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Background: Neurofeedback training (NFT) to decrease the theta/beta ratio (TBR)

has been used for treating hyperactivity and impulsivity in attention deficit hyperactivity

disorder (ADHD); however, often with low efficiency. Individual variance in EEG profile

can confound NFT, because it may lead to influencing non-relevant activity, if ignored.

More importantly, it may lead to influencing ADHD-related activities adversely, which may

even result in worsening ADHD symptoms. Electromyogenic (EMG) signal resulted from

forehead muscles can also explain the low efficiency of the NFT in ADHD from both

practical and psychological point-of-view. The first aim of this study was to determine

EEG and EMG biomarkers most related to the main ADHD characteristics, such as

impulsivity and hyperactivity. The second aim was to confirm our hypothesis that the

efficiency of the TBR NFT can be increased by individual adjustment of the frequency

bands and simultaneous training on forehead muscle tension.

Methods: We recruited 94 children diagnosed with ADHD (ADHD) and 23 healthy

controls (HC). All participants were male and aged between six and nine. Impulsivity and

attention were assessed with Go/no-Go task and delayed gratification task, respectively;

and 19-channel EEG and forehead EMG were recorded. Then, the ADHD group was

randomly subdivided into (1) standard, (2) individualized, (3) individualized+EMG, and (4)

sham NFT (control) groups. The groups were compared based on TBR and EEG alpha

activity, as well as hyperactivity and impulsivity three times: pre-NFT, post-NFT and 6

months after the NFT (follow-up).

Results: ADHD children were characterized with decreased individual alpha peak

frequency, alpha bandwidth and alpha amplitude suppression magnitude, as well as with

increased alpha1/alpha2 (a1/a2) ratio and scalp muscle tension when c (η2 ≥ 0.212).

All contingent TBR NFT groups exhibited significant NFT-related decrease in TBR not

evident in the control group. Moreover, we detected a higher overall alpha activity in

the individualized but not in the standard NFT group. Mixed MANOVA considering

between-subject factor GROUP and within-subject factor TIME showed that the
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individualized+EMG group exhibited the highest level of clinical improvement, which was

associated with increase in the individual alpha activity at the 6 months follow-up when

comparing with the other approaches (post hoc t = 3.456, p = 0.011).

Conclusions: This study identified various (adjusted) alpha activity metrics as

biomarkers with close relationship with ADHD symptoms, and demonstrated that TBR

NFT individually adjusted for variances in alpha activity is more successful and clinically

more efficient than standard, non-individualized NFT. Moreover, these training effects of

the individualized TBR NFT lasted longer when combined with EMG.

Keywords: neurofeedback training, ADHD, individual alpha activity, EMG, theta/beta ratio

INTRODUCTION

It has been already well-described that the main characteristics
of attention deficit hyperactivity disorder (AHDH), such as
inattention, impulsivity and hyperactivity are associated with
a phenomenon so called “slow electroencephalogram (EEG)”
(Bazanova and Aftanas, 2005, 2010; Arns et al., 2012; Rudo-
Hutt, 2014). This phenomenon includes enhancement of the
amplitude of low frequency range and decrease of the amplitude
of beta range (Lubar et al., 1995; Magee et al., 2005; Kerson,
2013; Simkin et al., 2016), which is why neurofeedback training
(NFT) protocol aiming to decrease the theta/beta ratio (TBR) has
been an obvious choice of treatment for children with ADHD
(Lubar and Shouse, 1976; Monastra, 2005; Arns et al., 2014).
However, the results of this conventional protocol is still not
overly convincing, because its efficiency is below 70% (Heinrich
et al., 2004; Gevensleben et al., 2009; Cortese et al., 2016).
Neurofeedback training in ADHD has been aiming to decrease
theta activity since the first demonstration by Lubar and Shouse
(1976). Monastra and coworkers have also demonstrated the
feasibility of TBR NFT (Monastra et al., 2002); however, they did
not find statistically significant correlations between quantitative
EEG (QEEG) changes and attention performance. One possible
explanation is the individual variance in EEG profile. For
example, an immature manifestation of the alpha rhythm,
which is the dominant frequency of a child, can be mistakenly
considered as high theta activity according to standard frequency
ranges. It has been also shown by several studies that 4–8Hz
may represent theta for those with alpha peak around 10Hz,
while it may represent alpha for those with alpha peak around
7–8Hz. Again, the latter is especially common in children
below 10 (Kaiser, 2001; Bazanova and Aftanas, 2005, 2010).
Alpha activity plays an important role in cognitive, psychomotor,
psycho-emotional, and physiological aspects of human brain
functions (see Bazanova and Vernon, 2014 for review). Over the
last decade, several studies have emphasized alpha oscillations
reflecting the top-down mechanism of neuronal inhibition and
neuronal efficiency (Pfurtscheller and Lopes da Silva, 1999;
Klimesch et al., 2007; Klimesch, 2012). It has been also shown
that children with ADHD exhibit higher theta/alpha ratio apart
from higher theta/beta ratio (Clarke et al., 2001, 2002). Due
to its spectral proximity to the targeted theta activity, alpha
activity is especially prone to be (adversely) influenced by a TBR
NFT. If alpha bands are not identified correctly, we might end

