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Cognitive performance is defined as the ability to utilize knowledge, attention, memory,

and working memory. In this study, we briefly discuss various markers that have been

proposed to predict cognitive performance. Next, we develop a novel approach to

characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our

findings are based on a sample of 24 subjects. The subjects were given a 5-min resting

period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1

and Fp2 electrodes. We found that scale exponents estimated for blink rate variability

during rest were correlated with subjects’ performance on the subsequent IQ test.

This surprising phenomenon could be explained by the person to person variation in

concentrations of dopamine in PFC and accumulation of GABA in the visual cortex,

as both neurotransmitters play a key role in cognitive processes and affect blinking.

This study demonstrates the possibility that blink rate variability dynamics at rest carry

information about cognitive performance and can be employed in the assessment of

cognitive abilities without taking a test.

Keywords: eye-blink rate variability dynamics, cognitive performance, dynamics of inter-blink intervals, blink-rate

variability

1. INTRODUCTION

A search1 request for the keyword “IQ” at http://pubmed.gov currently returns 19,599 results,
with the number of articles growing every year. Obviously, the study of intelligence has been and
continues to be a hot topic of research. Since Alfred Binet developed the first practical Intelligence
Quotient (IQ) test (Becker, 2003), many forms of intelligence have been distinguished. Neisser et al.
(1996) defined intelligence as the “ability to understand complex ideas, to adapt effectively to the
environment, to learn from experience, to engage in various forms of reasoning, [and] to overcome
obstacles by taking thought.” Later, Gardner (1999) gave a broad definition of intelligence, as being
a “biopsychological potential to process information that can be activated in a cultural setting to
solve problems or create products that are of value in a culture.” Clearly, this definition encapsulates
various ways of defining intelligence.

A different approach to defining intelligence is based on the concept of multiple intelligences
(MI). According to MI, there are eight types of intelligence: linguistic, logical-mathematical,
visual-spatial, bodily-kinesthetic, musical, interpersonal, intrapersonal, and naturalistic. However,
there is an ongoing debate whether the concept of MI has adequate experimental support and
a neurophysiological foundation (Shearer and Karanian, 2017). Yet, another way of looking at

1The search was conducted on 2017-06-01.
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intelligence is to consider it as either a single general concept or
two distinctive concepts, called fluid and crystallized intelligence.

The problem of performance evaluation emerges regardless
of the definition of intelligence. An IQ score is thought
to be a measure of a person’s performance and can be
interpreted differently, depending on one’s perspective. Some
IQ tests only contain problems to assess fluid intelligence;
such problems include mathematical analogies and logical and
spatial problems. However, other IQ tests contain problems that
require crystallized intelligence, i.e., problems that require prior
knowledge or verbal problems. In our experiment, we selected
only visual, spatial, and logical problems and removed all verbal
problems from the IQ test we used, to focus solely on fluid
intelligence or, in terms of the concept of MI, on visual-spatial
and logical-mathematical intelligence.

The use of an IQ test allowed us to assess the subjects’ cognitive
performance by activating logical reasoning, visual imagination,
and pattern-recognition skills. The work the subject performed to
solve the test included the individual’s perception of the amount
and difficulty of the task, known as mental workload.

The research literature on physiological markers of mental
workload includes an extensive body of research to characterize
the type and intensity of cognitive processes. The processes
related to mental workload are, for example, attention
(Parasuraman, 1979), perception, memory, learning (Berka
et al., 2007), language, and higher reasoning. It has been found
that mental workload can be assessed by measuring heart and
respiration rates, blood pressure, the skin potential response,
blink rate (Takahashi et al., 1994) and dilation of the pupils.

Specifically, this research has documented that the pupils
dilate momentarily under a mental load (Hess and Polt, 1964); in
particular, during memory tasks (Beatty and Kahneman, 1966). It
has been shown that pupil size correlates with intelligence while,
on the other hand, a connection between pupil size and dopamine
has been demonstrated (Spiers and Calne, 1969), indicating a
connection between intelligence and dopamine level (Previc,
1999; Seamans and Robbins, 2010). It also has been demonstrated
that blink patterns are related to certain types of mental workload
(Bentivoglio et al., 1997). This research dates back to the work of
Ponder andKennedy (1927), who noticed that the rate of blinking
is closely related to “mental tension.”

