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Concurrent EEG and fMRI acquisitions in resting state showed a correlation between

EEG power in various bands and spontaneous BOLD fluctuations. However, there is a

lack of data on how changes in the complexity of brain dynamics derived from EEG reflect

variations in the BOLD signal. The purpose of our study was to correlate both spectral

patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity

with neuronal activity obtained by fMRI. We examined the relationships between EEG

patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state

condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors,

we demonstrated a substantial correlation of BOLD signal changes with linear and

nonlinear features of EEG. We found the most significant positive correlation of fMRI

signal with delta spectral power. Beta and alpha spectral features had no reliable effect

on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a

significant association with BOLD signal increase in right-hemisphere areas. Additionally,

EEG dynamic complexity as measured by the HFD of the 2–20Hz EEG frequency range

significantly correlated with the activation of cortical and subcortical limbic system areas.

Our results indicate that both spectral features of EEG frequency bands and nonlinear

dynamic properties of spontaneous EEG are strongly associated with fluctuations of the

BOLD signal during the resting state condition.

Keywords: EEG, fMRI, power spectral density, wavelet transformation, nonlinear analysis, Higuchi’s fractal

dimension, BOLD signal, resting state

INTRODUCTION

Multimodal neuroimaging studies have extensively explored how electroencephalogram (EEG)
spectral patterns correlate with neuronal activity mapped by functional magnetic resonance
imaging (fMRI) (for review, see He and Liu, 2008; Murta et al., 2015). Coherence of EEG spectral
power in different frequency bands with the blood oxygenation level dependent (BOLD) signal
was reported for both task-related (Meltzer et al., 2007; Rosa et al., 2010; Sclocco et al., 2014;
Labounek et al., 2015) and resting state conditions (Laufs et al., 2003, 2006; Mantini et al.,
2007; de Munck et al., 2009). The majority of early studies of EEG-fMRI coupling in the resting
state condition focused on variation of absolute band power using spectral patterns of EEG as
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regressors in a general linear model (GLM) for fMRI analysis
(Friston et al., 1994). The approach is based principally on
the assumption that hemodynamic changes reflected in the
BOLD signal should exhibit a linear relationship with neuronal
oscillatory activity as reflected in spectral patterns of EEG.
In favor of this hypothesis, Laufs et al. (2003) showed that
EEG alpha power was inversely correlated with different brain
regions functionally responsible for attention. At the same
time, beta band power was positively correlated with BOLD
signal increase in the posterior cingulate, tempo-parietal and
dorsomedial prefrontal cortices (Laufs et al., 2003). As these brain
areas have also exhibited decreased activity in task-related fMRI
studies, they have been related to the default mode of brain
function (Raichle et al., 2001; Greicius et al., 2003). Subsequently,
Mantini et al. (2007) reported a correlation between fluctuations
in the spectral power specific frequency bands and BOLD
changes within different resting state networks (RSNs) as derived
by independent component analysis (ICA). Jann et al. (2010)
reported significant differences between RSN covariance maps
that were strongly associated with the topography of spectral
changes in the specific frequency bands. Other parallel and
consequent studies reported similar findings, demonstrating
significant coupling between local changes in the BOLD signal
and spectral power of distinct frequency bands (Goldman et al.,
2002; Goncalves et al., 2006; Laufs et al., 2006;Mantini et al., 2007;
Neuner et al., 2014; Sclocco et al., 2014).

However, some studies have suggested a more complex
and nonlinear relationship between BOLD signal and brain
electrical activity. de Munck et al. (2009) showed that fMRI-
BOLD statistical parametric maps did not differ significantly
with power of specific EEG band and electrode position in
resting state. Authors concluded that this mutual correlation
of frequency bands in fMRI-space relates to actual oscillatory
activity of neuronal networks, constituting different frequency
components and their interactions (de Munck et al., 2009). In
task-related conditions, Rosa et al. (2010) explored different
transfer functions from EEG-derived regressors to BOLD signal
and also showed that BOLD changes were associated with relative
spectral power of EEG bands rather than with specific spectral
band.

The presence of different frequency bands in neuronal activity
associated with BOLD fluctuation is consistent with the general
view of functional sources of rhythmic oscillations in the
brain. Scalp EEG represents the interdependent electrical signals
that arise from synchronized activity of neuronal networks,
and this synchronization may coincide at different frequencies
(Pfurtscheller and Lopes da Silva, 1999; Buzsaki and Draguhn,
2004). It follows that a specific frequency may be associated with
activity of both micronetworks and macronetworks of neurons at
different time ranges (Lopes da Silva, 2013; Murta et al., 2015).
Importantly, cooperation of neuronal networks may involve
nonrhythmic as well as rhythmic activity (Thivierge and Cisek,
2008).

Additionally, difficulties in integration of spectral EEG
patterns and BOLD fluctuations can be partly explained by a
striking difference in time domain for these two indices of
neuronal activity. Independent of approach (ICA or GLM),