up accidentally suppressing alpha activity during a TBR NFT;
which can, again, explain the low efficiency of the training and
the worsening of the symptoms (Kaiser, 2001; Bazanova and
Aftanas, 2005, 2010). Alpha wave activity is often discussed as
referring to a standard frequency range (e.g., 8–12Hz) regardless
to the oscillatory feature known as the “Berger effect” (Kirschfeld,
2005). The actual alpha activity may or may not be fully
represented by this standard range, whichmay confound findings
(Nunez et al., 2001). Luckily, individual theta and beta ranges can
be identified based on individual alpha peak frequency (IAPF)
and alpha bandwidth as described in Bazanova and Aftanas
(2008). Namely, frequency bands showing a decrease in power of
more than 20% during the eyes-open vs. eyes closed conditions
in resting EEG are selected as individual alpha bands. Theta band
is identified as a frequency band between 3Hz and the lower
limit of the individual alpha band, while beta band is identified
as a frequency band between the upper limit of the individual
alpha band and 20Hz. Case studies have already shown that using
individually adjusted bands could improve the efficiency of TBR
NFT in ADHD (Kaiser, 2001; Bazanova and Aftanas, 2005, 2010).

Electromyogenic (EMG) signal resulted from forehead
muscles can also explain the low efficiency of the NFT in
ADHD. Several studies has shown that EEG in frequency ranges
below 10Hz and above 13Hz are the most contaminated by
EMG signal, and therefore it is almost impossible to distinguish
power in theta and beta ranges from slow EMG power (Halliday
et al., 1998; Goncharova et al., 2003; Chakarov et al., 2009;
Shackman et al., 2009; Hashimoto et al., 2010). Although EMG
contamination is greatest at the periphery of the scalp, near to
the active muscles, even weak contractions can produce EMG
interference that obscures or mimics the theta, mu, or beta
rhythms over the entire scalp (Goncharova et al., 2003). In
addition, there is also a psychological rationale to consider EMG
in ADHD. Enhanced forehead muscle tone is also thought to be
a sign of psychoemotional tension or mental stress (Cacioppo
et al., 1988; Malmo and Malmo, 2000; Wijsman et al., 2011),
and according to Braud (1978), the control over muscle tension-
relaxation is impaired in ADHD, and children are not able to
relax their forehead muscles (Braud, 1978; Barth et al., 2017).
Indeed, a training to reduce muscle tension measured over the
central forehead has been reported to be effective in the treatment
of hyperactivity (Barth et al., 2017). All the above-mentioned
considerations motivated the idea that the efficiency of a TBR
NFT in ADHD can further increase by combining it with EMG.
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In this study, we want to demonstrate the importance
of individual EEG alpha activity indices such as alpha peak
frequency, alpha bandwidth and alpha1/alpha2 (a1/a2) ratio, as
well as that of the forehead EMG in ADHD symptomatology.
We investigate whether they could serve as neurophysiological
biomarkers of ADHD. Another focus of interest is whether
neurofeedback training simultaneously aiming both to decrease
TBR in individually determined frequency ranges and to
reduce forehead muscle tension could be more efficient than
conventional TBR NFT. We also hypothesize that the proposed
optimized EEG/EMG NFT protocol would lead to higher alpha
activity indices in addition to the steeper TBR decreases and that
these effects last longer. We also hypothesize that these changes
in the neurophysiology will be accompanied by corresponding
behavioral improvements. Our study will demonstrate the
importance of individual alpha indices and the forehead muscle
tension not only in the diagnosis of ADHD but also in the
optimization of the neurofeedback training protocol in treatment
of ADHD.

MATERIALS AND METHODS

Participants
We recruited 94 children diagnosed with ADHD (ADHD) and
23 healthy controls (HC). All participants were male and aged
between six and nine. Mean and standard deviation of age were
7.0 ± 0.20 and 7.5 ± 0.28 in the ADHD and the healthy groups,
respectively. All participants’ parents gave their informed consent
in accordance with the Declaration of Helsinki prior to the
study. The Medical Ethics Committee of the Siberian branch of
the Medical Science Academy approved this study. All patients
fulfilled DSM-IV criteria for ADHD (American Psychiatric
Association, 2013). No children with any comorbidity were
included.

ADHD group was further categorized into the three qualifying
types: (a) primarily inattentive type (n = 29), (b) primarily
hyperactive-impulsive type (n = 30), and (c) combined type
(n = 35). ADHD group overall differed significantly from HC
in inattention (meanADHD = 3.72, meanHC = 1.10, t = 12.45,
p < 0.01) and hyperactivity/impulsivity (meanADHD = 2.42,
meanHC = 0.91, t = 11.97, p < 0.01).

Experimental Design
First, groups were compared based on EEG, EMG, and
psychometric characteristics (see section Psychometric
Assessment). Then ADHD participants were randomly assigned
to four groups for NFT to decrease TBR:

• standard NFT group (sNFT; n = 17), where standard
frequency bands of 4–8Hz (theta) and 12.5–20Hz (beta) were
used as targets (Deuschl and Eisen, 1999);

• individual neurofeedback training group (iNFT; n = 31),
where theta and beta target frequency bands were individually
adjusted (Bazanova and Aftanas, 2005, 2010);

• individual NFT group with simultaneous EMG to decrease
forehead muscle tension (iNFT_EMG; n = 32), where

individually adjusted bands and integrated power of the
forehead muscle EMG were used as simultaneous targets;

• shamNFT group (n= 14), when participants received random
audio-visual feedbacks.