Eye-blink activity has been studied as an index of creativity,
in relation to dopamine (Chermahini and Hommel, 2010), and
emotional changes (Akbari Chermahini and Hommel, 2012). It
is known that attentional control, which is a process ensuring
that one’s actions correspond with one’s goals, is related to the
magnitude of eye blinks (Peers et al., 2013). Blink rate (BR: the
number of blinks per minute) during choice-response tasks can
provide a reliable measure of cognitive processing (e.g., Wascher
et al., 2015 in the central nervous system Ichikawa and Ohira,
2004). In particular, it has been shown that the endogenous eye
blink is a response controlled by the cortex (Orchard and Stern,
1991). Its characteristics, like rate and temporal distribution,
allow it to be distinguished from voluntary or reflexive eye-
lid movements, and it seems to reflect cognitive states. Eye
blinks indicate the reallocation of mental resources (e.g., while
driving Benedetto et al., 2011), cognitive states (e.g., relaxed or

engaged in problem solving Marshall, 2007, or transition points
in the processing of information Martins and Carvalho, 2015).
Although the rate of spontaneous (i.e., endogenous) eye blinks
has been repeatedly found to be related to cognitive processes, it
has been recently reported to be modified by level of attention
while watching a television screen (Andreu-Sánchez et al., 2017).

There is ongoing research that relates eye-blink rate variability
(BRV) dynamics to different types of cognitive processes (Lenskiy
and Paprocki, 2016, 2017; Gebrehiwot et al., 2017). BRV is a series
constructed from stacked-up intervals between eye blinks, which
is comparable to the well-established measure of Heart Rate
Variability. However, to the best of our knowledge, the question
of whether one can predict intelligence from BRV has not been
extensively investigated.

In this study, we extracted eye blinks from frontal electrodes
of the electroencephalograph (EEG) of subjects while resting
and while taking an IQ test. The intervals between peaks of
consecutive blinks were stacked up into a series, referred as BRV.
We employed the multifractal detrended fluctuation analysis
(MFDFA) of each of the BRV series to measure the average rate
of change in the variance of inter-blink intervals. We refer to this
measure as the α scale exponent. We tested two hypotheses in
this study. First, we tested the null hypothesis that BRV while
at rest was equal in its α exponents to BRV while solving IQ-
test problems. We reasoned that if the hypothesis was rejected,
we could conclude that the dynamics of the inter-blink interval
were influenced by the mental workload associated with solving
IQ problems. It has been shown that BRV dynamics change under
mental workload and the rate of change depends on the task, as
different types of tasks engage different cognitive processes. For
example, BRV dynamics while reading text are smaller compared
to resting, whereas they are larger during memory tests (Lenskiy
and Paprocki, 2017).

2. METHODS

2.1. Ethics Statement
The procedure was explained to the subjects before the
experiment, but the main purpose of the study was revealed
only after the experiment, so that the subjects performed without
knowing the purpose, which could subconsciously influence their
eye blinks. The experiment caused no harm to, nor had other
negative consequences on the subjects. All the subjects provided
written consent to participate in the experiment. The study
was approved with decision number 17101204 by Institutional
Review Board affiliated with the Korea University of Technology
and Education.

2.2. Experimental Procedure
The experiment was conducted in a room that eliminated
unexpected changes of light, noise, and temperature. We took
into account the readiness of the subjects by ensuring they were
capable of performing the task (they were rested, not hungry or
stressed, and were fully aware of the procedure) and motivated
(however, no incentives were offered). Subjects were asked to
inform the investigator about their stress levels and fatigue. If
necessary, the experiment was postponed. We avoided collecting
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data during exam periods. The subjects were not under the
influence of caffeine or nicotine.

The subjects were tested individually using a computer. The
experiment setup is shown in Figures 1, 2. The experiment
consisted of 5 parts: (A) a 5-min resting session, (B) a 10-min
IQ-test session, (C) another 5-min resting session, (D) reading
a passage of text, and (E) a memory test about the text that was
read. In the current work, we focused only on sessions (A) the
rest period, and (B) the IQ-test. Electroencephalography (EEG)
was used to record the electrical activity of the participants’
brains. Next, the eye blinks were extracted from the recorded
EEG signals and stacked up into BRV series.