one should convolve fast EEG changes with relatively slow
hemodynamic function underlying the BOLD response in fMRI.
Most EEG-fMRI findings refer to fluctuations in EEG using the
mean absolute or relative spectral power in distinct frequency
bands obtained by averaging these values over several seconds;
actual fluctuations in the EEG signal may occur much faster,
reflecting nonstationary processes in both spontaneous and
induced brain activity. However, as a linear method of signal
analysis, Fast Fourier Transformation (FFT) for calculation of
spectral power of EEG frequency assumes stationarity of the EEG
signal. Another way of understanding brain dynamics in different
time domains is through nonlinear analysis of EEG (Stam, 2005).
For example, nonlinear methods such as correlation dimension,
Shannon entropy and normalized Renyi entropy EEG measures
have recently shown stronger correlations with cognitive and
emotional processes when compared to linear techniques (Liu
et al., 2010; Bajaj and Gaur, 2013). Another nonlinear approach
is Higuchi’s fractal dimension (HFD), which has been widely
explored in EEG research (for review, see Kesić and Spasić,
2016). HFD reflects signal degrees of freedom—in other words,
the measure of complexity and informal entropy of a signal
(Kirkby, 1983; Cheng, 2016). HFD has been applied repeatedly
in EEG studies as a measure of altered brain dynamic complexity
when comparing a clinical population with healthy subjects,
and has proved significant at group comparison level (Jelles
et al., 2008; Kesić and Spasić, 2016) as well as at individual
level in BCI studies (Esfahani and Sundararajan, 2011) and in
relation to emotional recognition (Liu et al., 2010). Given the
sensitivity of the nonlinear analytic approach to EEG changes at
individual and group level, correlation of BOLD fluctuation and
nonlinear patterns of EEG dynamic such as HFD should provide
additional information about the complexity of brain dynamics
for localized changes in the synchronization state of neuronal
populations.

To our knowledge, however, there are no published results
of the use of EEG HFD patterns as covariates for EEG-fMRI
analysis. This lack of data motivated us to explore how nonlinear
EEG patterns may reflect BOLD fluctuations and underlying
changes in the synchronization state of neuronal populations. In
this work, we sought to compare the results of EEG-informed
fMRI during resting state condition using linear and nonlinear
EEG patterns as regressors to be convolved with hemodynamic
response function (HRF). For this reason, in addition to the
mean spectral power of distinct frequency EEG bands, we also
considered the dynamic and nonlinear parameters of EEG as
EEG-derived regressors, which included variability of the alpha
band peak frequency, wavelet analysis of temporal changes in
EEG power underlying neuronal activity and complexity of the
EEG signal reflected in HFD changes. We expected to find a
correlation between the contribution of each rhythm in terms
of brain dynamics derived from EEG variability and topography
of brain activation during resting state fMRI. Additionally,
we hypothesized that EEG complexity as reflected in HFD
might also correlate with local changes in BOLD signal, which
would support the nonlinear relationship between neuronal
oscillatory activity and hemodynamic changes in the brain
tissue.
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MATERIALS AND METHODS

Participants and Experimental Paradigm
Twenty-five healthy adult volunteers (16 males and 9 females)
with a mean± SD age of 23.8± 7.22 years took part in this study
after providing informed and written consent to the protocol
in accordance with the Declaration of Helsinki. The study was
approved by the Ethics Committee of the Institute of Higher
Nervous Activity and Neurophysiology of the Russian Academy
of Science. All participants were right-handed. Subjects were
selected on the basis of a preliminary survey for exclusion criteria.
Additionally, we controlled for possible early stages of affective
disorders by asking all volunteers to fill in webforms for the
Beck Depression Inventory (BDI) and the State-Trait Anxiety
Inventory (STAI). Volunteers were preliminarily excluded from
participation in the study if they reported MRI contraindication,
head trauma, history of neurological or psychiatric diseases, use
of neurological or psychiatric drugs, excessive consumption of
alcohol and/or nicotine, pregnancy, a BDI score higher than nine
and older than 35 years. All selected subjects returned self-report
scores for anxiety and depression within a relatively low range;
mean scores for state anxiety were 31.1 ± 6.61; 36.7 ± 7.31 for
trait anxiety; and 6± 3.59 for BDI.

The fMRI and EEG data were simultaneously acquired during
the resting state condition. For 10min of the acquisition phase,
participants lay supine following an instruction to close their eyes
and remain calm. We asked subjects to try not to fall asleep and
not to think about anything special. Before the scanning session,
subjects completed the STAI; immediately after the scanning
session, they were asked to agree or disagree with statements
describing thoughts and feelings during the resting-state session,
using a paper-based version of the Amsterdam Resting-State
Questionnaire (ARSQ) (Stoffers et al., 2015). Each participant
received financial compensation of 1000 RUB.

Simultaneous EEG-fMRI Data Acquisition
The study was conducted at the National Research Center
Kurchatov Institute. During fMRI-acquisition, SyncBox
(Siemens, Germany) was used for synchronization of the EEG
amplifier with the beginning of each echo planar imaging (EPI)
scan. In result, we recorded onsets of fMRI-scans at additional
trigger channel of the EEG acquisition data.

MRI data were acquired using in a 32-channel head coil in
a 3 T scanner (MAGNETOM Verio, Siemens, Germany). To
minimize head movement, foam pads were used to fix the head
during MRI acquisition. After collecting a high-resolution T1-
weighted anatomic rapid gradient-echo image (T1 MPRAGE
sequence: TR 1,470ms, TE 1.76ms, FA 9◦, 176 slices with slice
thickness 1mm and slice gap of 0.5mm; field of view 320mm
with matrix size 320 × 320) we acquired 307 T2∗-weighted
EPI images during 10min 14 s (T2∗ EPI sequence: TR 2 s, TE
20ms, FA 90◦, 42 slices, slice thickness of 2mm, slice gap of
0.6mm, and the field of view of 200mm with a matrix size of
98× 98). Parallel acquisition was performed using GRAPPAwith
an acceleration factor of 4. Each fMRI session was followed by
gradient echo sequence for field mapping correction with TE1
4.92 s and TE2 7.38 s.