NFT consisted of 10 sessions, 16min each. Despite the
considerable amount of experience in employing NFT in ADHD,
the optimal amount of time (and cost) of the treatment is still
on debate. A typical course of NFT involves 30–40 sessions,
which is very time consuming and expensive; particularly when
considering that NFT is rarely covered by health insurance.
Thus, there is a constant interest in developing a NFT protocol
clinically beneficial in shorter time. Hillard et al. (2013) suggests
that this may be achievable. The second reason for choosing
fewer sessions was the inefficiency of standard TBR NFT,
which led to that parents were reluctant to prolong NFT
after 10 sessions. For a fair comparison, we did not used
longer training for the novel protocols either, even if they
were (more) efficient. Session length of 16min was chosen due
to our experience that 6–9 years old children with ADHD
could not be engaged in a computer game for longer than
ca. 16min.

Participants were assessed pre-, post-, and 6-month after the
NFT. Assessment consisted of psychometrics, behavioral rating
scales completed by parents and teachers, as well as 19-channel
EEG and forehead EMG recordings (Figure 1).

Psychometric Assessment
Psychometric assessment included Go/no-Go task (Avila et al.,
2004) for assessing attention, delayed gratification task (Shoda
et al., 1990) for assessing impulse control and Parent and Teacher
Rating Scale interview (SNAP-VI) (Swanson et al., 2013) for
assessing inattention, impulsivity and hyperactivity in behavior.
The tasks have been performed as follows:

• Go/no-Go task: Participants were required to make a speeded
response by pressing keys “1” and “2” with the index and
middle fingers of their preferred hand for letters “X” and
“O,” respectively (Go). The letters were presented for 1,000ms
preceded by a 500-ms fixation point in the center of the screen.
Participants were also required to inhibit responses to a Go
stimulus, when it was accompanied by no-Go stimulus with
a delayed onset. The no-Go stimulus was a green circle with a
diameter of 3.4◦ presented 3.2◦ above the Go stimulus for 150-
ms. Reaction times and number of omissions (missed stimuli)
in the Go trials were measured.

• Delayed gratification task: A cake was presented to the
participant, who was told to choose between two options:
either eating the cake immediately (i.e., immediate reward) or
waiting for another cake, so that (s)he could eat both. The
experiment measured how long the participant resisted the
immediate reward.

The clinical efficiency of NFT was measured as percent change in
the reaction time and the number of missed stimuli in the Go-
/no-Go task, as well as in the duration of delayed gratification at
the post-NFT and the follow up sessions in comparison with the
pre-NFT session.
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FIGURE 1 | Design of the experiment.

Offline EEG
We compared resting state EEG recordings of the two groups in
1min eyes closed (EC) and 1min eyes open (EO) condition at
the pre-, post-NFT and the follow up sessions. Participants sat in
a comfortable chair with a backrest and were instructed not to
move their eyes during the recordings. EEG data was acquired
using a Neuron-Spectrum-4 system (Neurosoft, Ivanovo, Russia)
at a sampling rate of 1,000Hz and with a bandpass filter
between 0.1 and 50Hz. The EEG electrodes were placed in
accordance with the international 10–20 system: 18 electrodes
were positioned in four regions: left fronto-central (LFC: Fp1,
F3, C3, F7, T3,), right fronto-central (RFC: Fp2, C4, T4, F4, F8),
left posterior-occipital (LPO: T5, P3, O1), and right posterior-
occipital (RPO: T6, P3, O2), and signal was averaged within
each area. Two reference electrodes were fixed at M1 and
M2. The ground electrode was placed at Fp1 site. Impedance
was kept below 5 k�. Data was anti-aliasing/low-pass filtered
at 30Hz.

The EEG data were analyzed using WinEEG software (Mitsar
Co., St. Petersburg, Russia). Eye-blink artifacts were removed
using Independent Component Analysis, then the recording
was divided into 4.096-s-long epochs using a Hanning window
(epochs were overlapped by 50%). Only records showing
an amplitude above 10 µV2 were included in the analysis.
Analysis of EEG characteristics was carried out according to our
previously published approach (Bazanova and Aftanas, 2010).
Briefly, individual alpha peak frequency and alpha frequency
band limits were determined at every electrode site for every
participant using data from the last 30 s of EC and first 8 s of
EO conditions. Frequency bands that were decreased in power by
more than 20% during the EO vs. EC conditions were selected as

individual alpha bands. Frequency showing the highest spectral
amplitude within this band was identified as individual alpha
peak frequency (IAPF). Lower and upper limits of the band [i.e.,
theta (TF) and beta (BF) transition frequencies] were determined
where EO curve crossed the EC curve closest to IAPF. Theta
and beta bands were defined between 3Hz and TF, as well as
between BF and 20Hz, respectively. These adjusted band ranges
were also used for the NFT. The alpha1 and alpha2 sub-bands
were also adjusted: the alpha1 ranged from the lower limit to the
individual alpha peak frequency, while the alpha2 ranged from
the individual alpha peak frequency to the upper limit (Figure 2).
The alpha amplitude suppression magnitude (ASM) in response
to eyes open was measured as: ASM= log [(mean alpha power in
EC condition – mean alpha power in EO condition) ∗ 100%] /
mean alpha power in EC condition). Alpha1 to alpha2 ratio
(a1/a2) was also calculated.

