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The simultaneous acquisition of electroencephalography (EEG) with functional magnetic
resonance imaging (fMRI) is a very promising non-invasive technique for the study
of human brain function. Despite continuous improvements, it remains a challenging
technique, and a standard methodology for data analysis is yet to be established. Here
we review the methodologies that are currently available to address the challenges
at each step of the data analysis pipeline. We start by surveying methods for pre-
processing both EEG and fMRI data. On the EEG side, we focus on the correction
for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as
other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced
by the presence of EEG hardware inside the MR scanner, and the contamination of the
fMRI signal by physiological noise of non-neuronal origin, including a review of several
approaches to model and remove it. We then provide an overview of the approaches
specifically employed for the integration of EEG and fMRI when using EEG to predict
the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed
fMRI integration strategy, the most commonly used strategy in EEG-fMRI research.
Finally, we systematically review methods used for the extraction of EEG features
reflecting neuronal phenomena of interest.

Keywords: simultaneous EEG-fMRI, data quality, neurovascular coupling

INTRODUCTION

Electroencephalography (EEG) is by far the most commonly used technique to study brain
function. Its millisecond temporal resolution allows the adequate sampling of the rapidly changing
electrical dynamics of neuronal populations. The power spectrum of scalp EEG signals follows
approximately 1/f β power law distributions, characteristic of most scale-free dynamics found
in nature. In addition, power peaks reflecting rhythmic activity, or brain oscillations at specific
frequencies, can be superimposed. In general, the most relevant brain oscillations are found in the
following conventional frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (above 30 Hz) (Niedermeyer and Lopes Da Silva, 2005; Akay, 2006). Both
rhythmic and arrhythmic ongoing wide-band EEG activities can be modulated by external stimuli
or tasks (e.g., cognitive, somatosensory, motor, auditory, visual), inducing time-locked and/or
phase-locked activation of specific neuronal populations. In both cases, stimuli- or task-specific
electrical potentials – event-related potentials (ERPs) – are generated.

Scalp EEG signals result from the mixture of propagating electric potential fluctuations
(the so-called local field potentials, LFPs), mainly reflecting the postsynaptic activity of large
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populations of cortical pyramidal cells. These cells display a
geometric configuration and an orientation in relation to the
skull that are favorable to the constructive summation of the
associated electrical current sources (Michel et al., 2004). Modest
contributions from multi-unit activity (MUA) associated with
action potentials, as well as from glial cells, have also been
reported (Nunez and Silberstein, 2000; Dale and Halgren, 2001).
Unfortunately, EEG source reconstruction is a notably ill-
posed inverse problem, yielding a non-unique solution for all
admissible potential distributions, because the number of sources
is typically much larger than the number of sensors (Michel and
Murray, 2012). Available strategies for the practical resolution
of this problem have been proposed, but generally provide
limited spatial resolution and a heterogeneous spatial sensitivity
particularly for superficial versus deep sources.

Alternatively, blood oxygenation level dependent (BOLD)
functional magnetic resonance imaging (fMRI) (Ogawa et al.,
1990; Belliveau et al., 1991; Kwong et al., 1992) can be used to map
brain activity with excellent spatial localization power, based on
neurovascular coupling mechanisms producing hemodynamic
changes associated with neuronal activity. Although these are
not yet completely understood, both feedforward and feedback
pathways have been identified, which attempt to respond to
the increased demands for oxygen and glucose of brain cells.
The net increase in blood oxygenation upon brain activation
leads to a bulk increase in the BOLD signal (Jezzard and Toosy,
2005), due to magnetic susceptibility differences induced by the
varying concentration of paramagnetic deoxyhemoglobin relative
to diamagnetic oxyhemoglobin. The temporal resolution of fMRI
is limited by the relatively slow hemodynamic response, with
BOLD changes being delayed by several seconds relative to
the onset of neuronal activity (Logothetis et al., 2001; Lewin,
2003). Usually, whole-brain fMRI measurements are performed
with a spatial resolution of a few millimeters and a temporal
resolution of a few seconds. Nevertheless, a trade-off between
spatial and temporal resolution is possible by manipulating the
image acquisition parameters; this is ultimately limited only by
the available signal-to-noise ratio (SNR), which increases with the
magnetic field strength. The use of ultrahigh field strengths (such
as 7 Tesla) and highly accelerated image acquisition sequences
(such as simultaneous multi-slice techniques) now allow sub-
millimeter spatial resolution and whole-brain coverage in under
half a second (Feinberg and Setsompop, 2013; van der Zwaag
et al., 2016).

Since EEG and fMRI are the two most commonly used
noninvasive functional neuroimaging techniques, and because
they exhibit highly complementary characteristics, their
multimodal integration has been actively sought (Laufs,
2012; Jorge et al., 2014; Murta et al., 2015). It was originally
motivated by the need to accurately and non-invasively map
epileptic networks in patients with drug-resistant focal epilepsy
undergoing pre-surgical evaluation (Ives et al., 1993; Lemieux
et al., 2001; Gotman et al., 2006; LeVan and Gotman, 2009;
Gotman and Pittau, 2011; Murta et al., 2012), and it was soon
extended into studies of normal brain function as well. Subject
safety was addressed in early studies (Lemieux et al., 1997) and
the consequent hardware modifications of the EEG recording

apparatus (Goldman et al., 2000; Vasios et al., 2006) were very
effective at preventing any relevant side effects in the large
number of recordings performed up to this date. Moreover,
increasingly efficient signal processing tools have been developed
for removing the MR-induced EEG artifacts (Allen et al., 1998,
2000; Niazy et al., 2005). Although to a lesser extent, attention
has also been devoted to the BOLD signal distortions caused by
the presence of EEG materials (Krakow et al., 2000; Stevens et al.,
2007; Mullinger et al., 2008a). Modality-specific artifacts are also
present, which may further confound simultaneous EEG-fMRI
analyses: while eye movements and blinks, muscle activity and
bad channels are typically captured by EEG (Chaumon et al.,
2015), BOLD-fMRI signals are contaminated by fluctuations of
non-neuronal origin (Birn, 2012; Murphy et al., 2013). Motivated
by the greater sensitivity and spatial resolution/specificity of
intracranial EEG (icEEG), simultaneous icEEG-fMRI recordings
can now also be performed (Vulliemoz et al., 2011), after both
safety (Carmichael et al., 2010) and data quality (Carmichael
et al., 2012) concerns have been addressed. Compared with
scalp EEG, icEEG can capture more subtle and local features
of electrophysiological activity, and may therefore offer novel
insights into the relationship of such features with concurrent
BOLD signal changes.