Continuous EEG data were acquired simultaneously during
MRI scanning by a 32-channel MR-compatible amplifier
(EBNeuro, Italy) with an independent MR-compatible power-
supply. The EEG amplifier was set up on the floor inside the
scanner, close to the head coil. Wires from an EEG cap were
secured by several sandbags to prevent movement of the wires
with fast magnetic gradient changes. Thirty-two electrodes were
placed according to an extended international 10–20 system,
with the reference electrode positioned at FCz. Two additional
electrodes were placed beneath the participant’s left scapula
to record electrocardiograms (ECG). Electrode-skin contact
impedances were kept below 10 kOhm. The recorded analog EEG
signal was digitized and transmitted via fiber optic cables to a
recording computer with a sampling frequency of 4,096Hz after
filtration between DC and 1 kHz. Acquisition and storage of EEG
signals was accomplished using Galileo NT software (EBNeuro,
Italy).

EEG and fMRI Data Pre-processing
EEG pre-processing was executed using BrainVision Analyzer 2.0
(BrainProducts, Germany) software. To begin, we cleared the raw
EEG of gradient artifacts, filtered by an IIR filter with a pass-
band of 1–40Hz and downsampled to 250Hz. We then used
the BrainVision algorithm to remove cardioballistic artifacts. ICA
was used to remove oculomotor artifacts along with residual
gradient and cardioballistic artifacts.

The first 7 fMRI volumes were discarded to allow T1 effects
to stabilize. The remaining 300 fMRI volumes were processed in
SPM8 (Statistical Parametric Mapping version 8, Welcome Trust
Centre for Neuroimaging, UK). The pre-processing procedure
included the realignment of T2∗-weighted images with the mean
functional image for motion correction. A voxel displacement
map was calculated using magnitude and phase images from the
field mapping GRE imaging before being mapped to the mean
functional image of the fMRI data and used to resample each
fMRI volume.

After co-registration of the mean functional image with the
anatomic image, all images were normalized into the standard
MNI space with a voxel size of 1.5 × 1.5 × 1.5 mm3. This
procedure was performed in two stages. First, structural images
were segmented into gray and white matter, cerebrospinal fluid,
bones and air, using the New Segment tool. FMRI volumes and
T1 anatomy images underwent deformation according to fields
calculated by the New Segment tool. The fMRI images were then
smoothed by a Gaussian kernel filter with a FWHM of 6mm.

EEG and fMRI Data Analysis
For joint analysis of the EEG-FRMI data, we calculated linear and
nonlinear patterns of resting state EEG averaged across epochs,
with a temporal resolution equal to the TR of the fMRI in the
EEGLAB toolbox (Delorme andMakeig, 2004). We then used the
obtained EEG values as regressors in the GLM, using the SPM8
toolbox.

EEG data were segmented after pre-processing into 300 TR-
long epochs (corresponding to 300 fMRI volumes acquired per
subject), using triggers from the fMRI scans. The obtained
EEG epochs exactly matched the fMRI scan periods (TR).
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Each EEG epoch was visually inspected for quality by a
certified electrophysiologist (G.P.). As we asked each subject
to lay quiet with eyes closed, no epochs were continuously
contaminated by motion or eye-movement artifacts exceeding
±100 µV. Short contamination intervals were removed from
the epochs after visual inspection, and these appeared to be
under 400ms.

Next, we calculated linear (spectral and wavelet) and
nonlinear features for 300 EEG epochs, separately for each
channel. The frontal polar channels (Fp1 and Fp2) were excluded
from the analysis, as these were highly contaminated with
motion-, muscle- and eye-related artifacts; as a result, 30 channels
were retained.

The spectral features were as follows: an absolute power
spectral density (PSD) in the 2–20Hz band with 1Hz resolution;
and magnitude and frequency of alpha peak (mALP and fALP)
corresponding to the maximum value of PSD in the 8–13Hz
band.

The wavelet transformation (WT) features were the mean
(mWT) and standard deviation (stdWT) of coefficients obtained
by continuous WT for each 1-Hz-wide band from 2–3Hz to
19–20Hz.

The nonlinear (chaotic) features were the signal envelope
mean frequency (EMF), ratio of its standard deviation to its mean
(RAT) and signal fractal dimension (HFD). EMF and RAT were
calculated for the whole frequency band (1.6–30Hz). HFD was
calculated for the 2–10Hz band and alpha band within 10–12Hz.
HFD for alpha was calculated across a narrower frequency band
(10–12Hz) than for PSD and WT (8–12Hz), based on previous
findings of age-related variability in the alpha rhythm and its
HFD for young adults aged between 20 and 30 years (Portnova
and Atanov, 2016). Envelopes were constructed using the Hilbert
transform. Fractal dimension was assessed using the Higuchi
method (Higuchi, 1988).

All initial values were separately averaged over all channels,
different electrode pools and across the frequency band of
interest. Only three bands were selected for calculation of the
regressors: delta (2–4Hz), alpha (8–12Hz), and beta (16–20Hz).
We did not include theta rhythm patterns in the analysis
because these were highly contaminated by artifacts caused by
MRI gradient switching. The theta band frequency of 4–8Hz
was also filtered out from the 2–20Hz range used to calculate
HFD.

EEG features were calculated as the mean values from all
electrodes (except Fp1 and Fp2) for all frequency bands under
investigation. Additionally, we measured the parameters of
alpha-rhythm gradient (from frontal to occipital areas) and PSD
of alpha, beta and delta bands, as well as HFD localized in
different areas (frontal, temporal, occipital, parietal, and central).
To this end, we calculated mean EEG values from electrodes
for the following areas: frontal (F7, F3, Fz, Fpz, F4, F8, FC3,
FC4); temporal (FT7, T3, TP7, T5, FT8, T4, TP8, T6); occipital
(O1, Oz, O2); parietal (P3, Pz, P4) and central (C3, Cz, C4, Cpz,
CP3, CP4).

