitoring (Botvinick et al., 2004), or both. Given the high
correlation between the feedback and the reward prediction
error, we performed an additional control analysis by comparing
the encoding strength between the feedback regressor and the
reward prediction error regressor throughout the brain, while
keeping other regressors in the GLM. The feedback regressor
displayed stronger encoding strength in all the aforementioned
regions showing positive encoding of reward feedback, implying
a higher likelihood of the feedback being encoded than the reward
prediction error (Figure 4B). Moreover, when we included both
regressors of reward feedback and reward prediction error in the
same GLM, only the former showed significant encoding in the
reported regions (Figure 4B). Therefore, the reported regions in
Figure 4B were more likely to represent reward feedback than
reward prediction error.

Our reported regions did not include striatum, which has been
shown by other research to encode prediction error (O’Doherty
et al., 2003; Seymour et al., 2004; Pessiglione et al., 2006; Glascher
et al., 2010; Jocham et al., 2011; Zhu et al., 2012; Eppinger et al.,
2013). We speculate that this lack of striatum finding is because,
as we have shown, these regions were likely to encode reward
feedback rather than reward prediction error. Although reward
feedback and reward prediction error were highly correlated,
the latter was defined as the difference between reward feedback
and the prediction from the learning model. Therefore, reward
feedback, as compared to reward prediction error, may be less
involved in learning and prediction, and in turn less likely to
be represented in the striatum that supports prediction from
learning (Jiang et al., 2015).

We then performed an independent analysis seeking the
brain regions encoding the interaction between the reward
feedback and the learning rate that integrated this feedback (via
prediction error), and found high degree of overlap between
regions encoding this interaction and regions positively encoding
the reward feedback (Figure 4C). Moreover, these results shown
in Figure 4C were obtained after removing the shared variance
with these two variables, thus excluding the confound of their
correlation. Interestingly, the direction of the interaction in these
regions was also in line with the positive encoding of reward
feedback (Figure 4C), which further suggested that the feedback

played an important role in mediating the learning rate in
these regions. Therefore, these results, when combined together,
strongly supported the notion that the learning rate was updated
as the feedback was processed.

In a final set of analyses, we examined the integration of the
learning rate and the reward prediction error, and discovered an
interaction between the learning rate and the reward prediction
error in the MFC. Surprisingly, that interaction is negative: For
example, when keeping the learning rate constant, fMRI activity
decreased as the reward prediction error increased. Nevertheless,
an explanation for this negative interaction was that prediction
error could be encoded reversely by MFC neurons that signaled
negative prediction error (e.g., receiving low reward while high
reward was expected: Amiez et al., 2006; Matsumoto et al.,
2007; Oliveira et al., 2007; Jessup et al., 2010). Consistent with
this explanation, our fMRI results showed higher activity in the
ACC (which is usually considered as part of the MFC) for low
reward feedback (corresponding to negative prediction error,
Figure 4B). Moreover, (Jessup et al., 2010) demonstrated that
fMRI activity in the MFC is higher when participants lose in
a trial in a gambling task. Interestingly, higher MFC activity
when losing only occurs when participants were more likely
to win than lose, which was exactly the case in the task used
in the present research (Figure 2A). Similar findings showing
adaptive learning have also been reported in other domains of
learning. For example, based on a multi-level Bayesian model that
accounts for multiple forms of uncertainty (Mathys et al., 2011;
Iglesias et al., 2013) showed that prediction error is modulated
by perceptual precision in sensory learning. Moreover, Iglesias
et al. (2013) also reported activity in an MFC region, similar to
that illustrated in Figure 4D, that encodes precision-modulated
prediction error.

In addition to showing that the integration of learning rate
and prediction error co-varies with neural signals in MFC,
Chien et al. (2016) demonstrated that fMRI signals from two
striatum regions that separately represent learning rate and
reward prediction error jointly account for fMRI signals in the
ventral MFC, in which the reward prediction was represented.
This finding further links the integration of learning rate and
prediction error to the updating of reward prediction. Published
results and our own collectively suggest that MFC may serve
the function of modulating prediction error-driven updating of
future predictions across different domains of learning.

The MFC is involved in multiple cognitive functions, such as
error and control monitoring (Botvinick et al., 1999, 2001, 2004),
speed-accuracy tradeoff (Yeung and Nieuwenhuis, 2009), reward
learning (Rushworth and Behrens, 2008; Jessup et al., 2010),
decision making (Rushworth et al., 2004), and social cognition
(Amodio and Frith, 2006). Recent modeling work that attempts
to summarize the role of the MFC in those functions stresses
the importance of learning in MFC functions (Alexander and
Brown, 2011; Silvetti et al., 2011). In particular, prediction error is
considered as the driving force of learning. Our findings further
extend this notion by showing that (a) the MFC encoded the
modulation of the reward feedback on the learning rate, and
(b) the MFC is also involved in adaptive learning, such that the
impact of the prediction error on learning can be flexibly adjusted
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based on factors such as the reward feedback and the volatility
(i.e., rate of change in the environment). Therefore, the learning
mechanism can determine how important and reliable (or both)
the new piece of information is, and adjusts its weight in the new
prediction accordingly.

The fMRI activity patterns showing representation of reward
magnitude and its interaction with the learning rate in MFC
and PCC overlap the default mode network. We speculated that
this overlap may be related to a possible function of the default
mode network of supporting internal simulations while ignoring
external stimulation (Buckner et al., 2008). That is, the default
mode network may be more engaged to support the simulations
of performing future trials after high reward and when both
reward and learning rate were high.

We employed two conditions with different degrees of
difficulty in this task. The difficulty manipulation affected both
behavioral (Figure 2B) and simulation (Figures 3C,D) data.
Consequently, could difficulty be a confounding factor for the
results reported? A closer look at the experimental task revealed
that task difficulty consisted of two aspects: First, the hard
condition included both a change of the more rewarding color
and its rewarding probability. In the flexible learning model, this
difference was accounted for by the flexible learning rate that
adapted to the change in the environment. Second, the hard
condition included additional rewarding probabilities of 0.4 and
0.6, which were, by definition, more ambiguous than probabilities
of 0.2 and 0.8 in inferring which color was more rewarding.
In other words, probabilities of 0.4 and 0.6 would generate
larger reward prediction errors than probabilities of 0.2 and 0.8.
Reward prediction error was also modeled by the flexible learning
model. Therefore, both aspects of difficulty manipulation in this
task have been accounted for. In other words, in this task, we
attempted to use learning models to quantify and integrate the
effects of abstract factors such as difficulty and change in the
environment, so that behavior and neural activity patterns may be
parsimoniously explained by concrete, quantifiable factors such
as learning rate and reward prediction error.

One caveat of this study is that the task only used two levels
of reward magnitude, which resulted in correlation between

reward magnitude and reward prediction error. In addition,
given that the goal of this study is to maximize reward, obtaining
a low reward can be seen as the outcome of an “incorrect”
response, which may further drive learning through prediction
error. Even though we alleviated this confound by conducting
additional behavioral and fMRI control analyses to show that
reported results were better explained by reward magnitude
than reward prediction error, an experimental design that varies
reward magnitude on a trial-by-trial basis can de-correlate these
two factors in the first place, and thus would be a better option
than a design with only high vs. low reward.

CONCLUSION

Our findings provide novel evidence suggesting that, in order to
achieve the goal of accumulate more reward, the reward feedback
(high or low reward) mediated learning rate; and the learning rate
further drove the reward prediction error to update the future
decision. Importantly, the MFC seems to underlie both functions.
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