The IQ test consisted of 13 chosen questions written in English
(Figure 3). Because our subjects were not native English speakers,
we focused on logical (5 questions), spatial (3 questions), and
visual problems (5 questions), and omitted language problems.
One point was awarded for each of the 13 problems that was
solved correctly. Points were not awarded if a question was not
answered within a given amount of time or the answer was
incorrect.

In order to minimize head and eye movements, the text was
displayed on a single screen in a narrow column. Since EEG is
prone to noise due to head and body movements, subjects were
asked to sit comfortably and as still as possible, with minimal
head movements. The maximum number of answers to each
question was limited to 6. The participants answered by pressing
buttons from 1 to 6 on the keypad of a keyboard. In order to
minimize ambient electrical noise, the EEG amplifier was located
approximately two meters away from the computer, and mobile
phones and other electronic devices were removed from the
room. Video was captured by a webcam; video recordings were
used to confirm that subjects did not fall asleep or keep their eyes
closed. EEG signals were captured simultaneously. Extraction
of eye blinks from EEG is a common problem (e.g., Hoffmann
and Falkenstein, 2008; Sovierzoski et al., 2008). The choice of
EEG over electro-oculography was motivated by the possibility
of analyzing EEG signals in upcoming experiments to provide
deeper explanations of the observed phenomena.

2.3. EEG
The Mitsar-EEG 201 amplifier and accompanying WinEEG
software were used to record EEG. The 19 electrodes were placed
according to the “10–20 system.” EEG was recorded with a
sampling rate of 250 Hz. We used a mono-polar montage. In
the current study, the Fp1 and Fp2 electrodes were our primary
interest. They produce a strong electromyographic signal since
they are the closest electrodes to the eyes. The recordings were
imported into Matlab as CSV files for processing. The data used
to conduct this study are available online (Paprocki, 2017).

2.4. Data Preparation
We collected recordings from twenty-seven subjects (25 males,
2 females), with an average age of 28 ± 7.5 years. The raw data
were manually cleaned of artifacts. An algorithm used to extract
eye blinks was taken from the EEG based on previous work
(Paprocki et al., 2016). Blinks detected by the algorithm were
checked manually and confirmed with video recordings. The

FIGURE 1 | Experimental setup: distance from the screen and visual angle.

FIGURE 2 | Experimental setup: photograph of actual setup (published by

courtesy and consent of the participant).

time intervals between consecutive blinks were stacked up into
a series that constituted BRV. One subject who had only a few
blinks, which resulted in a short BRV series, had to be excluded.
In addition, video recordings showed that two of the remaining
26 subjects were falling asleep during the rest sessions. Therefore,
they had to be excluded, as well. Consequently, data from 24 of
the 27 subjects remained for further analysis.

2.5. Analysis
Physiological systems can be characterized by a power spectra
S(f ) with a scaling property S(af ) ∝ 1

f γ
, where the parameter

γ is called the spectral exponent. Many physiological processes
exhibit fractal or multifractal properties. Fractal properties of
heart rate variability are known to vary with age and various heart
conditions (Ivanov et al., 1999). In order to measure fractality of
BRV in our work, we employed the α exponent of the MFDFA
algorithm. The exponent α is linearly related to the spectral
exponent γ via α =

γ+1
2 , for γ > −1. Processes with α = 0.5, 1,

and 1.5 describe white, pink, and brown noises, respectively,
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FIGURE 3 | Sample questions from the IQ test.

and are generally called color noise for various values of α.
Color noise occurs in many physical, economic, and biological
systems, including neural activity and DNA sequences (Bryce
and Sprague, 2012). In the present study, the α exponent is a
characteristic of BRV dynamics.

An important parameter of DFA is the range of intervals
into which the process under investigation is divided. We
set the intervals’ lengths to: {8, 10, 12, 14, 16, 20, 22, 26, 32, 38, 46,
54, 64} 2.