In total, 40 patterns were calculated for each subject: PSD
for 3 frequency bands averaged across all electrodes and across
5 electrode pools (3∗6); whole-band EMF (1); whole-band RAT

(1); alpha and whole-band HFDs from all electrodes and 4 pools
(2∗6); mWT and stdWT for three bands (2∗3); fALP frequency
(1) and mALP (1).

At the first level of analysis, the resulting sequences of EEG
values (each of the 300 values) were convolved with the canonical
HRF. Following convolution, the obtained vectors of EEG pattern
changes were used as regressors, along with 6 motion parameters
for calculation of a multiple linear regression of the fMRI data in
GLM (separately for each EEG regressor).

At the second level of analysis, first-level contrast images were
subjected to a one-sample t-test for each regressor. The group
results were evaluated at two thresholds of statistical significance:
lower (p < 0.001, uncorrected) and higher [p < 0.05, family wise
error (FWE)]. Using FWE, we found no significantly correlated
voxels for any of the given regressors with a cluster size of
more than 3 voxels; at the uncorrected level, we frequently
observed sparse activation with a voxel size of less than 10 voxels.
To eliminate multiple uncorrected results, we fixed the cluster
threshold at a higher level of 100 voxels and reported only those
findings related to whole-brain activations of more than 100
contiguous voxels, adjusted for multiple comparisons within the
search volume threshold at p < 0.05 FWE and corrected for
multiple comparisons using p < 0.05 for false discovery rate
(FDR) in xjView toolbox (http://www.alivelearn.net/xjview) at
the whole brain voxel level.

Additionally, we analyzed the dependence of fMRI activation
from EEG regressors and continuous predictors, including ARSQ
scores (for 10 factors independently), as well as for the STAI and
BDI scores of each participant. Multiple regression model results
were also evaluated at two thresholds of statistical significance:
lower (p < 0.001, uncorrected) and higher (p < 0.05, FWE).
We also analyzed the Spearman’s Rang correlation of the EEG
parameters averaged across 300 epochs with ARSQ scores and
other questionnaires.

RESULTS

Correlation of BOLD Signal with Spectral
Features of EEG
We focused first on the spectral features of the alpha band as the
most reliable index of resting state wakefulness with closed eyes
during EEG. The alpha-rhythm gradient showed no significant
correlation with BOLD signal as alpha PSD averaged across
frontal, temporal, occipital, parietal and central areas. We found
positive correlations of BOLD fluctuations in resting state only
with alpha PSD averaged across all electrodes for two brain
regions: the right precuneus and the left culmen of the cerebellum
(Table 1; Figure 1A). However, these positive correlations of
BOLD changes were at uncorrected level with cluster size more
than 50 voxel and alpha band PSDmeasured in frontal, temporal,
occipital, parietal and central areas. We assumed that positive
correlation of BOLD changes with increasing alpha PSD indicates
areas of the brain in which activation coincides with alpha
synchronization while negative correlation is associated with
alpha desynchronization. However, we observed no negative
correlations with alpha PSD. Next, we looked specifically
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TABLE 1 | Brain areas showing a significant positive correlation of BOLD signal with (A) alpha band peak frequency and (B) alpha PSD (FDR corrected, p < 0.05, T <

3.44, cluster threshold > 100).

Anatomical region L/R BA Peak MNI coordinate T-value Number of voxels Volume in cm3

with peak intensity (x, y, z)

A.

Culmen L n/a −9 −60 −12 4.91 223 0.33

Precuneus R 7 15 −60 45 4.16 113 0.17

B.

Middle frontal gyrus R 6 18 −16.5 63 6.94 1,191 1.79

Rolandic operculum R 40 52.5 −25.5 21 6.59 990 1.49

Inferior frontal gyrus R 47 55.5 40.5 −15 5.92 633 0.95

Rolandic operculum R 6 60 4.5 12 5.81 435 0.65

Middle temporal

gyrus

R 21 61.5 1.5 −21 5.75 104 0.16

Insula R 13 42 −1.5 12 5.59 166 0.25

Insula R 13 40.5 −15 −12 5.56 192 0.29

Fusiform gyrus R 37 34.5 −45 −13.5 5.48 244 0.37

Culmen R na 6 −64.5 −12 5.24 205 0.31

Culmen R na 10.5 −40.5 −7.5 5.03 103 0.15

Hippocampus R 48 34.5 −31.5 −7.5 4.97 128 0.19

Precentral gyrus R 4 22.5 −28.5 67.5 4.72 130 0.20

Middle orbitofrontal

gyrus

R 47 31.5 43.5 −15 4.43 105 0.16

Putamen L 49 −30 −1.5 3 7.02 185 0.28

Supramarginal gyrus L 39 −52.5 −51 25.5 5.80 256 0.38

Precuneus L 31 −9 −40.5 57 5.52 660 0.99

FIGURE 1 | Spatial brain maps with brain areas highlighted in which the BOLD

signal increase showed a positive relation with the following EEG regressors:

(A) frequency of alpha peak and (B) alpha band power. The figure shows the

three most informative orthogonal slices for the EEG regressor. Activation (FDR

corrected, p < 0.05, T < 3.47, cluster threshold > 100) is displayed in a

gradient from red to yellow (3 < t < 7) on the scalp-stripped version of the

average T1-weighted template image in neurological convention (left = right).