When combining EEG and fMRI, an integration strategy must
be chosen. Symmetrical approaches are in principle ideal to
make the most of the multimodal information, since they do
not constrain any of the specific modalities, potentially creating
biased estimations. These can be roughly divided into model-
based and data-driven EEG-fMRI fusion techniques. While
the former present great challenges namely regarding model
inversion (Valdes-Sosa et al., 2009), the latter have been mostly
based on independent component analysis (ICA) and canonical
correlation analysis (CCA) [for reviews, refer to Rosa et al.
(2010a), Lei et al. (2012)]. Information theory approaches have
also been employed for the integration of EEG-fMRI data, based
on the study of neuronal population codes explicitly taking
into account the experimentally observed stimulus-response
signal probability distributions [for reviews, refer to Panzeri
et al. (2008), Ostwald and Bagshaw (2011)]. In the context of
EEG-fMRI, such approaches allow the quantitative evaluation
of the amount of information embodied in EEG and fMRI
features (separately and jointly), to determine which features
are more discriminative of the brain activity under study, and
the extent to which such information overlaps across the two
modalities (Ostwald et al., 2010, 2011, 2012). Because of their
relative conceptual and methodological simplicity, asymmetrical
approaches are by far the most common (Rosa et al., 2010a).
These comprise: (1) fMRI-driven EEG, whereby the activated
brain regions identified with fMRI are used as spatial constraints
for the EEG source reconstruction problem (for a recent review
on this topic, refer to Lei et al., 2015); and (2) EEG-informed
fMRI, whereby the brain activity recorded with EEG is used to
predict hemodynamic changes measured with fMRI (Gotman
et al., 2006; Mulert and Lemieux, 2009; Gotman and Pittau, 2011;
Laufs, 2012; Jorge et al., 2014; Murta et al., 2015). The main
processing pipeline steps of EEG-correlated fMRI analyses in
general are illustrated in Figure 1. Regardless of the integration
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FIGURE 1 | Main processing pipeline steps in EEG-informed fMRI analysis. Data quality is typically addressed first, taking into account modality-specific artifacts, as
well as those that are induced by one technique on the other. The EEG phenomenon of interest is then identified and appropriate features are extracted, from which
a BOLD signal predictor is derived for the localization of EEG-related BOLD-fMRI changes.

strategy, the process of going from the first step (data acquisition)
to the final result (a brain activity/connectivity map) is always
confronted with several challenges.

In this review, we cover the most important data analysis
steps in EEG-informed fMRI. We start by considering the
issues regarding the data quality of both the EEG and the
BOLD recordings, together with the respective artifact correction
techniques. We then overview the multiple approaches used
for EEG-informed fMRI analyses, which rely on extracting
appropriate features from the EEG data in order to derive a
predictor of the BOLD signal associated with the brain activity
under study.

EEG DATA QUALITY

In this section, we provide a comprehensive characterization of
multiple MR-induced EEG artifacts, as well as the respective
correction techniques. The most important EEG artifacts are
the gradient artifact (GA) and pulse artifact (PA), as well as
head motion artifacts; other artifact sources have also been
reported in the MR-environment, including the Helium cooling
pump, the patient ventilation system and the room lights. In
general, artifact correction techniques can be subdivided into
three main types. First, the most commonly used approach
consists of the time-domain subtraction of artifact templates.
Typically, a template is generated for each artifact occurrence
by averaging across neighboring occurrences, assuming that

the artifact changes slowly over time. Second, blind source
separation (BSS) techniques, particularly ICA, have also been
used to separate EEG artifact sources from neuronal sources. In
temporal ICA, an N × M EEG dataset, with N channels and
M time points, is decomposed into a linear combination of L
independent components (ICs) with N × L weights (Bell and
Sejnowski, 1995; Lee et al., 1999). By removing artifact sources
when back-reconstructing the EEG data to its original space,
an artifact-free EEG is obtained, which makes the identification
of artifact-related ICs crucial for accurate EEG cleaning. Third,
some approaches rely on dedicated hardware to measure the
artifact waveforms directly, followed by their subtraction from
the artifact-contaminated EEG signal.

In the next two sections, we focus on the two most
important MR-induced EEG artifacts, the GA and the PA, by
first characterizing them and then surveying the methods used
for their correction; these are summarized in Tables 1 and 2,
respectively. In the third section, other MR-environment-related
artifacts are also presented and discussed, as well as EEG-specific
artifacts originating from sources unrelated with the concurrent
acquisition of MR images.

Gradient Artifact
Characterization
During fMRI acquisitions, the magnetic field inside the scanner
changes over time due to the application of time-varying
magnetic field gradients (Allen et al., 2000; Niazy et al., 2005).
According to Faraday’s law of induction, these will induce an
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FIGURE 2 | Illustration of the gradient artifact (GA) generated by a 2D multi-slice EPI sequence. (Top) 5 s traces of raw EEG data from 10 channels. At approximately
15 s, the fMRI acquisition starts, completely obscuring any neuronal activity being recorded. (Bottom) The zoomed red box shows the high-amplitude electrical
potentials generated by the time-varying gradients applied during the acquisition of four image slices using 2D multi-slice EPI; due to their clear periodicity and
precise timing, these artifacts can be accurately corrected using channel-specific average template subtraction techniques.

electromotive force within the conducting loop formed by the
subject’s head and the EEG hardware (electrodes, wires and
amplification system). A spurious voltage is hence generated
on the EEG electrodes which is usually called GA or imaging
artifact (Grouiller et al., 2007). The GA waveform generated
by a commonly used 2D multi-slice echo-planar imaging (EPI)
sequence for fMRI acquisition at 3 Tesla is displayed in Figure 2.
The amplitude of such artifact can be one hundred times greater

than that of the physiological EEG signal. More importantly,
its spectral content usually overlaps with frequency bands of
interest of the EEG, making its removal resorting to basic
filtering strategies generally inappropriate. It should be noted,
however, that in a few cases, MR sequences can be designed to
induce artifacts at nonessential EEG frequencies, hence allowing a
Fourier domain correction (Hoffmann et al., 2000; Grouiller et al.,
2007). One study employed electromagnetic theory to develop a
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physical model for the GA (Yan et al., 2009). This model allowed
the derivation of the optimal head orientation and position inside
the MRI scanner in subsequent experiments, which was shown to
significantly minimize the impact of MR gradients on the EEG
recordings (Mullinger et al., 2011).

AAS Approaches
Due to its strong deterministic component, most of the methods
found in the literature for GA removal follow an average artifact
template subtraction (AAS) approach known as the image artifact
reduction (IAR) method (Allen et al., 2000), whereby artifact
templates are derived for each occurrence by averaging across
multiple fMRI slice or volume epochs. Prior to averaging, a high-
pass filtering is typically applied ( < 1 Hz) to remove slow artifact
amplitude modulations; alternatively, these can be modeled as
a low-frequency sinusoidal wave (Grouiller et al., 2007). An
adaptive noise cancellation (ANC) filter is then usually applied
to remove residual artifacts. Additionally, principal component
analysis (PCA) can be performed prior to ANC, in order
to capture the residual variance within a limited number of
principal components (PCs), which are then linearly fitted to, and
subtracted from, each residual occurrence. Alternatively, PCA
can also be applied directly to the EEG data (Negishi et al., 2004),
followed by a similar procedure to IAR to correct for residual
artifacts (Niazy et al., 2005). Although artifact templates can
be defined based on the periods of either the imaging slice or
volume, a combination of both slice and volume artifact template
subtraction has been found to yield superior artifact correction,
particularly at frequencies in the gamma band (Gonçalves et al.,
2007).

Despite the remarkable precision and reproducibility of
the GA, the accuracy of artifact template computation, and
consequently the efficiency of average artifact subtraction, are
heavily dependent on a precise synchronization between the EEG
and fMRI acquisitions (Allen et al., 2000; Niazy et al., 2005).
If not synchronized, a high-precision alignment of each artifact
occurrence to a given reference period may still be obtained by
up-sampling the EEG signal (Allen et al., 2000; Ritter et al., 2007).
Ultimately, MR sequence timing parameters, namely the volume
and slice repetition times as well as the time delay between
the acquisition of the first volume and respective slice, can be
estimated at the original EEG sampling rate prior to artifact
correction (Gonçalves et al., 2007; Koskinen and Vartiainen,
2009). However, this time alignment model assumes that artifact
occurrences are highly reproducible, which is only guaranteed if
electrode motion is negligible.