Real-Time EEG and EMG
EMG and EEG data were simultaneously recorded using Bosalb
system, (NIIMBB SORAMN, Novosibirsk, Russia) with the
sampling rate of 720Hz. Feedback signal was recorded from
Pz scalp electrode with a bandpass filter between 3 and 30Hz.
Monopolar reference electrode was located on the right ear, and
the ground electrode was located at Fp1. Electrode impedance
was kept below 5 kOhm. EMG was recorded using two Ag/AgCl
surface bipolar electrodes with an effective diameter of 1.6 cm
placed about 3–5 cm apart on the forehead. The EMG signal was
amplified and filtered with 5–350Hz bandpass filter.

Location of Pz was selected based on the following
considerations: (i) alpha activity in the parieto-occipital area
is generally proposed as a modulator of the attentional states
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FIGURE 2 | Identifying individual alpha band and derived metrics based on comparing EEG spectral power in eyes closed (black line) and eyes open (red line)

conditions. IAPF, TF, and BF represent individual alpha peak frequency, theta and beta transition frequencies, respectively.

(Ergenoglu et al., 2004); (ii) alpha amplitude in posterior
areas are hypothesized to reflect top-down inhibition to
suppress distracting information (Min and Herrmann, 2007);
(iii) posterior alpha measures are exclusively used as predictors
of individual differences (Bazanova, 2011; Tenke et al., 2013;
Bazanova and Vernon, 2014); (iv) test-retest investigation had
shown that alpha peak frequency, bandwidth, and amplitude are
the least variable and the most reproducible at the posterior brain
regions (Bazanova, 2011; Bazanova and Vernon, 2014); (v) due to
the nature of alpha wave generation, the changes in alpha activity
recorded in posterior scalp surface reflect some generalized
cerebral processes regardless of the topography (Hughes et al.,
2011; Mizuhara, 2012; Kayser and Tenke, 2015); (vi) topographic
analyses revealed that this electrode site is largely representative
of the others while capturing the strongest effects (Kayser and
Tenke, 2015).

Average power of the raw EMG was calculated over 100ms
according to the usual approach (Merletti, 1999). The resulted
value was therefore the area under a power curve, measured in
microvolts squared (µV2).

NFT Procedure
We have followed the conventional NFT protocol for ADHD
to decrease TBR (Monastra, 2005). Participants underwent 10
sessions of NFT with eyes open, and each session lasted for
16min. During training, participants sat in front of the monitor
and controlled a kind of computer game by modulating their
TBR. As soon as TBR dropped below the threshold, virtual
flowers began to grow on the screen. Participants were instructed
to find and optimize a strategy/imagery to decrease TBR, which
facilitates the flower growth, as follows: “You’re going to grow
flowers. You can do it by letting yourself feel empty and
heavy.” Immediately after the electrodes were attached, we have
elaborated on the instruction to provide visual cues for imagery:
“It will be easier to relax and let flowers grow up, if you
just imagine yourself being a steady, heavy rock. Quiet, steady,
and heavy. Relax and let your eyebrows down!” Positive verbal
reinforcement was provided in every 2–3min and the instruction
with visual cue was repeated in every 5min.

In general, thresholds were determined for each participant
from 1-min pre-training baseline for each session. Reward
criteria were set so that reward thresholds had to be exceeded
in 70% of sampled events in a 1,000-ms period, and TBR had
to range inhibit above thresholds in 30% of sampled events to
receive a reward. For the sNFT group, threshold was calculated
based on the mean power in standard frequency bands (4–
8Hz for theta and 12–15Hz for beta). For the iNFT and
the iNFT_EMG groups, threshold was based on mean power
of individually adjusted frequency ranges (see section Offline
EEG). For the iNFT_EMG group, the mean power of integrated
forehead EMG was also taken into account, so that feedback
signal (flower growth) appeared only when both TBR and the
EMG signal lowered below the thresholds, respectively.

Statistics
Psychological and Neurophysiological

Characteristics of ADHD
Psychometrics, as well as electrophysiological (EEG, EMG) data
were tested for normality by the Kolmogorov-Smirnov’s test and
showed normal distribution (d ≤ 0.033, p ≥ 0.2).

Psychometric and electrophysiological variables were
compared pairwise between inattentive, hyperactive and
combined subtypes ADHD groups, and between ADHD overall
vs. HC groups using two-sample T-test.

For electrophysiological variables, repeated-measure 4-way
ANOVA was performed using the factors SUBTYPE (3 levels:
inattentive, hyperactive and combined subtypes of ADHD
groups), CAUDALITY (2 levels: fronto-central and posterior-
occipital), HEMISPHERE (2 levels: left and right), and
CONDITION (2 levels: EC and EO). The second 3-way
ANOVA with factors GROUP (2 levels: HC and ADHD overall),
CAUDALITY (2 levels: fronto-central and posterior-occipital)
and HEMISPHERE (2 levels: left and right) was conducted to
compare overall ADHD and HC groups. ANOVAs were further
extended with post-hoc Scheffe-test.