MFDFA is a technique to characterize the multifractal nature
of a time series (Kantelhardt et al., 2002). It allows one to
estimate the so-called singularity spectrum (MFS) (Kinsner,
2005). The MFDFA is based on detrended fluctuation analysis,
which measures the growth of variance in a window of increasing
length. Prior to calculating the variance, the time series in
the window is detrended by subtracting a polynomial function
fitted to the series. This procedure is performed to suppress
harmonics whose periods are longer than the window size.
Subtraction of the polynomial function is a non-linear procedure
that modifies the spectrum in a non-linear fashion. In order
to suppress unwanted harmonics outside of the range of the
analyzed frequencies, a linear operator is applied instead of
polynomial subtraction, as performed in Lenskiy (2017). The
frequency range is proportional to the window length (scale) l.

The estimation algorithm is summarized in the following four
steps. First, a sub-band filter with a Gaussian kernel is applied.
The spread parameter σ in the Gaussian depends on the scale l.
Next, the series is divided into Nl overlapping sub-windows of
length 2 · l each. For every sub-window, the variance σ 2

k
(l) is

estimated. Then, the partition function is calculated as the sum
of the variances in each window powered by moment q:

χ(q, l) =
Nl∑

k=1

[σ 2
k (l)]

q/2 (1)

2according to formula l = 2· round(2n), where n is [2:0.25:5].

The partition function is expected to follow the power law:

χ(q, l) ∝ lτ (q) (2)

where τ (q) is related to the multifractal spectrum f (α) through a
Legendre transform as f (α) = qα − τ (q).

The multifractal spectrum (MFS) f (q) and Holder exponents
α(q) are estimated as follows (Yamaguti and Prado, 1995):

f (q) = lim
l→ 0

∑Nl

k=1 µk(q, l)ln(µk(q, l))

ln(l)
(3)

α(q) = lim
l→ 0

∑Nl

k=1 µk(q, l)ln(σ
2
k
(l))

ln(l)
(4)

where

µk(q, l) =
[σ 2

k
(l)]q

χ(q, l)
(5)

In our work, we incorporated a single exponent α(q = 0) and
refer to it as α, which describes the peak of MFS.

2.6. Statistical analysis
The normality of BRV was verified using the Shapiro-Wilk test
(p = 0.05), and one-way ANOVAwas used to test the hypotheses.

3. RESULTS

The estimated average and standard deviation of the blink rate
(BR) was 18.27 ± 10.44 and 19.14 ± 11.1 during the resting
and IQ sessions, respectively. The mean of the α exponents was
0.80 ± 0.23 and 0.62 ± 0.16 for the resting and IQ-test sessions,
respectively. ANOVA determined that the α distributions of the
BR during the resting and IQ-test sessions were significantly
different, with F(1, 46) = 9.43, p = 0.036 and F(1, 46) = 12.99, p <
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TABLE 1 | The values of BR (blink rate = number of blinks per minute) and α

during the resting and IQ-test sessions for all the subjects.

ID Resting BR Resting α IQ BR IQ α IQ score

1 19.40 0.77 20.50 0.55 4

2 21.80 0.80 27.40 0.69 5

3 9.20 0.94 4.20 0.16 4

5 23.80 0.50 11.90 0.65 2

6 11.20 0.79 16.80 0.80 2

7 14.80 1.29 9.10 0.69 7

9 12.80 0.61 9.80 0.64 2

10 14.40 0.54 16.50 0.64 4

11 29.80 0.85 41.80 0.58 2

12 11.20 0.73 7.00 0.70 3

13 12.80 1.21 24.10 0.74 6

14 17.40 1.26 34.10 0.60 5

15 10.60 0.59 10.60 0.23 3

16 52.20 0.57 36.70 0.67 3

17 38.60 0.90 16.90 0.59 2

18 10.80 0.89 13.80 0.82 2

19 8.80 0.43 10.20 0.78 4

20 15.00 0.64 12.90 0.52 5

21 19.20 1.01 45.40 0.78 4

22 15.60 0.63 12.50 0.53 6

23 31.00 0.85 18.40 0.61 6

25 10.60 0.88 11.40 0.81 8

26 16.00 0.89 21.70 0.60 6

27 11.40 0.64 25.60 0.62 3

〈n〉 ± σ 18.27± 10.44 0.80± 0.23 19.14± 11.10 0.62± 0.16 −

The last row shows the means and the standard deviations.