Electrode motion is mainly due to the subjects’ head
movement and system vibrations (Yan et al., 2010), and it
introduces additional variance in the GA over time (Mullinger
and Bowtell, 2011). For the artifact template to capture such
variance, several variations of the IAR method were proposed in
the literature. In particular, the artifact template can be obtained
by weighting each occurrence based on its time difference from
(Ritter et al., 2007), or spectral similarity to (Freyer et al.,
2009), the occurrence to be corrected for. Alternatively, artifact
occurrences can be clustered based on similarity measures, and
an artifact template is then computed for each cluster (de Munck

et al., 2013). Artifact occurrences can also be modeled as a
linear combination of an artifact template and its derivatives
in a truncated Taylor’s series expansion (Wan et al., 2006a).
Alternatively, head motion can be estimated from the fMRI
time series, and the resulting realignment parameters used
to group artifact occurrences based on the degree of motion
contamination; group-specific artifact templates are then derived
(Moosmann et al., 2009).

ICA Approaches
The use of ICA for GA correction poses the challenge of selecting
the associated ICs. For example, ICs can be probed for artifact-
related waveforms by appropriately thresholding the correlation
coefficients between each IC and an artifact template (Grouiller
et al., 2007). Importantly, ICA can be used even in the presence
of timing errors. In this case, an average artifact template is
first computed for each occurrence and randomly time-jittered
within a reasonable range. The resulting templates are then
subjected to ICA, and the timing errors are expected to be
reflected in the resulting ICs (Ryali et al., 2009). An extension of
ICA for multiple datasets – independent vector analysis (IVA) –
has also been proposed for GA correction (Acharjee et al.,
2015). In this method, EEG data are first segmented using the
fMRI scanning triggers as time-locking events, and the multiple
segmented channels are then entered as multiple datasets for
IVA. The resulting IVA components are maximally dependent
across channels, and maximally independent across segments for
a given channel. GA sources are thus separated from those of
different origins, as in ICA, but also taking into account spatial
dependencies of GA waveforms across electrodes, and hence
allowing for a more accurate, channel-wise GA source estimation
(Acharjee et al., 2015).

Hardware-Based Approaches
New EEG caps have been developed, incorporating a second set
of EEG electrodes that overlay those in contact with the scalp,
separated by a reference layer (Chowdhury et al., 2014). While
the electrodes located below the reference layer are physically
attached to the scalp as in a standard EEG cap, capturing a
mixture of artifacts and brain signals, the electrodes located above
the reference layer are electrically isolated from the scalp so that
they do not pick up brain signals and hence measure only MR-
induced artifacts. These include not only the GA, but also the
PA, as well as motion-driven artifacts. By taking the difference
between the signals measured by the scalp electrodes and the
corresponding reference electrodes, an artifact-free EEG signal
can be obtained.

In a different approach, an MR-compatible camera-tracker
device is attached to the subject’s head in order to monitor head
motion. Prospective motion correction (PMC) of the EEG signal
can then be performed based on the head translation and rotation
parameters estimated along the three main axes. These estimates
are typically used to improve MR image quality, by updating the
specifications of the RF pulses and MR gradients during the image
acquisition in real-time (recent reviews on these approaches can
be found in Maclaren et al., 2013; Zaitsev et al., 2016). In the work
by Maziero et al. (2016), these motion parameters are additionally
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TABLE 1 | List of GA correction methods. These methods can be roughly divided into four main approaches: filtering, AAS-based (AAS and its several variations),
ICA-based (as well as IVA, an extension of ICA to multiple datasets) and hardware-based.

Type of approach Brief description Reference

Filtering Temporal filtering to remove GA frequency band Hoffmann et al., 2000; Grouiller et al., 2007

AAS AAS (Original IAR) Allen et al., 2000

AAS + PCA (on residuals) Niazy et al., 2005

PCA Negishi et al., 2004

Weighted AAS Ritter et al., 2007; Freyer et al., 2009

AAS + Derivatives (Taylor’s expansion) Wan et al., 2006a

Clustering (to group artifact occurrences) + AAS de Munck et al., 2013

fMRI motion parameters (to group artifact occurrences) + AAS Moosmann et al., 2009

ICA Correlation between ICs and GA template Grouiller et al., 2007

Use of ICA without precise synchronization between EEG and MRI systems Ryali et al., 2009

Independent vector analysis (IVA) Acharjee et al., 2015

Hardware-based Reference layer artifact subtraction (RLAS) Chowdhury et al., 2014

Prospective motion correction (PMC; camera-tracker) Maziero et al., 2016

used to model, and subsequently regress out, the motion-induced
voltages on the concurrently acquired EEG.

Methods Comparison
At least two comparative studies of multiple GA correction
methods can be found in the literature (Grouiller et al., 2007;
Ritter et al., 2007). By taking into account not only the extent
of artifact removal, but also the associated degradation of the
EEG signal of interest, both studies arrived at the conclusion
that the performance of each method is highly dependent
on the type of EEG activity of interest, namely in terms
of its frequency band. Appropriate balancing between artifact
and physiological signal removal can be achieved by directly
comparing performance measures between scan and non-scan
periods (Freyer et al., 2009). This requires the acquisition of
artifact-free EEG data during MR-silent periods, which can be
obtained using a dedicated EPI sequence characterized by a
long repetition time (TR; 4070 ms) (Anami et al., 2003). Ritter
et al. (2007) investigated the impact on the GA correction
algorithms of using different parameters (namely the number
of artifact windows to build the template, and whether PCA
should be employed to remove residual artifacts or not), and
found sets of optimal parameter values for each GA correction
method.

In our experience, the deterministic component of GA renders
the use of the original IAR method suitable for most applications,
avoiding the challenging selection of GA-related ICs in ICA-
based methods, or the introduction of additional hardware
to the typically intricate EEG-fMRI setups. Whenever facing
unsatisfactory results, one can start by varying the number of
artifact occurrences used to generate the artifact template, and
thus differently weighting the amount of artifact reduction (lower
number of occurrences) relative to the preservation of EEG
physiological signal (higher number of occurrences). Variations
of the original IAR can also be tested; however, in our experience
these variations were only successful at capturing GA variability
at the slice level and lack sensitivity at the volume level.

Pulse Artifact
Characterization
The PA, also commonly referred to as the ballistocardiogram
artifact, is currently one of the most challenging artifacts in
the EEG acquired concurrently with fMRI, mainly due to its
non-stationary nature determined by the temporal variability
of the cardiac pulse. As discussed in Yan et al. (2010) and
Mullinger et al. (2013), several mechanisms contribute to the
PA by inducing voltage changes on the scalp EEG electrodes
due to interactions with the strong, static magnetic field of the
MRI scanner, namely: (1) bulk head rotation due to cardiac
blood ejection (Bonmassar et al., 2002); (2) scalp expansion due
to arterial pulsation (Debener et al., 2008); and (3) Hall effect
caused by the pulsatile flow of the blood, which is an electrically
conductive fluid (Tenforde et al., 1983). One study found that
most of the artifact variance was explained by flow-induced Hall
voltage and pulse-driven head rotation (Mullinger et al., 2013).
Importantly, the PA amplitude significant increases with the
static magnetic field strength, B0 (Debener et al., 2008; Neuner
et al., 2013), such that it can severely hamper the visual inspection
of typical EEG behaviors at 7 Tesla (Jorge et al., 2015a,b).