Pearson correlation analyses were also performed to analyze
the relationship between the psychological measures and the
electrophysiology. In order to identify the most powerful
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electrophysiological predictors of the behavior, a multiple
linear regression analysis with forward stepwise selection was
conducted on the data of all the 94 ADHD participants using
the alpha EEG, TBR, and EMG indices as independent variables,
and psychological measures (i.e., reaction time, number ofmissed
stimuli, and duration) as dependent variables.

Neurofeedback Training
Planned pairwise comparisons of the different NFT groups
(sNFT vs. iNFT; sNFT vs. iNFT_EMG; sNFT vs. sham NFT;
iNFT vs. iNFT_EMG; iNFT vs. sham NFT; iNFT_EMG vs. sham
NFT) were conducted for psychometrics, behavioral measures
(SNAP-VI), EMG, and feedback signals. Mixed 2-way ANOVAs
were performed to evaluate the effect of within-subject factor
time (3 levels: pre-NFT, post-NFT, and follow up) and between-
subject factor NFT_GROUP (4 levels: sNFT, iNFT, iNFT_EMG,
and sham NFT) on all variables of interest.

RESULTS

Psychological and Neurophysiological
Characteristics of ADHD
Two-sample T-test showed no significant difference between
ADHD subtype groups in psychometrics (|T| ≤ 0.49, p ≥ 0.62)
and EMG characteristics (|T| ≤ 0.59, p ≥ 0.92). All subtypes
of ADHD exhibited significantly increased reaction time
(T ≤ −3.76, p ≤ 0.001) and number of missed stimuli
(T ≤ −7.91, p ≤ 0.001) in Go/no-go task, decreased duration
(T ≥ 32.95, p≤ 0.001) in Delayed gratification task and increased
forehead muscle tension (T ≤−4.38, p≤ 0.001) when compared
to healthy peers (Table 1).

The SUBTYPE × CAUDALITY × HEMISPHERE ×

CONDITION ANOVA showed no significant main effects of
SUBTYPE (F = 0.2, p = 0.99, η

2 = 0.001) and HEMISPHERE
[F = 0.1, p = 0.99, η

2 < 0.001) on alpha indices and TBR.
All subtypes of ADHD showed a decreased alpha power in
EO condition (i.e., significant main effect of CONDITION:
F = 610.74, p < 0.001, η2 = 0.215). Factor CAUDALITY showed
a significant main effect on alpha1 and alpha2 power, ASM,
alpha1 and alpha2 bandwidth, as well as on a1/a2 ratio and TBR
(F ≥ 20.54, p ≤ 0.001, η2 ≥ 0.012).

The GROUP × CAUDALITY × HEMISPHERE ANOVA
showed significant main effect of GROUP on alpha1 and alpha2
power, ASM, alpha1 and alpha2 bandwidth, as well as on a1/a2
ratio and TBR (F ≥ 4.74, p ≤ 0.987, η2 ≥ 0,285). HEMISPHERE
showed no significant main effect. Table 2 summarizes the post-
hoc comparisons of neurophysiological characteristics between
the ADHD subgroups and the HC group in a layout similar to
Table 1. The Table 2 presents the results of ANOVA of offline
EEG as extracted from the PO area.

Table 2 Neurophysiological characteristics of healthy and
the ADHD subtype groups. Offline PO EEG and EMG
data of healthy and the ADHD subtype groups before the
training.

Pearson correlation analysis showed significant relationship
between Go/no-Go test results and EEG indices: Both reaction
time and number of missed stimuli correlated negatively with
individual alpha peak frequency (r ≤ −0.67, p < 0.05), ASM
(r≤−0.48, p< 0.05), alpha bandwidth (r≤−0.40, p< 0.05), and
positively with a1/a2 ratio (r≥ 0.64, p< 0.05), and TBR (r≥ 0.58,
p < 0.05). Duration of the Delayed gratification task correlated
positively with individual alpha peak frequency (r = 0.66,
p < 0.05), ASM (r = 0.85, p < 0.05), alpha bandwidth (r = 0.60,
p < 0.05), and negatively with a1/a2 ratio (r = −0.60, p < 0.05)
and TBR (r= −0.74, p < 0.05). Muscle tension measured with
EMG also correlated positively with reaction time (r = 0.38,
p < 0.05) and missed stimuli number (r = 0.19, p < 0.05)
in Go/no-go task, and negatively with the duration in Delayed
gratification task (r=−0.40, p< 0.05). According to themultiple
linear regression analysis, where pre-training psychological
measures of ADHD were included as dependent variables and all
EEG and EMG variables were included as predictors, individual
alpha peak frequency, individual alpha2 bandwidth, a1/a2 ratio
predicted all three psychological measures of ADHD significantly
(|beta| ≥ 0.151, |rsemipartial| ≥ 0.081, p ≤ 0.036) (Table 3, typed
in bold).

Neurofeedback Training
EEG and EMG characteristics are based on the offline EEG
and EMG data. At the pre-training session, psychometric, EEG
and EMG characteristics showed no difference between the NFT
groups (T ≤ 1.55, p ≥ 0.122).