at correlations between BOLD signal and fluctuations of
magnitude and frequency of the alpha peak (mALP and fALP,
respectively), which might also provide information about

the synchronization-desynchronization process in EEG. We
observed no negative correlation with either mALP or fAFP.
Positive correlations with the BOLD signal were also absent
for mALP. Remarkably, instead of PSD, we observed only
significant and positive correlations of BOLD changes with
fALP in the following areas: right-hemispheric activation of the
middle frontal gyrus, rolandic operculum, pars triangularis of the
inferior frontal gyrus (Broca area, BA 47), middle temporal gyrus,
insula (BA 13), fusiform gyrus (BA 37), culmen in the cerebellum,
hippocampus, precentral gyrus (BA 4) and middle orbitofrontal
gyrus. In the left hemisphere, the dynamics of fALP correlated
positively with activation of the putamen, supramariginal gyrus
(BA 39) and precuneus (Table 1B; Figure 1B).

Considering the other frequency bands of EEG, we found
the most extensive positive correlations of the BOLD signal
with PSD for the delta band (Table 2; Figures 2A,B). The areas,
where activation was found to depend on the values of delta
PSD, included the bilateral parahippocampal gyri, middle frontal
gyri (BA 9 and 10), caudate nuclei, precuneus and anterior
cingulate gyri (BA 24). Activation of the rolandic operculum,
superior orbitofrontal cortex (BA 10) and middle cingulate
gyrus was observed only in the right hemisphere,; the inferior
orbitofrontal cortex, precentral and postcentral gyri (BA 1, 4, and
6), cerebellum, thalamus and insula (BA 13 and 45) were active in
the left hemisphere.

The averaged beta PSD showed no significant correlation
with BOLD signal increase with the rigorous threshold set at
p < 0.05.
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TABLE 2 | Brain areas showing a significant correlation of BOLD signal with delta band PSD (FDR corrected, p < 0.05, T < 3.47, cluster threshold >100).

Anatomical region with peak intensity L/R BA Peak MNI coordinate T-value Number of voxels Volume in cm3

(x, y, z)

Parahippocampal gyrus R 53 16.5 6 −18 5.96 599 0.90

Rolandic operculum R 40 52.5 −25.5 19.5 5.91 866 1.30

Anterior cingulate gyrus R 24 4.5 36 1.5 5.27 106 0.16

Precuneus R 31 16.5 −48 37.5 5.25 328 0.49

Middle cingulate gyrus R 24 3 1.5 34.5 5.18 111 0.17

Middle frontal gyrus R 10 27 48 15 5.16 1,063 1.59

Rolandic operculum R 6 61.5 3 9 5.02 244 0.37

Caudate R 48 21 1.5 22.5 4.73 184 0.28

Precuneus R 5 18 −27 49.5 4.65 325 0.49

Superior orbitofrontal cortex R 10 16.5 49.5 −9 4.56 311 0.47

Anterior cingulate gyrus R 9 3 40.5 24 4.50 925 1.39

Inferior orbitofrontal cortex L 47 −22.5 36 −10.5 5.98 514 0.77

Lobule VI of vermis L n/a 3 −72 −12 5.65 403 0.60

Middle frontal gyrus L 9 −27 30 22.5 5.59 625 0.94

Insula L 13 −36 18 3 5.43 101 0.15

Parahippocampal gyrus L 54 −21 −12 −10.5 5.23 459 0.69

Precentral gyrus L 4 −16.5 −30 55.5 5.21 128 0.19

Insula L 45 −28.5 28.5 9 5.15 168 0.25

Precuneus L 31 −13.5 −57 31.5 5.14 207 0.31

Thalamus L n/a −28.5 −33 15 4.96 926 1.39

Precuneus L 7 −18 −45 51 4.70 171 0.26

Caudate L 48 −19.5 6 24 4.69 251 0.38

Postcentral gyrus L 1 −55.5 −21 24 4.38 132 0.20

Anterior cingulate gyrus L 32 −10.5 43.5 3 4.25 137 0.21

Postcentral gyrus L 6 −60 0 21 4.23 142 0.21

Middle frontal gyrus L 10 −30 63 13.5 4.10 199 0.30

FIGURE 2 | Spatial brain maps with brain areas highlighted in which the BOLD

signal increase showed a positive relation with delta power’s spectral density,

superimposed on (A) normalized surface in three projections and (B) the

scalp-stripped version of the average T1-weighted template image at the three

most informative orthogonal slices in neurological convention (left = right).

Activation (FDR corrected, p < 0.05, T < 3.47, cluster threshold > 100) is

displayed in a gradient from red to yellow (3 < t < 6).

Correlation of BOLD Signal with Wavelet
Features of EEG
WT features for the alpha and delta bands did not correlate
significantly with BOLD fluctuations. For the beta range of
16–20Hz, only stdWT exhibited both positive and negative
correlations with the BOLD signal in bilateral activation of the
thalamus (more prominent in the right hemisphere), right insula,
parahippocampal gyrus and olfactory cortex, left medial frontal
gyrus, supplementary motor area (BA 6), caudate nuclei, and
putamen (Table S1A; Figure S1A). Moreover, beta stdWT was
negatively correlated with activation of the left calcarine sulcus
(BA 31) and primary visual cortex (BA 17) and with activation
of the right postcentral gyrus (BA 3) (Table S1B; Figure S1B).
However, these results did not survive FDR correction.