AAS Approaches
Because the PA is roughly periodic, with artifact occurrences
being approximately time-locked with the cardiac cycle, an AAS
algorithm can be employed, similarly to the case of the GA. In
this case, an artifact template is extracted from the EEG signal
by averaging across multiple cardiac cycles, followed by a time-
domain subtraction procedure (illustrated in Figure 3) (Allen
et al., 1998). Unlike the GA, however, the much greater variability
over time must be taken into account for effectively reducing
the PA. This can be achieved by computing the temporal PCA
over all time-locked occurrences of the artifact in order to build
an optimal basis set (OBS), comprising a given number of PCs
that explain the PA variance to some extent (Niazy et al., 2005);
this basis set is then fitted to, and subtracted from, each artifact
occurrence.
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TABLE 2 | List of PA correction methods. These methods can be roughly divided into four main approaches: AAS-based (AAS and OBS), ICA-based (with selection and
removal of PA-related ICs or combination with AAS/OBS), hardware-based and others.

Type of approach Sub-type Brief description Reference

AAS Original AAS Allen et al., 2000

OBS Niazy et al., 2005

ICA IC selection and removal (based on:) Correlation with ECG or PA templates Srivastava et al., 2005; Mantini et al., 2007a

Auto-correlation function Deburchgraeve et al., 2008

Spectral content Vanderperren et al., 2007

Peak-to-peak values Vanderperren et al., 2010

Variance explained Debener et al., 2008

Combination of ICA and AAS/OBS OBS + IC removal Debener et al., 2005, 2007

IC removal + OBS on remaining ICs Liu et al., 2012

ICA + AAS/OBS on selected ICs Abreu et al., 2016b

Hardware-based Piezoelectric motion sensors Bonmassar et al., 2002

Loops of carbon-fiber wire Masterton et al., 2007

Subset of insulated electrodes to capture artifacts Xia et al., 2014a,b; Jorge et al., 2015b

Prospective motion correction (PMC) using camera-tracker LeVan et al., 2013

Other PA estimation from EEG signal Krishnaswamy et al., 2016

FIGURE 3 | Illustration of the AAS technique to correct for the pulse artifact (PA). The EEG traces are shown for three channels, before and after correction, as well
as for the ECG channel, over a time period of 10 s including 11 artifact occurrences. The segmented windows for each artifact occurrence (blue and red boxes) were
averaged to compute the artifact template (red trace); this was then subtracted from the corresponding artifact occurrence (red box), yielding the artifact-corrected
signal (green trace).

ICA Approaches
If ICA can accurately separate the PA sources from other sources
contributing to the EEG signal, a PA-free EEG signal may be
obtained by reconstructing the EEG without the PA-related
ICs (Bénar et al., 2003; Srivastava et al., 2005; Mantini et al.,

2007a). However, the objective and accurate classification of PA-
related ICs remains a major concern, and several criteria can be
found in the literature for that purpose; these are reviewed in
Vanderperren et al. (2010) and their performance is compared in
Abreu et al. (2016b). Briefly, such criteria can be roughly divided
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into five main types, whereby PA-related ICs are identified by:
(1) thresholding the correlation coefficients between each IC
and the simultaneously acquired ECG signal (Mantini et al.,
2007a), or a PA template (Srivastava et al., 2005); (2) probing
the auto-correlation function of each IC for peaks located at the
distance between two consecutive QRS peaks (Deburchgraeve
et al., 2008); (3) identifying ICs that exhibit spectral peaks at
cardiac-related frequencies, exploring the periodic nature of the
PA (Vanderperren et al., 2007); (4) thresholding the peak-to-
peak (PTP) values of the back-projected QRS-triggered EEG data
when using each IC individually, under the hypothesis that PA-
related ICs should exhibit higher PTP values (Vanderperren et al.,
2010); and (5) thresholding the amount of artifact variance that
is explained by each source (Debener et al., 2008). Following the
rationale of the latter, we have recently proposed the PROJIC
(PROJection onto Independent Components) algorithm, whereby
the average PA waveform of each channel is first projected onto
the IC space by means of the corresponding un-mixing matrix
estimated using ICA. The power of each projection, computed
as the squared sum for each time instant, is then clustered
by k-means; ICs assigned to high-powered clusters are deemed
PA-related (Abreu et al., 2016a).

Due to the relative advantages and disadvantages of AAS-
and ICA-based methods, their combination has been proposed
(Debener et al., 2005, 2007). In one method, the OBS method
is first used to remove most of the PA contribution from
the EEG data and ICA is then employed to further remove
residual artifacts by excluding PA-related ICs from the back-
reconstruction of the EEG signal. The use of a modified version
of OBS in the IC space instead has also been proposed, whereby
non-PA-related ICs are corrected for the PA, while PA-related ICs
are removed (Liu et al., 2012). Such procedure was motivated by
the hypothesis that the artifact contributes to all ICs in varying
degrees due to its non-stationary nature. Following a similar
rationale, we have recently proposed the application of AAS
and OBS in the IC space, but only to PA-related ICs, which
are subsequently kept in the EEG signal reconstruction together
with the original non-PA-related ICs (Abreu et al., 2016a). This
approach aims to preserve the physiological signal as much as
possible without compromising artifact removal efficiency.

Hardware-Based Approaches
Motion sensors can be used to monitor pulse-driven as
well as voluntary head movements during concurrent EEG-
fMRI acquisitions; the sensor signals can be used to estimate
head motion and associated EEG artifacts, which can then
be subtracted from the EEG data (Bonmassar et al., 2002).
Different kinds of motion sensors have been used for reducing
the PA in simultaneous EEG-fMRI recordings. PA waveforms
can be obtained by means of loops of carbon-fiber wire that
are physically attached to, but electrically isolated from, the
subject’s head (Masterton et al., 2007). More recently, a simple
modification of a standard EEG cap has been proposed, whereby
four of the existing electrodes are insulated from the scalp and
directly connected to the reference electrode so that they can
be used as motion sensors (Jorge et al., 2015a). PA waveforms
can also be extracted from a layer of electrodes added to

a standard EEG cap and separated from the scalp by two
insulating layers (Xia et al., 2014a,b). A practical approach in this
case consists of defining a set of insulated electrodes spatially
surrounding each uninsulated electrode, in order to build an
accurate estimate of the local PA (Xia et al., 2014b). Following this
rationale, complex methods to determine the optimal minimum
number of electrodes to insulate have been developed based
on the spatial redundancy of PA measured from neighboring
electrodes (Xia et al., 2014a). In an alternative approach, an
MR-compatible camera-tracker device has also been shown to
improve PA correction, by first converting the measured six
motion parameters into velocities, and then modeling the PA-
induced EEG voltages as a linear combination of the low-pass
filtered velocities (LeVan et al., 2013). In a similar approach,
which, however, avoids additional hardware in order to minimize
the complexity of the simultaneous EEG-fMRI setup, the PA
is estimated directly from the EEG as a linear combination of
several cardiac-related harmonics (Krishnaswamy et al., 2016).

Methods Comparison
Simultaneous EEG-fMRI measurements of event-related activity
are typically used for assessing the performance of a given
correction method, based on metrics computed from the ERPs
such as: the inter-trial variability (Vanderperren et al., 2010), the
SNR (Debener et al., 2007), and the difference between the ERPs
extracted from the inside-MR EEG datasets and those that are
obtained from the PA-free outside-MR EEG data (Mantini et al.,
2007a). When the frequency content of an event-related EEG
signal is known, the power within that frequency band can also
be computed before and after PA correction (Xia et al., 2014a).
In resting-state EEG-fMRI (rs-fMRI) studies, the PA occurrences
can be compared before and after correction based on their root
mean square (RMS) or PTP values (Chowdhury et al., 2014).
Additionally, the total spectral power within windows around
the cardiac fundamental frequency and its first harmonics can be
computed, in order to quantify the amount of PA that is removed
(Liu et al., 2012). Similarly to the evaluation pipeline described
in Freyer et al. (2009) for the GA, we have proposed to assess
the trade-off between PA and physiological signal reductions by
computing ratios of the power over specific frequency bands
and then linearly combining them using a weighting factor
that describes the importance given to the preservation of
physiological signal relative to artifact correction (Abreu et al.,
2016a).