TABLE 1 | Mean and standard deviation of reaction time (in s) and number of missed stimuli in Go/no-go task, as well as duration (in s) in Delayed gratification task for the

healthy and the ADHD subtype groups.

Healthy, n = 23 ADHD, n = 94

Inattentive subtype, n = 29 Hyperactive subtype, n = 30 Combined subtype, n = 35

Go/no-go task: reaction time in s M±SD 0.37 ± 0.132 1.03 ± 0.209* 1.01 ± 0.177* 0.94 ± 0.223*

η2 0.774 0.804 0.69

Go/no-go task: number of missed stimuli M ± SD 0.30 ± 0.635 14.61 ± 6.974* 15.82 ± 11.576* 13.23 ± 6.764*

η2 0.648 0.451 0.601

Delayed gratification task: duration in s M ± SD 60.00 ± 0.000 21.29 ± 13.842* 14.48 ± 15.256* 16.76 ± 15.120*

η2 0.774 0.803 0.772

*denote significance of the differences from the healthy group at the levels of p = 0.001.
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TABLE 2 | Neurophysiological characteristics of healthy and the ADHD subtype groups.

Healthy, n = 23 ADHD, n = 94

Inattentive subtype, n = 29 Hyperactive subtype, n = 30 Combined subtype, n = 35

Individual alpha peak frequency. Hz M ± SD 9.32 ± 0.685 8.42 ± 0.292* 8.58 ± 0.508* 8.49 ± 0.405*

η2 0.566 0.285 0.376

A1/a2 ratio M ± SD 1.04 ± 0.053 1.82 ± 0.622* 2.11 ± 0.076* 1.57 ± 0.519*

η2 0.409 0.475 0.302

Individual alpha2 band width. Hz M ± SD 2.36 ± 0.346 1.38 ± 0.413* 0.984 ± 0.344* 1.35 ± 0.466*

η2 0.622 0.804 0.587

Alpha suppression. log% M ± SD 3.53 ± 0.514 1.45 ± 0.311* 1.57 ± 0.341* 1.54 ± 0.361*

η2 0.868 0.844 0.843

Theta/beta ratio M ± SD 0.66 ± 0.210 6.61 ± 2.185* 10.17 ± 3.770* 7.44 ± 3.491*

η2 0.763 0.743 0.609

EMG M ± SD 5.86 ± 1.486 8.64 ± 3.017* 8.62 ± 2.455* 9.14 ± 3.750*

η2 0.240 0.308 0.223

Offline PO EEG and EMG data of healthy and the ADHD subtype groups before the training.

*denote significance of the differences from the healthy group at the levels of p = 0.001.

TABLE 3 | Multiple stepwise linear regression analysis of the predictive power electrophysiological metrics when considering reaction time (in s), number of missed stimuli

in Go/no-Go test and duration (in s) in Delayed gratification task.

Dependent Variables Predictors Beta rpartial rsemipartial Adjusted r F df p

Go/no-go task: reaction time in s Individual alpha peak frequency in Hz −0.250 −0.389 −0.194 0.775 58.171 7.109 0.000

Individual alpha bandwidth in Hz −0.147 −0.202 −0.095 0.034

Individual alpha2 bandwidth in Hz −0.212 −0.200 −0.094 0.036

a1/a2 ratio 0.250 0.351 0.172 0.000

ASM −0.166 −0.244 −0.116 0.010

TBR 0.108 0.138 0.064 0.148

EMG 0.051 0.098 0.045 0.307

Go/no–go task: number of missed stimuli Individual alpha peak frequency in Hz −0.376 −0.494 −0.291 0.720 43.374 7.109 0.000

Individual alpha bandwidth in Hz −0.025 −0.032 −0.016 0.741

Individual alpha2 bandwidth in Hz −0.580 −0.448 −0.257 0.000

a1/a2 ratio 0.254 0.323 0.175 0.001

ASM 0.127 0.170 0.089 0.074

TBR −0.066 −0.077 −0.039 0.425

EMG −0.140 −0.234 −0.124 0.013

Delayed gratification task: duration in s Individual alpha peak frequency in Hz 0.151 0.341 0.117 0.889 134.410 7.109 0.000

Individual alpha bandwidth in Hz 0.077 0.152 0.049 0.112

Individual alpha2 bandwidth in Hz 0.183 0.244 0.081 0.010

a1/a2 ratio −0.159 −0.321 −0.109 0.001

ASM 0.446 0.694 0.311 0.000

TBR −0.143 −0.256 −0.085 0.007

EMG −0.051 −0.138 −0.045 0.147

Mixed ANOVA on psychometric outcomes revealed
significant main effect of TIME (F = 5.04, p < 0.001, η2 = 0.196)
and significant TIME × NFT_GROUP interaction on all studied
variables (F = 2.26, p < 0.001, η2 = 0.116) (Figure 3). Post-hoc
tests at the post-training session revealed significant differences
between the groups in psychological measures: iNFT and

iNFT_EMG groups showed decreased reaction time and number
of missed stimuli in Go/no-go task, as well as increased duration
of Delayed gratification task in comparison with both sNFT
and sham NFT groups (T ≥ 8.84, p ≤ 0.001, η

2 ≥ 0.266). All
these effects remained until the follow-up session 6 months after
the NFT in the iNFT_EMG group only (T = 5.30, p ≤ 0.001,
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FIGURE 3 | Mean and standard deviation of (A) reaction time (in s) and (B) number of missed stimuli in Go/no-Go task, as well as of (C) duration (in s) in Delayed

gratification task at the pre-NFT, post-NFT session and six month after the NFT. *Means that the group difference is significant (p < 0.005).