0.001. The BRs and α exponents for both sessions (resting and IQ
testing), are presented in Table 1 along with the scores of the IQ
test.

Subjects were divided into two groups based upon their IQ
scores. The first group consisted of 9 subjects with scores above
the median (= 4), and the remaining 15 subjects formed the
second group, with scores below or equal to the median.We refer
to them as group IQ+ and IQ−, respectively.

We used one way ANOVA to analyze the BR and α exponents
of the two groups of subjects during the resting and IQ-test
sessions (see Table 2). During the resting session, the BR of the
IQ+ group was 16.14± 5.72, while the subjects in the IQ− group
had an average BR of 21.24 ± 14.65. We tested the hypothesis
H0 (i.e., the null hypothesis) that the BR is not an indicator of
cognitive performance; the ANOVA results for the resting and
IQ sessions were F(1, 22) = 0.139, p = 0.713 and F(1, 22) =

0.001, p = 0.981, which was insufficient evidence for rejecting
H0. During the resting session, the exponent α for the IQ+ group
was 0.94 ± 0.25, whereas for the IQ− group it was 0.72 ± 0.18.
Looking at the IQ-test session, we see the BR for the IQ+ was
9.59 ± 5.49, whereas for the IQ− , it was 9.54 ± 5.92. During
the IQ-test session, the exponent α for the IQ+ was 0.64 ± 0.10,
whereas for the IQ− group, it was 0.61± 0.19.

TABLE 2 | The mean and the standard deviation of the values of BR and α during

the resting and IQ-test sessions of groups IQ+ and IQ−.

Group resting BR resting α IQ BR IQ α

1 IQ+ 17.22± 6.01 0.94± 0.25 19.07± 8.42 0.64± 0.10

1 IQ− 18.89± 12.54 0.72± 0.18 19.18± 12.72 0.61± 0.19

p(F ) 0.713 (0.139) 0.019 (6.456) 0.981 (0.001) 0.677 (0.178)

The last row shows the ANOVA p-values (F statistic) for between-group differences.

The α exponents during the IQ test did not indicate any
difference between the two groups during the IQ-test session
[F(1, 22) = 0.178, p = 0.677], but there was a group difference
in the exponents estimated for the resting session F(1, 22) =

6.456, p = 0.019. Hence, we accepted the hypothesis that the
population means of the α exponents of both groups were
different during the resting session. Therefore, the scale exponent
estimated during rest may indicate the cognitive performance of
the subjects.

In summary, we hypothesized that the dynamics of eye blink
rate variability are influenced by the mental workload associated
with solving IQ problems. This appears to be true, since there
was a difference between α while resting and solving IQ-related
problems (p = 0.004). We also showed that scores on an IQ
test were positively correlated with the scale exponent of BRV
during rest [with r(22) = 0.43, p = 0.035,R2 = 0.185], which can
be observed in Figure 4. Additionally, we found that the group
with higher IQ scores (IQ+) had significantly higher α BRVwhile
resting than the group with lower IQ scores did, IQ− (p = 0.019)
(see Figure 5). However, the α of BR did not reveal a difference
between those two groups, which suggests BRV might be applied
where BR fails.

4. DISCUSSION

The present study investigated eye blinks during rest and in the
presence of mental workload. Mental workload was manipulated
by stimulating cognitive activity in response to answering IQ-
test items that focused on mathematical problems, recognition
of geometrical patterns, and visual problems; hence, in terms
of MI, logical-mathematical and visual-spatial intelligence were
tested. Such intelligence requires the ability to stay focused and
efficiently use working memory, a system that is driven by
dopamine (e.g., Williams and Castner, 2006). By analyzing the α

of BRVwith respect to IQ scores, we tested whether the dynamics
of BRV is a predictive indicator of intelligence.