Grouiller et al. (2007) found that AAS was the method
of choice if highly accurate QRS detection was achieved.
Additionally, and as discussed in Vanderperren et al. (2010),
OBS and ICA-based approaches only yielded comparable results
if the ICA parameters were fine-tuned. In fact, optimizing
the algorithms’ parameters has been shown to critically
affect the efficiency and reliability of the subsequent analyses
(Vanderperren et al., 2010; Abreu et al., 2016a), particularly at
high magnetic field strengths (Debener et al., 2008). According
to our own study (Abreu et al., 2016a), AAS was the method
exhibiting the second best results in terms of accurately removing
the artifact while preserving the physiological signal of interest. In
contrast, purely ICA-based methods either resulted in substantial
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residual artifacts, or significantly distorted the physiological
signal. The best results were obtained by combining ICA to
separate the PA sources, with AAS to correct the artifact
occurrences in the IC space. We believe that this may be a simple
but effective solution for PA correction, which does not require
additional hardware.

Other Sources of EEG Artifacts
MR-Environment-Related Artifacts
Several artifacts are induced on the EEG in the MR environment,
even without an ongoing fMRI acquisition. Typically, these
artifacts are caused by electrode motion as a result of MR
scanner vibrations associated with the Helium compression
pumps used for cooling down MR components, the patient
ventilation system, and the room lights (Mullinger et al., 2008a;
Mulert and Lemieux, 2009; Nierhaus et al., 2013; Neuner et al.,
2014; Rothlübbers et al., 2014). In particular, the Helium pump
artifact has been characterized in some systems by prominent
peaks in the EEG spectrum around frequencies of 50 and 100 Hz
(Rothlübbers et al., 2014). The ventilation system and room
lights are reflected in spectral peaks at other specific frequencies,
with the former depending on the ventilation level (Nierhaus
et al., 2013). While turning off the room lights does not present
any clear compromise, switching off the ventilation system may
cause patient discomfort. In principle, the Helium pump cooling
system can also be turned off; however, this may carry the
associated risk of Helium boil-off in certain systems (Mullinger
et al., 2008a) and it is not permitted in some clinical sites for
safety and procedural reasons. Due to its repetitive nature, the
Helium pump artifact can be adequately removed by employing
AAS-based approaches (Rothlübbers et al., 2014). Alternatively,
PCA has been recursively applied to EEG segments in order
to separate the components associated with the Helium pump
artifact; components exhibiting a single peak within a frequency
range typically spanning the artifact were removed from the data
(Kim et al., 2015).

EEG-Specific Artifacts
Although not caused by the MR environment, other sources
of artifacts that contaminate the EEG must also be accounted
for in simultaneous EEG-fMRI studies, namely: eye movements,
saccades and blinks, muscle activity, and bad channels (Chaumon
et al., 2015). Eye movements are usually picked up by frontal
electrodes, although artifactual waveforms may also be observed
on distant electrodes (Urigüen and Garcia-Zapirain, 2015). The
degree of contamination by this type of artifact is determined
by the proximity of the electrodes to the eyes, as well as the
direction of the movement (Croft and Barry, 2000). Eye saccades
can be either horizontal or vertical, both mainly captured by
frontal electrodes, and are characterized by abrupt changes in
the EEG amplitude. These changes can be mistaken with EEG
activity in the gamma band (Yuval-Greenberg et al., 2008). Eye
blinking is also more prominent in frontal electrodes, usually
inducing high-frequency artifacts due to its abrupt nature (Croft
and Barry, 2000; Urigüen and Garcia-Zapirain, 2015). The EEG
topographies associated with eye blinks resemble those of vertical
eye saccades (Chaumon et al., 2015). Muscle artifacts result from

the myogenic activity caused by contracting muscles, particularly
those surrounding the mandible, and their effects depend on the
degree of contraction and the type of muscle (Goncharova et al.,
2003). Muscle artifacts usually span a wide frequency band of
the EEG, although they considerably overlap with beta activity
(∼15–30 Hz) (Goncharova et al., 2003; McMenamin et al., 2010).
This type of artifacts can also affect a large cortical surface area
due to volume conduction of myogenic activity from different
head muscles (Urigüen and Garcia-Zapirain, 2015). The so-
called bad channels are usually associated with high-impedance
electrodes and are typically characterized by strong fluctuations
that are uncorrelated with the remaining electrodes (Chaumon
et al., 2015).

Some of these types of EEG artifacts are expected to be mainly
stationary, making the use of ICA particularly suitable. For
this purpose, techniques have been proposed for the automatic
selection of the artifactual ICs, which are then removed from
the back-reconstruction of the EEG data (for reviews, refer
to Vanderperren et al., 2010; Chaumon et al., 2015; Urigüen
and Garcia-Zapirain, 2015). Most of those techniques, however,
rely on artifact-specific a priori information, rendering them
unsuitable for other types of EEG activity (Campos Viola et al.,
2009; Nolan et al., 2010; Mognon et al., 2011; Daly et al., 2014;
Chaumon et al., 2015).

MR DATA QUALITY

In this section, we start by briefly characterizing MR image
artifacts that are induced by the presence of EEG hardware
inside the MR scanner. Although unrelated with EEG,
signal fluctuations of non-neuronal origin are known to
contaminate BOLD-fMRI data, especially in resting-state studies
of spontaneous activity. For this reason, such fluctuations are
also considered here, including their characterization and an
overview of the methods used for their modeling and removal.

EEG-Induced Image Quality Degradation
The presence of EEG hardware during MR image acquisitions
is known to degrade image quality, although to a substantially
lesser degree when compared with the effects of such acquisitions
on the EEG signal (Mulert and Lemieux, 2009; Mullinger and
Bowtell, 2011). Since MR image quality is closely related with the
amplitude and homogeneity of both static (B0) and oscillating
(B1) magnetic fields, and because the EEG system will directly
interfere with those magnetic fields, appreciable effects on MR
data quality are expected.

Firstly, magnetic susceptibility differences between the EEG
system materials and the head tissues induce perturbations
on B0, which in turn cause geometric distortions and signal
loss in the MR images. These effects scale linearly with both
the magnetic susceptibility difference and the field strength
(Mullinger et al., 2008b; Jorge et al., 2015b), and depend on the
spatial orientation of the material relative to B0 (Krakow et al.,
2000). Secondly, the conductive materials of the EEG system,
particularly leads outside the EEG cap because of the longer wires
connected to them, also cause perturbations on the transmitted
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B1 field. These alter the effective flip angle of imaging sequences
and hence induce local image intensity variations, which are
exacerbated if B0 homogeneity is also compromised (Mullinger
et al., 2008b). Additionally, B1 field shielding also occurs due to
loop currents induced on the electrically conductive materials
of the EEG electrodes and leads (Stevens et al., 2007), which is
aggravated when using high-density EEG caps (Mullinger and
Bowtell, 2011). Overall, these effects of the EEG on B1 lead
to image SNR losses, and also to local changes in the specific
absorption rate (SAR) of MR image acquisition sequences (Vasios
et al., 2006; Stevens et al., 2007). The latter scale linearly with
the number of electrodes and the B0 field strength (Angelone
et al., 2006). The use of specifically designed low-SAR sequences
is therefore crucial to ensure subject safety and comfort in
simultaneous EEG-fMRI recordings at ultra-high fields (Nöth
et al., 2012).