η
2 ≥ 0.182). iNFT group showed improvement only in the

number of missed stimuli (Figure 3). NFT efficiency measured
with psychological measures was the highest in the iNFT_EMG
group (η2 > 0.46), while neurofeedback training effect severely
diminished in other groups by the time of the follow-up session
(Figure 4).

Mixed ANOVA on behavior assessment with Parent and
Teacher Rating Scale interview (SNAP-VI) showed significant
main effect of NFT_GROUP (F ≥ 4.627, p < 0.001, η2 ≥ 0.060)
and TIME (F ≥ 2.651, p < 0.01, η

2 ≥ 0.028) on all
variables (Figure 5). Post-hoc tests at the post-training session
revealed significant differences between the groups: iNFT and
iNFT_EMG groups showed a significant decrease in inattention
and impulsivity scores in comparison with both sNFT and sham
NFT groups (|T| ≥ 3.239, p ≤ 0.001, η2 ≥ 0.060). NFT efficiency
was the highest in the iNFT_EMG group when considering
inattention (F = 7.703, p < 0.001, η2 > 0.060) and impulsivity
scores (F = 3.887, p < 0.001, η2 > 0.600).

Mixed ANOVA on EEG indices also revealed significant main
effect of TIME (F ≥ 4.42, p < 0.001, η2 ≥ 0.131) and significant
TIME × NFT_GROUP interaction on alpha activity indices and
TBR (F ≥ 2.40, p < 0.001, η

2 ≥ 0.102) (Figure 6). Post-hoc
tests at the post-training session revealed significant differences
between the groups only in ASM, alpha2 bandwidth, a1/a2 ratio
and TBR: iNFT and iNFT_EMG groups showed increased ASM,
alpha2 band width, as well as decreased a1/a2 ratio and TBR in
comparison with both sNFT and sham NFT groups (T ≥ 5.11,
p< 0.001, η2 ≥ 0.365). All these effects were present at the follow-
up session only for the iNFT_EMG group (T ≥ 3.29, p ≤ 0.001,
η
2 ≥ 0.298).
Mixed ANOVA on muscle tension as measured with EMG

showed significant main effect of TIME (F = 4.09, p < 0.05,

η
2 = 0.026) and TIME × NFT_GROUP interaction (F = 7.00,

p < 0.001, η
2 = 0.134) (Figure 6). Post-hoc tests at the

post-training session revealed that iNFT_EMG group exhibited
muscle tension significantly lower than the other groups
(T = 13.40, p < 0.001, η

2 = 0.308), and this effect were
also present at the follow-up session (T = 13.58, p < 0.001,
η
2 = 0.311) (Figure 4).

DISCUSSION

Individual variances of the EEG profile may confound
the neurofeedback training, if ignored. Previous
electroencephalographic studies attribute persistent increase in
slow wave activity during resting state mostly to increase in theta
power in ADHD (Chabot and Serfontein, 1996; Hermens et al.,
2005). These studies consider elevated theta power and TBR
according to standard band limits as the strongest biomarkers
of ADHD. However, recent studies have failed to replicate
their findings (Loo et al., 2009, 2013; van Dongen-Boomsma
et al., 2010; Liechti et al., 2013). One possible reason for this
disagreement could be that the standard approach to estimate
TBR may not fit for all due to individual variability. A more
thorough assessment of the individual EEG profile is necessary
to identify and investigate the role of electrophysiological
biomarkers and to adjust NFT protocols accordingly. General
recognition that physicians need to take individual variability
into account is driving huge interest in “precision” medicine
(Schork, 2015). In NFT literature, individualization usually
implemented by comparing one’s EEG profile to age-regressed
equations for normal individuals. See Lansbergen et al. (2011)
as an example. However, EEG profiles are still determined based
on standard frequency ranges, which can explain the low clinical
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FIGURE 4 | Mean and standard deviation of percentage change in EMG, reaction time (RT) and numbers of missed stimuli (NMS) in Go/no-Go task, as well as in

duration of Delayed gratification task (D) at post-NFT session and six month after the NFT relative to the pre-NFT session.

FIGURE 5 | Mean and standard deviation of SNAP-VI (A) inattention, (B) impulsivity and (C) hyperactivity scores at the pre-NFT, post-NFT session, and six month

after the NFT. *Means that the group difference is significant (p < 0.005).

efficiency (electrophysiology was not reported). The present
study emphasize the importance of individualized adjustment of
alpha activity measures when evaluating the electrophysiological
status of the patients prior to NFT. However, it also requires
acquiring EEG data during eyes closed condition, which most
studies prefer not to do to avoid participants from becoming
drowsy. Therefore, they cannot adjust band limits individually
based on alpha amplitude suppression.