Correlation of BOLD Signal with Nonlinear
Features of EEG (Higuchi’s Fractal
Dimension)
The HFD of the studied frequency bands, as averaged across
selected electrodes for the different areas, exhibited no significant
association with brain activation as measured by fMRI. However,
HFD for the whole EEG band in question (2–20Hz) was
positively correlated with bilateral activation of the paracentral
lobules and middle temporal gyri, which was more prominent
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in the right hemisphere. Other regions correlated with HFD also
presented unequally in the hemispheres, including the inferior
frontal, superior frontal and parahippocampal gyri, precuneus,
insula and middle cingulate cortex and the rolandic operculum,
which were more correlated with HFD changes in the right
hemisphere. Activation of the superior occipital gyrus, inferior
occipital gyrus and supramarginal gyrus was observed in the left
hemisphere (Table 3; Figures 3A,B).

Correlation of EEG Parameters and Scores
on Psychological Tests
As none of the correlations with psychological scores reached the
strict FWE-corrected level of significance, we report the whole-
brain activations of more than 100 contiguous voxels (p < 0.05,
FWE-corrected) only in the Supplementary Material (Table S2).

Spearman correlation analysis showed that the averaged
values of HFD for the band of 2–10Hz were positively correlated
with the ARSQ factor “Health” (r = 0.51, p < 0.05). The
regression analysis showed that subjects with higher values for
“Health” had higher average HFD values (Figure S2). The other
EEG values showed no significant correlation with ARSQ, STAI
and BDI scores.

DISCUSSION

In this study, we investigated the relationship between BOLD
signal and EEG during resting state, using linear and nonlinear
EEG patterns as regressors for convolution with HRF. We
compared the results of fMRI statistical mapping according to the
mean spectral power of distinct frequency EEG bands, variability
of alpha band peak frequency, temporal changes in EEG band
power by wavelet analysis and complexity of the EEG signal
as reflected in HFD changes. Our findings indicate that the
spectral features of EEG frequency bands, variability of alpha
peak and changes in HFD correlate significantly with local BOLD
fluctuations in the brain during resting state.

Previous combined EEG-fMRI studies have also demonstrated
a significant association between changes in the band-limited
spectral power of EEG and BOLD signal during resting state
(Laufs et al., 2003). A temporal correlation between fluctuations
of the BOLD signal and EEG spectral power has also been
demonstrated for several RSNs (Jann et al., 2010). However,
electrophysiological research suggests that a single cerebral
rhythm more probably arises from synchronized activity of
different neuronal populations than from one specific cerebral
network (Buzsaki and Draguhn, 2004). Although some adjacent
frequency bands (especially higher frequency rhythms such as
beta and gamma) may indicate the oscillatory activity of more
local neuronal networks (although for relatively short time
intervals) (Sherman et al., 2016), bands lower than 12Hz recruit
more prolonged and synchronized activity of spread cortical
and subcortical areas (Pfurtscheller and Lopes da Silva, 1999).
Functional networks, which are typically associated with different
cognitive functions, exhibit oscillations at several rhythmic
frequencies coexisting in the same brain areas (Varela et al., 2001;
Steriade, 2006). As a result, an EEG signal derived from neuronal

activity is characterized by higher variability or nonstationarity in
the time domain. The instability of rhythms, as well as temporal
changes and EEG entropy, might therefore provide additional
information about switches in the synchronization of neuronal
activity related to different brain networks during the resting
state condition. The present study supports the latter assumption,
as we observed a clear association between EEG complexity
changes and resting state BOLD signal fluctuations. Notably,
we found a significant correlation of BOLD signal with mean
EEG patterns averaged across all electrodes, but we found no
reliable dependency of BOLD signal on topographically distinct
EEG patterns from the frontal, temporal, parietal and occipital
recording sites. Several previous studies have also reported
a significant correlation of BOLD signal with most electrode
positions rather than with selected electrodes (Laufs et al., 2003;
de Munck et al., 2009; Labounek et al., 2015). This effect (or
rather, absence of significant effect) of electrode selection on
results might be explained by higher interdependency of the EEG
signal across recording positions due to both electrical current
conductibility and infinite sources of neuronal activity (Ferree
et al., 2001; Buzsaki et al., 2012).

Correlation of BOLD Signal with Alpha
Band Power and Changes in Frequency of
Alpha Peak
Numerous studies have highlighted observable negative
correlations between alpha PSD and BOLD signal changes in
occipital, temporal and frontal areas during rest (Goldman
et al., 2002; Laufs et al., 2003; Goncalves et al., 2006; Labounek
et al., 2015). We observed no such correlations, which would
be significant in overcoming intersubject variability. Notably,
we found only two brain areas exhibiting a positive correlation
between BOLD signal and alpha PSD, located in the right
precuneus and the left culmen of the cerebellum. Previous
EEG-fMRI studies of functional connectivity during rest have
also reported significant positive correlations of alpha band
power and BOLD signal in the precuneus (Scheeringa et al.,
2012). More restricted areas exhibiting positive correlations
with alpha PSD were previously observed in the thalamus by
several groups (Goldman et al., 2002; Goncalves et al., 2006;
de Munck et al., 2009) but not by Laufs et al. (2003, 2006). A
positive correlation of absolute alpha band power with thalamic
structures was also contradicted by the findings of other studies
(Martinez-Montes et al., 2004; Ben-Simon et al., 2008; Yuan
et al., 2013; Labounek et al., 2015). While some EEG-informed
fMRI results support the conventional view of the thalamus as
a source generating alpha oscillations (Hughes and Crunelli,
2005), others argue for the cortical origins of BOLD fluctuations
related to alpha power (Goncalves et al., 2006; Laufs et al., 2006).
However, these contradictory positive and negative correlations
of alpha power with BOLD signals may be partly explained by
individual differences in alpha band power and high variability of
alpha oscillations in resting state condition, as well as by different
approaches to measuring EEG band power and convolving those
values with BOLD (Goncalves et al., 2006; Rosa et al., 2010;
Labounek et al., 2015).
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TABLE 3 | Brain areas showed a significant correlation of BOLD signal with HFD (FDR corrected, p < 0.05, T < 3.47, cluster threshold >100).