The electromagnetic noise generated by the EEG recording
components can be minimized through appropriate shielding
and the use of suitable materials, which should be as diamagnetic
as possible (Krakow et al., 2000; Stevens et al., 2007). However,
modifications of the electrodes are limited: on the one hand,
they must not compromise the overall functionality of the EEG
system; on the other hand, they must ensure subject safety,
namely by including current-limiting resistors (Lemieux et al.,
1997). Moreover, only a minimal quantity of conductive gel
should be used, so that it does not induce appreciable image
artifacts while still providing acceptable electrode impedance
(Krakow et al., 2000). Novel EEG caps have been developed
using different technologies in order to minimize the impact of
simultaneous EEG-fMRI recordings on subject safety and MR
data quality (Vasios et al., 2006), and ultimately to make feasible
the recording of high-density EEG data at ultra-high magnetic
field strengths (Poulsen et al., 2017).

In addition, B0 and B1 inhomogeneities can be accounted
for through post-processing based on B0 and B1 field maps
obtained using dedicated MR sequences (Ericsson et al., 1995;
Yarnykh, 2007). Although increasingly faster field mapping
sequences are being developed (Eggenschwiler et al., 2012), the
associated additional scanning time may not be available in
conventional imaging settings. Nevertheless, current literature
suggests that negligible effects are observed on image quality in
humans when using commercially available, low-density EEG
caps at field strengths of 3 Tesla (Mullinger et al., 2008b).
At 7 Tesla, however, important B1 field distortions have been
reported (Jorge et al., 2015b). Most importantly, although the
spatial SNR is significantly affected, the temporal SNR (tSNR)
of fMRI seems to be relatively preserved, in part because
physiological noise is also reduced with the overall signal loss;
in fact, no significant differences have been reported when
comparing BOLD-fMRI detection sensitivity with or without
the EEG cap in place (Luo and Glover, 2012; Klein et al.,
2015).

BOLD-fMRI Physiological Noise
Characterization
BOLD-fMRI signal changes result from contributions from both
neuronal and non-neuronal origins. The latter include cardiac

and respiratory sources commonly referred to as physiological
noise (Hutton et al., 2011; Brooks et al., 2013; Caballero-Gaudes
and Reynolds, 2017). The arterial pulsation associated with
cardiac function produces brain tissue movements, as well as
changes in cerebral blood volume (CBV) and cerebral blood flow
(CBF), across the cardiac cycle (Purdon and Weisskoff, 1998;
Krüger and Glover, 2001; Greitz et al., 2010). As for respiration,
the thoracic modulation within each respiratory cycle produces
bulk head motion, as well as changes in B0 (Raj et al., 2001)
and in the arterial CO2 partial pressure (Wise et al., 2004).
These changes associated with the cardiac and respiratory cycles
induce correlated, quasi-periodic BOLD fluctuations, located
predominantly near and within large blood vessels and more
generally across the brain, respectively (Birn, 2012). The flow of
cerebrospinal fluid (CSF) is also modulated by both cardiac and
respiratory cycles, resulting in associated BOLD signal changes in
CSF-filled regions (Klose et al., 2000). Bulk motion related with
the cardiac and respiratory cycles leads to confounds similar to
the ones produced by voluntary head motion, even with the use of
head restraints (Murphy et al., 2013). Typically, they manifest as
correlated signal changes at the edges of the brain and in regions
with large spatial variations in image contrast. Additionally,
non-periodic BOLD signal fluctuations are also produced due
to changes in cardiac rate (Shmueli et al., 2007), as well as in
breathing depth and rate leading to changes in the CO2 arterial
partial pressure (Birn et al., 2006).

These physiologically driven effects, if left uncorrected, may
compromise the analysis of fMRI data, particularly when
studying spontaneous activity (Biswal et al., 1995; Cordes
et al., 2001; Birn, 2012; Murphy et al., 2013), and they are
therefore a concern also in simultaneous EEG-fMRI (Liston
et al., 2006; van Houdt et al., 2009; Abreu et al., 2017b)
(Figure 4). Since a typical fMRI acquisition sequence uses
a TR of ∼2–3 s, aliasing of both cardiac (≈ 1 Hz) and
respiratory (≈ 0.3 Hz) fundamental frequencies will inevitably
occur (Bhattacharyya and Lowe, 2004), making the use of
temporal filtering strategies unsuitable unless a very short
TR < 0.4 s is used (Biswal et al., 1996). Such a short TR would
allow only partial brain coverage with conventional sequences.
However, faster sequences have recently been developed, allowing
whole-brain coverage with such short TR values (Feinberg
and Setsompop, 2013), which opens up new possibilities for
physiological noise characterization and correction. A number of
physiological noise correction approaches have been proposed,
including both model-based (relying on external physiological
recordings and/or the fMRI data itself) and data-driven
techniques; these are reviewed next, and summarized in
Table 3.

Physiological Recordings-Based Approaches
An important class of physiological noise correction methods
relies on recording, concurrently with the fMRI acquisition,
external cardiac and respiratory signals by means of appropriate
sensors, usually a plethysmograph and a respiratory belt,
respectively. A retrospective correction method that works
directly in k-space (RETROKCOR) was first introduced, aiming
to remove the contribution of physiological noise prior to
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FIGURE 4 | Illustration of the presence of physiological-related fluctuations in the BOLD signal. (Top) Structural brain image highlighting the brainstem (red dashed
circle), a brain structure located close to major arteries and CSF-filled spaces, thus particularly susceptible to physiological fluctuations. (Middle) Average
physiological noise-related BOLD time-course and respective power spectrum computed from a region near the brainstem. (Bottom) Average BOLD time-course
across GM; in contrast with the brainstem, the GM time-course presents a clear 1

f spectrum, with most of its power located at frequencies below 0.1 Hz.

image reconstruction (Hu et al., 1995). However, most methods
operate in the image space, and are generally extensions of
the retrospective image-based correction (RETROICOR) method
(Glover et al., 2000). The contribution of periodic cardiac
and respiratory processes is described by a low-order Fourier
expansion in terms of the phases of the cardiac and respiratory
signals in relation to the fMRI acquisition time; several model
orders have been tested, as well as their interactions (Harvey
et al., 2008). These terms (cardiac, respiratory and interactions)
are then estimated and regressed out from the fMRI data using
a general linear model (GLM) framework. Since RETROICOR
relies critically on the timing of image acquisition relative to each
cardiac and respiratory cycle, and because such timing can be
confounded by head motion, the incorporation of timing errors
introduced by volume registration into the Fourier expansion of

the cardiac phase at each voxel has been proposed (Jones et al.,
2008).

Non-periodic, respiratory-related contributions to the BOLD
signal were first tackled by measuring the end-tidal CO2 partial
pressure (PETCO2) using a capnograph, and including its time-
course as a confounding regressor in the GLM (Wise et al.,
2004). Alternatively, the respiratory volume per unit time (RVT)
can be obtained directly from the respiratory recordings, and
is commonly used as a surrogate of PETCO2 (Birn et al.,
2006). Similarly, changes in heart rate (HR) have also been
found to induce confounding BOLD fluctuations (Shmueli et al.,
2007). In order to describe the contributions of RVT and
HR to the BOLD signal in a linear systems framework, a
respiratory response function (RRF, Birn et al., 2008) and a cardiac
response function (CRF, Chang et al., 2009) have been estimated,
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TABLE 3 | List of BOLD-fMRI physiological noise correction methods. These methods can be roughly divided into four main approaches: filtering, physiological
recordings-based, image-based and data-driven.