Our study replicated most of the previous findings regarding
the electrophysiological profile of ADHD. We have found
decreased alpha and beta powers in agreement with the literature
(Bresnahan and Barry, 2002; Hobbs et al., 2007; Poil et al., 2014;

Giertuga et al., 2017). We could also demonstrate the left shift
of individual alpha peak frequency in ADHD in comparison
with HC (Bazanova and Aftanas, 2010; Arns et al., 2012; Arns,
2013). We have also proved that alpha band characteristics
measured at posterior areas could predict individual differences
between ADHD and HC (Bazanova, 2011; Tenke et al.,
2013; Bazanova and Vernon, 2014). According to Min and
Herrmann (2007), decrease in alpha power and bandwidth
at posterior areas reflect deficit in top-down inhibition to
suppress distracting information in ADHD children. In addition
to previous findings that alpha activity is altered in ADHD,
we have also found that a1/a2 ratio, alpha peak frequency
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FIGURE 6 | Mean and standard deviation of (A) alpha-1/alpha-2 ratio (a1/a2), (B) individual alpha-2 bandwidth (alpha-2 bandwidth) (in Hz), (C) alpha amplitude

suppression magnitude (ASM) (in log-ratio), (D) theta/beta ratio (TBR) and (E) EMG of frontal muscles (in µV2 ) at the pre-NFT, post-NFT session, and six month after

the NFT. *Means that the group difference is significant (p < 0.005).

and alpha2 bandwidth are the most powerful predictors of
inattention, impulsivity and hyperactivity. Our results showed
that decrease in individually adjusted alpha indices, such as
alpha peak frequency, alpha2 bandwidth, ASM, and a1/a2 ratio
could predict at least 40% of the decrease in duration of
Delayed gratification task and reaction time in Go/no-go task,
as well as of the increase in number of missed stimuli in
Go/no-Go task. More importantly, (individualized) alpha activity
metrics have been proved to be more powerful predictors of
ADHD symptoms than TBR. This is further supported by
the fact that the groups, which received individualized TBR
NFT showed significant improvement in symptoms in parallel
with corresponding changes in (individualized) alpha activity
metrics. Further implication of these findings is that the accurate
identification of the alpha sub-bands allows for a NFT specifically
target these alpha activity metrics; for example to decrease the
alpha-1/alpha-2 ratio directly, whichmight be evenmore efficient
in reducing ADHD symptoms.

Hyperactivity is also characterized by redundant motoric
elements; i.e., patient perform more movements than necessary
for a given motor task. This contextual redundancy reflects
the inefficiency of inhibitory processes in the sensorimotor

coordination (Sterrnan and Friar, 1972; Bernstein, 1996).
Previous studies of a sensorimotor rhythm localized at the
sensorimotor cortex in cats indicated its functional relationship
with thalamo-cortical inhibitory discharge (Howe and Strerman,
1972) and voluntary suppression of movements (Wyrwicka and
Sterman, 1968). Over the last decade, a growing number of
report also suggest the important role of the alpha oscillations
in top-down mechanism of neural inhibition (see Pfurtscheller
and Lopes da Silva, 1999; Klimesch et al., 2007; Klimesch, 2012)
and thus in cognitive task performance. For further proof of
this top-down mechanism, recent studies has demonstrated that
inhibition of redundant muscle activity was accompanied by
decrease in EMG power and a simultaneous increase in EEG
upper alpha and SMR power (Sammler et al., 2007; Bazanova
et al., 2009; Bowers et al., 2014). In contrast, an increase in
forehead muscle tension was shown to be accompanied by
decrease in EEG alpha power (Barry et al., 2007; Bazanova and
Vernon, 2014). The close relationship between the EEG alpha
and EMG powers in controlling task-relevant neural activity and
mental stress implies that the role of EEG upper alpha activity in
inhibiting redundant motor behavior and reducing the excessive
psychoemotional tension. Therefore, it is not surprising that
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individually adjusted alpha indices and EMG can predict ADHD
symptoms; which gives an additional rationale to adjust TBR
according to individually adjusted alpha band limits in NFT
(Bazanova and Aftanas, 2010).

Sensorimotor integration is a key for optimal learning, and
increase in alpha-2 activity with a simultaneous decrease in
forehead EMG is proved to be the most reliable markers of the
efficient learning (Sammler et al., 2007; Bazanova et al., 2009;
Bowers et al., 2014). These results are in concordance with that we
found stronger effect in both the electrophysiological measures
and the ADHD symptoms at the 6-months follow-up only for
the iNFT_EMG group. These results prove that individualized
TBR NFT was significantly more efficient in improving attention
and impulse control in children with ADHD than standard NFT
protocol, and that its effect takes longer when combined with
simultaneous EMG.

CONCLUSION

By means of group comparison followed by regression analysis,
we identified individualized alpha peak frequency, alpha1/alpha2
ratio and forehead muscle tension as the most powerful
predictors of ADHD symptoms.

We confirmed the lack of efficiency of TBR NFT when using
standard bands, as well as its efficiency when EEG bands has been
individually adjusted. We further demonstrated that combining
NFT with muscle tension control training could lead to a longer
lasting training effect. These research findings supports our claim
that efficiency of NFT can be improved by considering individual
characteristics of the EEG and the muscle tension.
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