Anatomical region with peak intensity L/R BA Peak MNI coordinate T-value Number of voxels Volume in cm3

(x,y,z)

Superior temporal gyrus R 41 55.5 −30 18 6.41 582 0.87

Inferior frontal gyrus R 45 51 33 0 6.32 973 1.46

Rolandic operculum R 6 60 3 12 6.15 217 0.33

Paracentral lobule R 5 18 −40.5 52.5 6.00 1,517 2.28

Middle temporal gyrus R 39 46.5 −61.5 7.5 5.70 297 0.45

Middle cingulate gyrus R 24 10.5 −12 45 5.63 120 0.18

Insula R 13 34.5 −25.5 21 5.54 312 0.47

Parahippocampal gyrus R n/a 19.5 −6 −24 5.20 225 0.34

Insula R 13 43.5 9 −6 4.98 131 0.20

Precuneus R n/a 15 −57 18 4.87 111 0.17

Middle cingulate gyrus R 24 10.5 7.5 40.5 4.83 123 0.18

Lobule VI of vermis R n/a 4.5 −61.5 −18 4.64 123 0.18

Lingual gyrus R 30 9 −40.5 −6 4.52 115 0.17

Rolandic operculum R 6 49.5 −9 18 4.31 136 0.20

Middle temporal gyrus L 22 −66 −45 10.5 5.29 119 0.18

Middle temporal gyrus L 39 −49.5 −75 22.5 5.24 394 0.59

Inferior occipital gyrus L 19 −51 −75 −6 5.13 251 0.38

Postcentral gyrus L 40 −22.5 −43.5 57 5.13 162 0.24

Supramarginal gyrus L 40 −55.5 −52.5 27 5.12 264 0.40

Superior occipital gyrus L 19 −13.5 −84 21 4.92 564 0.85

Postcentral gyrus L n/a −31.5 −27 40.5 4.83 187 0.28

Paracentral lobule L 6 −7.5 −25.5 66 4.55 183 0.27

FIGURE 3 | Spatial brain maps with highlighted brain areas whose BOLD

signal increase showed a positive relation with values of HFD, superimposed

on (A) normalized surface in three projections and (B) the scalp-stripped

version of the average T1-weighted template image at the three most

informative orthogonal slices in neurological convention (left = right). Activation

(p < 0.001 uncorrected, T < 3.47, cluster threshold > 100) is displayed in a

gradient from red to yellow (3 < t < 7).

The other reason for variable correlation of alpha power
and BOLD signals relates to the uncontrolled drifts in mental
state associated with changes in various components of 8–18Hz

alpha oscillations, including the occipital alpha rhythm and the
Rolandic mu rhythm (Hughes and Crunelli, 2005; Lopes da Silva,
2013). In this sense, it is reasonable to explore how changes
in alpha peak frequency correspond to BOLD signal changes.
In the present study, we clearly observed a more significant
positive correlation of the BOLD signal with fALP than with
other alpha band measures, including alpha PSD. The following
areas were more active with an increase of fALP in the right
hemisphere: the insula; cerebellum and hippocampus; motor,
premotor, somatosensory and temporal areas; and the inferior
prefrontal cortex. The coincident activation of cortical areas and
hippocampus with changes in fALP may reflect the regulation
of cognitive processes, even in the resting state condition. The
fALP dynamic has previously been reported to correlate with
individual differences in cognitive performance and cognitive
abilities (Grandy et al., 2013), and an increase in fALP has
been associated with cognitive activity—in particular, with short-
and long-term memory, attention and reading (Klimesch et al.,
1993). Our data indicate a significant relationship between
increased activity in areas associated with cognitive functions
and fALP, possibly reflecting the ongoing processing of conscious
experience during the resting state condition.

Clear Positive Correlation of Neuronal
Activity with Delta Band Power
As the locus of the delta rhythm source, the thalamic structures
generate delta waves in coordination with the reticular formation
and the suprachiasmatic nuclei (Maquet et al., 1997). It is
well known that thalamic delta (1–4Hz) rhythmic activity is
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generated intrinsically by thalamic relay neurons, and that delta
oscillation during deep sleep is related to hyperpolarization of
the thalamic relay neurons (McCormick and Pape, 1990). The
thalamus plays an important role in the regulation of sleep, as
shown in thalamic stroke patients (Lovblad et al., 1997). Our data
support these findings, as we observed noticeable activation of
the thalamus with increased delta PSD. Moreover, we found even
greater activity associated with increasing delta rhythm power
in cortical areas such as the insula and prefrontal and frontal
cortex, as well as in the parahippocampal and anterior cingulate
gyri. The obtained correlation of vast brain activity with delta
band power may in part be explained by possible drift from
wakefulness to sleep during the resting state scanning session
(Tagliazucchi and Laufs, 2014). However, EEG monitoring of
vigilance revealed no clear transitions from wakefulness to sleep
stages other than drowsiness and a light N1 sleep stage, neither of
which entail increased delta waves. Despite the widely accepted
view that low-amplitude, high-frequency fluctuations prevail
in wakefulness while the delta rhythm dominates during slow
wave sleep, the 1–4Hz rhythm can be observed in local areas
or multiple brain areas during wakefulness, as recently shown
by intracranial EEG recording (Sachdev et al., 2015). Local
increase in delta power has also been reported during memory
and learning tasks and when experiencing strong emotions and
feelings (Hobson and Edward, 2002). In line with previous
findings, our results indicate that an increase in delta PSD is
correlated with activity of the left middle temporal gyrus, which
is the brain area associated with memory encoding functions
(Paller andWagner, 2002; de Zubicaray et al., 2005; Serruya et al.,
2014).