Type of approach Brief description Reference

Filtering Using sequences with very short TR ( < 0.4 s) Biswal et al., 1996

Physiological
recordings-based

RETROKOR Hu et al., 1995

RETROICOR Glover et al., 2000

RETROICOR + timing errors from volume registration Jones et al., 2008

Extended RETROICOR
(RETROICOR and:)

PETCO2 Wise et al., 2004

RV/RVT (surrogates of PETCO2) Birn et al., 2006; Chang et al., 2009

Estimation of respiration from ECG van Houdt et al., 2009; Abreu et al., 2017b

HR Shmueli et al., 2007

Cardiac and respiratory response
functions (CRF/RRF)

Birn et al., 2008; Chang et al., 2009

Lag optimization of RV/RVT and HR Bianciardi et al., 2009a; Falahpour et al.,
2013; Jorge et al., 2014

Image-based CSF and WM
fluctuations (estimation
based on:)

Temporal standard deviation (tSTD) Behzadi et al., 2007
Fitting mixture of Gaussians to a robust
temporal SNR (tSNR) measure

Tierney et al., 2015

PCA on noise-related regions Behzadi et al., 2007; Bianciardi et al.,
2009b; Jorge et al., 2014; Tierney et al.,
2015

Head motion
parameters (estimation
based on:)

fMRI volume alignment Murphy et al., 2013
Navigator echoes Thesen et al., 2000; Welch et al., 2002

Camera-tracker devices Zaitsev et al., 2016

Active markers Ooi et al., 2011

EEG data Zotev et al., 2012; Wong et al., 2016

Removal of volumes highly affected by motion Power et al., 2012; Tierney et al., 2015

Data-driven ICA + manual identification of ICs Griffanti et al., 2017

ICA + automatic identification of ICs De Martino et al., 2007; Tohka et al., 2008;
Churchill et al., 2012b; Smith et al., 2013;
Salimi-Khorshidi et al., 2014

respectively. These are then convolved with the RVT and HR
time courses, respectively, following a similar rationale to the
one underlying the use of the hemodynamic response function
(HRF) to describe the BOLD response to neuronal activity
(Friston et al., 1998). Alternatively, RVT and HR regressors can
be shifted by an appropriate time lag in order to maximize
the BOLD signal variance explained (Bianciardi et al., 2009a;
Jorge et al., 2013). In order to account for the large inter-
and intra-subject variability, both RRF/CRF estimation and
time lag optimization can be performed specifically for each
subject or even brain region (Falahpour et al., 2013; Pinto
et al., 2017). Our own (Abreu et al., 2017b) and other studies
(van Houdt et al., 2009) have shown that, if only cardiac
data is available, it is possible to derive the corresponding
respiratory data from this, and to successfully denoise BOLD-
fMRI data using the resulting surrogate of the respiratory
signal.

Image-Based Approaches
Another method of physiological noise correction is based on
the extraction of confounding regressors from the fMRI data
itself (Murphy et al., 2013). Because BOLD signal fluctuations of
neuronal origin should be mainly located in gray matter (GM),
CSF and white matter (WM) fluctuations are likely to reflect

predominantly physiological noise contributions. Typically, the
average BOLD time-courses within CSF and/or WM masks
are computed and regressed out from the fMRI data in a
GLM framework. Variations of this approach can be found in
the literature in terms of the definition of the noise-related
regions, as well as the features to be extracted from them. As
for the former, thresholding of voxel-specific temporal standard
deviation (tSTD) measures can be performed, supported by
the observation of a positive correlation between the variance
explained by the respective RETROICOR regressors and the
tSTD value for a given voxel (Behzadi et al., 2007). A biophysically
inspired measure of robust tSNR has also been proposed,
whereby a mixture of Gaussians is fitted to this metric in
each voxel using an expectation-maximization approach (Tierney
et al., 2015). Regarding the extraction of features, PCA can
be applied to the BOLD signals from noise-related regions,
so that the variability of the physiological fluctuations can
be taken into account (Behzadi et al., 2007; Bianciardi et al.,
2009b; Jorge et al., 2013; Tierney et al., 2015). The identification
of the optimal number of PCs to keep is then crucial, in
order to avoid under-/over-estimation of the contribution of
physiological fluctuations if an excessively low/high number
of PCs is included in the model, respectively (Behzadi et al.,
2007).
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Furthermore, head motion parameters are also commonly
regressed out from the BOLD signal. These are usually extracted
from the fMRI time-series in the motion correction pre-
processing step, in which each brain volume in the series
is aligned to a reference volume by estimating a rigid body
transformation characterized by three translation and three
rotation parameters, yielding a total of six motion regressors
(Murphy et al., 2013). Because large, abrupt head movements
are not accurately estimated using such affine transformations,
metrics identifying fMRI volumes affected by this type of motion
can be computed, so that these volumes may be removed
from subsequent analyses (Power et al., 2012; Tierney et al.,
2015). In order to improve the temporal resolution of the
motion regressors, several approaches have been proposed in the
literature, mostly based on the use of navigator echoes (Thesen
et al., 2000; Welch et al., 2002), camera-tracker devices (Zaitsev
et al., 2016), and active markers (Ooi et al., 2011). Although
they do not need additional hardware unlike tracker devices
and active markers, the use of navigator echoes requires longer
acquisition times (a recent review on this topic can be found
in Godenschweger et al., 2016). Alternatively, in simultaneous
EEG-fMRI sessions, the EEG data may be used to derive such
highly sampled regressors, allowing the correction of motion at
the slice level retrospectively (Zotev et al., 2012; Wong et al.,
2016). Regardless of the estimation procedure, special attention
must be devoted to cases where head motion is correlated with
task parameters of interest, seriously confounding subsequent
analyses, because plausible, but yet spurious, effects may be
observed (Fellner et al., 2016).

Data-Driven Approaches
Independent component analysis can be used for fMRI de-
noising by separating sources of scanner artifact, physiological
noise and brain activation (Beckmann and Smith, 2004; Brooks
et al., 2008). By removing the contribution of ICs reflecting
non-neuronal fluctuations from the back-reconstruction of the
data, a noise-free BOLD signal is obtained. Such identification
procedure is critical and it can be done manually (Griffanti et al.,
2017) or by resorting to automatic classification tools, based on
the temporal and spatial characteristics of the expected artifacts
(De Martino et al., 2007; Tohka et al., 2008; Churchill et al., 2012b;
Smith et al., 2013; Salimi-Khorshidi et al., 2014).

Data Pre-processing and Physiological Noise
Correction
There is currently no consensus regarding the order by which
the various steps in the processing pipeline of fMRI data
should be taken to include physiological noise correction. In
particular, the question whether RETROICOR should precede
slice timing correction or not, and what the order between this
and motion correction should be, remains open. One study
found that RETROICOR should be performed prior to slice
timing correction (Jones et al., 2008). Another recent study
investigated the optimal processing pipeline more systematically,
by testing the impact of 48 different combinations of the main
processing steps on task-based activation maps (Churchill et al.,
2012a). The combination of motion correction with a second

order polynomial detrending yielded the highest performance
on average, but a large variability across subjects was found
for the optimal order of the processing steps, indicating that
a subject-specific optimization should preferentially be carried
out. In general, inter-subject variability and the need for subject-
specific optimization of physiological noise correction have been
reported in several studies (Falahpour et al., 2013; Golestani
et al., 2015; Nunes et al., 2015), including our own (Abreu et al.,
2017b).