Convergent thinking (the ability to give a correct answer)
brings executive functions into play, which entail a set of
cognitive processes that are necessary for the cognitive control
of behavior (Diamond, 2013). These functions keep a person
focused until a solution is found. It has been shown that functions
related to the frontal lobe, including working memory, are
responsible for maintaining a high level of focus on a task
(Duncan et al., 2000). This phenomenon aligns and binds other
cognitive processes and keep individuals focused on a task
(Chermahini and Hommel, 2010). On the other hand, it has
been shown that dopamine regulates blinking (Jongkees and
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FIGURE 4 | Intelligence, as measured by our IQ-test score, was associated

with blink rate variability dynamics. The line indicates the least-squares

regression fit [r(22) = 0.43,p = 0.035,R2 = 0.185] for IQ scores vs. the α

exponents estimated during the resting session. The numbers indicate specific

subjects.

Colzato, 2016). The basal ganglia, which are interconnected with
the cerebral cortex (Bostan et al., 2013) and play a key role
in memory, attention, and consciousness, modulate the release
of dopamine in the striatum, thereby influencing the eye-blink
reflex (Evinger et al., 1993). The basal ganglia also control the
input of working memory (WM), and have the capacity to
manipulate information in short-term memory and use it to
guide action (Baddeley, 1998). It has been proposed that one of
the functions of the basal ganglia is to filter what enters into
working memory andmodulate its focus by modifying dopamine
levels (Schroll and Hamker, 2013). This phenomenon has also
been used to support eye-blink rate as a measure to track changes
in WM during task performance and as a possible measure of
striatal dopamine activity (Rac-Lubashevsky et al., 2017). In our
research, the phenomena of gating information and exciting basal
ganglia circuits on a given task can be observed in the difference
(p = 0.0036) between the α values during the IQ-test and the
resting session. The change in BRV dynamics might suggest a
change in dopamine levels, although further research is required
to explore this possibility. A conceptually similar phenomenon
has been observed by Tsukahara et al. (2016), indicating a
relationship between cognitive abilities and pupil size during a
passive baseline condition, with r(60) = 0.34, p < 0.05, r(205) =
0.25, p < 0.05, and r(60) = 0.38, p < 0.05, in Caucasian, African-
American, and Other subjects, respectively. Their finding that
pupil size in passive conditions predicted cognitive abilities is
similar to our result that BRV dynamics while resting indicated
the subjects’ cognitive state, with r(22) = 0.43, p = 0.035.

The substantia nigra pars compacta, which is part of the
basal ganglia, contributes to reward-seeking, addiction, and eye
movements. Additionally, there is evidence that this limbic
portion of the basal ganglia plays a key role in reward learning.
Extracellular dopamine has a substantial influence on limbic-
basal ganglia circuits. Among the drugs that work by increasing

FIGURE 5 | Intelligence was predicted by blink rate variability dynamics while

resting. Normal probability density functions were fitted to the estimated α

exponents of the resting (solid) and IQ-test (dotted) sessions for the groups

with higher (blue) and lower (red) IQ scores.

the efficacy of the dopamine signal, the most addictive drugs
are cocaine, amphetamine, and nicotine. Montague et al. (2004)
discussed the way the basal ganglia incorporate dopamine, not
only for reward and focus, but tomaintain task- and goal-relevant
information: an “Important component of dopaminergic gating
takes place in the basal ganglia, acting selectively on recurrent
pathways that run from the PFC through the basal ganglia
and back to the PFC.” This mechanism allows for selectively
updating goal representations within the prefrontal cortex (PFC).
Furthermore, the association cortex of the frontal lobe has been
found to be related to working memory (Sasaki et al., 1994).
Moreover, the PFC, which is in the inferior portion of the frontal
lobe, functionally influences eye-blinking (Weiss and Disterhoft,
2011). The neural network activity of the PFC has been shown
to change behavior during working memory under the influence
of dopamine (Surmeier, 2007). In fact, dopamine is secreted
in the PFC during higher-order executive functions, such as
learning, memorizing, and recall of memories (Puig et al., 2014).
This points to the importance of dopaminergic mechanisms for
cognitive performance.