Changes in the Dynamic of Beta Band
Power Correlated with Activation of
Cortical, Thalamic, and Basal Structures of
the Brain
Previous studies have reported a positive correlation of beta
band power with regions related to DMN (Laufs et al., 2003;
Neuner et al., 2014).We found no significant association between
beta rhythm power changes and fluctuation of the BOLD
signal during resting state. We assume that this inconsistency
with previous results may reflect differences in the beta
band frequency limits used for correlation with BOLD. For
example, Laufs et al. (2003) and Neuner et al. (2014) measured
spectral power for two beta bands: beta-1 (13–23Hz) and
beta-2 (24–34Hz). We analyzed a narrower beta frequency
band (16–20Hz) on the grounds that this range would enable
us to exclude muscular artifacts, which can persist at 20–
35Hz (Muthukumaraswamy, 2013), as well as residual gradient
switching artifacts around 13–16Hz, which we could not fully
eliminate from the EEG signal.

Among all the measured beta band values, we found that
only the increased standard deviation of beta band 16–20Hz
coincided with increasing BOLD signal in the thalamus, basal
nuclei, and several limbic areas of the brain (Figure S1, Table
S1). Although these correlations were at the uncorrected level
of statistical significance, we believe this to be a very interesting

finding that should be further explored with a larger sample.
We assume that the beta stdWT may represent noncontinuous
beta bursts, typically lasting less than 150ms, as shown in the
recent MEG study (Sherman et al., 2016). Evidence from animal
research suggests that beta oscillations arise from neuronal
populations in the basal ganglia and thalamic structures, with
consequent input to neocortical areas (Siegel et al., 2008;
Jones et al., 2010; Miller et al., 2012; Bressler and Richter,
2015). Our preliminary results also support this assumption
concerning the basal-thalamic source of beta generation, as we
found a positive correlation between beta stdWT and BOLD-
reflected activation in the structures of the thalamus and basal
ganglia.

Correlation of Brain Activity with Changes
in Higuchi’s Fractal Dimension of EEG
HFD was first developed as a nonlinear measure of changes in
the Earth’s magnetic field (Higuchi, 1988) and has also been
applied as a measure of the complexity of various signals,
including neurophysiological signals (for review, see Kesić and
Spasić, 2016). Higuchi’s method enables the assessment of signal
nonlinearity (Accardo et al., 1997; Spasic et al., 2008; Naik et al.,
2011) and measures signal dynamics while linear methods, such
as FFT and WT, describe stationary signal parameters. As the
majority of physiological signals (including EEG) are by nature
nonstationary and nonlinear, HFD has a clear advantage over
linear methods as a measure of signal complexity (Klonowski,
2009). HFD has also been applied to the study of signal dynamics
in fMRI (Olejarczyk, 2007). However, this method is not widely
used in fRMI research, as fMRI data include artifacts that
interact with complexity calculations, unlike EEG (Rubin et al.,
2013).

To our knowledge, the present study is the first to address
the relationship between brain activation as measured by the
BOLD signal and changes in EEG complexity as assessed by
HFD. We observed a significant positive correlation between the
HFD of the 2–20Hz band and distinct activity in the cortical
motor, sensory-motor and language areas and occipital cortex,
as well as in regions of the limbic system. This HFD-correlated
activity within the sensory, motor and limbic areas of the brain
supports previous findings of differences in EEG HFD in relation
to internal vs. external conscious experience (Ibanez-Molina
and Iglesias-Parro, 2014), emotions (Cheng, 2016) and motor
imagery (Loo et al., 2011).

Limitations and Future Directions
One methodological limitation of our results relates to the
possible contamination of EEG data by residual MRI artifacts.
For this reason in particular, we did not include theta rhythm
patterns in the analysis, as these were highly contaminated by
artifacts caused by MRI gradient switching. It would be of
interest for future studies to test theta HFD-related changes
in BOLD fluctuations. As we excluded artifacts for the other
frequency bands in the 2–20Hz range at the upper limit, it
is reasonable to suppose that the correlations found between
EEG regressors and BOLD signals for other frequency bands are
substantial and can be replicated or extended in future research.
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The other concern relates to the absence of electrode selection
in GLM results. This issue might be explored in the future by
using higher-density EEG recording and by extending the study
sample.

CONCLUSIONS

Using linear and nonlinear patterns of EEG as regressors for
fMRI data analysis, we demonstrated a significant relationship
between BOLD changes and linear and nonlinear dynamic
features of the EEG signal. Among averaged spectral power
density values for delta, alpha and beta bands, we found the
most significant positive correlation between fMRI signal and
delta spectral power. Beta and alpha spectral features had no
reliable effect on BOLD fluctuation. However, dynamic changes
of alpha peak frequency exhibited a significant association with
BOLD signal increase in right-hemisphere areas. Additionally,
EEG dynamic complexity as measured by the HFD of the 2–
20Hz EEG band mapped activity in the cortical motor, sensory-
motor and language areas and the occipital cortex, as well as in
regions of the limbic system. In summary, our results indicate
that both spectral features of EEG frequency bands and nonlinear
dynamic properties of spontaneous EEG are strongly associated
with fluctuations of the BOLD signal during the resting
state.
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