Apart from being crucial for various higher-order functions,
dopamine is linked to eye-blinking, specifically, the BR, which
is a marker of dopaminergic functioning in the striatum,
one of the basal ganglia’s nuclei (Shukla, 1985). A clear
connection between blinking and dopamine was observed in an
experiment with recreational cocaine users. Correlation analyses
showed that recreational cocaine users had a significantly
reduced BR compared to a cocaine-free group (Colzato et al.,
2008). To summarize, there is a clear connection between
cognitive performance and dopamine, which influences eye-blink
phenomena.

In addition to dopamine, GABA is a neurotransmitter
that is known to be related to eye blinks and correlated
with level of intelligence (Colzato et al., 2008). Cook et al.
(2016) demonstrated a strong positive correlation between visual
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intelligence and cortical GABA concentrations (r = 0.83, p =

0.005). Subjects with high levels of GABA in the primary visual
cortex performed better on a matrix reasoning IQ sub-test.
It is also known that blinking behavior is under perceptual
and cognitive control (Orchard and Stern, 1991) and that it is
associated with the suppression of visual cortex activity (Bristow
et al., 2005). Since it has been shown that the primary visual
cortex is modulated during eye blinks (Williams et al., 2008), we
suspect that blinking behavior is linked to GABA accumulation
in the visual cortex; thus, it may affect eye-blink characteristics as
well. However, that requires further investigation.

5. LIMITATIONS

The limitations of this study point to possible directions for
further research. First, questions were chosen from pattern
recognition, visual-spatial, and logical-mathematical domains.
The number of questions needs to be increased to analyze
those domains thoroughly, and those domains probably should
be divided into separate sessions. An updated IQ-test and
various cognitive tests should also be used in future research.
Possible items could be chosen from tests like Raven’s Progressive
Matrices (Raven, 1936), the Stanford–Binet (Becker, 2003), the
Multidimensional Aptitude Battery II (Krieshok and Harrington,
1985), and other IQ tests.

Second, the results of IQ-tests are affected by both intelligence
and test motivation. It has been shown that incentives motivate
subjects and increase their scores by 0.96 SD and 0.26 SD for
groups with below-average and above-average IQs, respectively
(Duckworth et al., 2011). However, with no reward, the latter
group performs closer to its maximum potential than the
former group. The fact that subjects’ motivation on tests can
complicate the interpretation of IQ results should be taken into
consideration.

Third, as we discussed above, BR is a marker of current
dopamine level, and it is known that dopamine is a hormone
associated with happiness (Sharot et al., 2009). In particular,
Akbari Chermahini and Hommel (2012) demonstrated that
positive mood leads to an increase in BR and cognitive flexibility,
i.e., the ability to adapt cognitive processing strategies to solve
new tasks. Hence, the subjects’ mood has to be taken into account

in future experiments. Finally, although the sample size we used
in this experiment is consistent with that used in this general
area of research, a larger sample size would have provided greater
statistical power to our analyses. Thus, we recommend that future
studies use larger sample sizes to be better able to interpret the
results.

6. CONCLUSION

This study demonstrated a statistically significant correlation of
the α exponents estimated for BRV during rest and IQ-test scores.
Since eye-blinks are connected to higher cognitive processes,
we hypothesize that BRV dynamics can be used as a marker
of dopa- and gabaminergic functioning. Additionally, the α of
the BRV of the IQ+ group was significantly higher compared to
the IQ− group while resting. The findings confirm the already
known phenomenon of a relationship between cognitive abilities
and pupil size during a passive baseline condition. The finding
that pupil size in passive conditions predicts cognitive abilities is
similar to our finding that BRV dynamics during rest indicates
a subject’s cognitive state. This result suggests the possibility
of comparing cognitive performance among subjects without
having them perform any tasks. The significance of our findings
is that BRV can be employed in a broad spectrum of cognitive
experiments. It can be helpful in studies to understand the role
of fluid intelligence as well as studies on the resting-state brain.
BRV can also be useful to assess mental workload, e.g., as part
of a combined measure (Ryu and Myung, 2005). This study
provides a foundation for further studies assessing cognitive
functioning based on the measurement of BRV. To summarize,
the findings of this study revealed that the scale exponent α

of blink rate variability dynamics can be used as an indicator
of cognitive performance while the brain is not occupied by a
task. The nature of this link remains to be elucidated by further
research.
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