In fact, in our study we showed the importance of removing
not only cardiac and respiratory fluctuations, as well as those
of WM, CSF and head motion origins, although the former
explained BOLD signal variance to a much lesser extent than the
latter. This claim is in line with the results and recommendations
made by Jo et al. (2010), indicating that the removal of cardiac
and respiratory fluctuations is crucial, particularly when subjects
exhibit a high variability in HR and breathing depth and rate
during the acquisitions. Another important question relates to
the inclusion of additional terms in the physiological noise model.
Typically, statistical testing is applied in a nested model approach
to ascertain if the additional variance explained by a given term
relative to that explained by those already included in the model
is significant. Although an order of two is most commonly used
for RETROICOR, with the frequent addition of RV/RVT, HR,
WM, CSF and motion parameters, in the so-called extended
RETROICOR approaches, it may be important to investigate the
impact of specifically identifying which regressors to include in
the model in each study.

EEG-INFORMED fMRI INTEGRATION
METHODS

In this section, we review the data integration methods used for
mapping brain networks using an EEG-informed fMRI approach.
These are largely sub-divided into univariate and multivariate
methods and they are summarized in Table 4. In univariate
methods, a limited number of EEG time-courses (often a single
time-course) representative of the phenomena of interest is
selected, and temporal or spectral features are then extracted and
used to predict BOLD changes. In contrast, multivariate methods
consider multiple EEG channels in this feature extraction step.
The rationale underlying the choice of method for the extraction
of such features mainly depends on the type of activity of
interest. Epileptic activity is particularly relevant in the scope
of simultaneous EEG-fMRI studies, given the suitability of this
technique for the localization of brain networks associated with
epileptic discharges, and therefore extensive literature on the
extraction of epilepsy-related EEG features predictive of BOLD
fluctuations is available (Gotman et al., 2006; Marques et al., 2009;
Mulert and Lemieux, 2009; Gotman and Pittau, 2011; Laufs, 2012;
Jorge et al., 2014; Murta et al., 2015; Abreu et al., 2018).

Univariate Methods
In univariate methods, a time-course (or a limited number of
time-courses) representative of the phenomenon of interest must
be obtained prior to the extraction of features predictive of the
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TABLE 4 | List of EEG features predictive of BOLD signal fluctuations of interest. The methods used to derive such EEG features can be roughly divided into univariate
(temporal, spectral and intra-cranial features) and multivariate (spatial correlation features, functional connectivity methods and others).

Type of features Name Reference

Univariate methods

Temporal events Stick and boxcar functions Lemieux et al., 2001; Bagshaw et al., 2005; Jacobs et al.,
2009; Thornton et al., 2010

IED amplitude, energy and width Bénar et al., 2002; LeVan et al., 2010

ERP amplitude and response latency Debener et al., 2005; Bénar et al., 2007; Fuglø et al., 2012;
Nguyen and Cunnington, 2014; Wirsich et al., 2014

IED amplitude, width, slope of the rising phase, energy and
spatial extent (intra-cranial EEG)

Murta et al., 2016

Spectral features EEG power across frequency bands Goldman et al., 2002; Mantini et al., 2007b; de Munck
et al., 2009

Total power Wan et al., 2006b

Linear combination of band-specific power values Goense and Logothetis, 2008

Mean frequency Rosa et al., 2010a

Root mean squared frequency Kilner et al., 2005; Rosa et al., 2010a

Phase-amplitude coupling (intra-cranial EEG) Murta et al., 2017

Multivariate methods

Spatial correlation
features

Spatial template from separate EEG recordings Grouiller et al., 2011

EEG microstates Britz et al., 2010; Yuan et al., 2012; Schwab et al., 2015

Continuous ESI Vulliemoz et al., 2010

Functional connectivity Partial directed coherence Biazoli et al., 2013

Phase synchronization index Mizuhara et al., 2005; Kottlow et al., 2012; Abreu et al.,
2018

Other approaches Multiway decomposition methods Schwab et al., 2015; Marecek et al., 2016

EEG channel-specific BOLD predictors Meir-Hasson et al., 2014

BOLD signal. Both temporal and spectral features are commonly
extracted and will be specifically described here.

EEG Time-Courses Representative of Phenomena of
Interest
If the phenomenon of interest of brain activity is reflected within
a limited set of electrodes (e.g., posterior alpha rhythms measured
by occipital electrodes), subsequent analyses can be focused
on those electrodes alone (Goldman et al., 2002). However, in
general, this dimensionality reduction problem is not trivial,
and spatial filtering strategies must be applied to the EEG data.
Assuming that fluctuations have a specific temporal structure,
these can be extracted from the EEG using linear prediction
algorithms that incorporate such prior knowledge about the
frequency and location of the sources of interest to be isolated
(Ferdowsi et al., 2015). This prior knowledge can also be
incorporated in a semi blind source separation (s-BSS) technique
named Functional Source Separation (FSS, Porcaro et al., 2010),
biasing the estimation procedure toward sources comprising
the physiological aspects of interest. If such information is not
available, conventional BSS techniques must be employed.

Temporal ICA is the most commonly used spatial filtering
strategy in this context (Marques et al., 2009; Formaggio et al.,
2011; Leite et al., 2013). However, the selection of the ICs that
best reflect the phenomenon of interest is crucial, and different
selection criteria can be found in the literature. In a visual
inspection approach, the IC topographies can be probed for
spatial patterns resembling that expected for a given activity

of interest (Debener et al., 2005). A more objective approach
consists of identifying the ICs that exhibit the highest weights
within a pre-specified set of electrodes expected to reflect the
activity of interest (Scheeringa et al., 2008; Ke and Shen, 2010).
The temporal dynamics of the IC time-courses can also be
inspected for events of interest (Jann et al., 2008), and a number
of quantitative methods have been proposed based on spectral
criteria, particularly the power within a given frequency band
(Formaggio et al., 2011). In studies where more than one EEG
acquisition is performed, the reproducibility of the ICs across
runs can also be used as a selection criterion (Leite et al., 2013).

A few studies have developed automatic methods for selecting
ICs representing specific activities of interest based on the use of
respective templates: component assessment (COMPASS) (Wessel
and Ullsperger, 2011), spatiotemporal templates for independent
component selection (STTICS) (Abreu et al., 2015), and PROJIC
(Abreu et al., 2016b). The COMPASS and STTICS algorithms are
based on the explicit similarity of the ICs with spatiotemporal
templates of the activity of interest. Both methods assume that
a single spatial map describes such activity, which is, however,
not true if a given EEG source has a certain degree of non-
stationarity. In contrast, and as briefly described above, PROJIC
first projects a temporal template (an average EEG event) onto
the IC space, and then clusters the resulting projections based
on their power. In our experience, PROJIC has been found
to accurately identify both epilepsy-related ICs as well as PA-
related ICs (Abreu et al., 2016a,b). Such versatility arises from
the fact that PROJIC is not based on the explicit similarity to
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spatiotemporal templates, which renders it potentially suitable in
many other applications.

Temporal Features
In the simplest approach for combining EEG and fMRI, the EEG
signal is visually inspected for events of interest. This is essentially
used in epilepsy: while inter-ictal epileptiform discharges (IEDs)
are treated as zero-duration events and modeled as stick
functions, ictal activity is represented by boxcar functions (both
usually referred to as unitary regressors) (Lemieux et al., 2001;
Bagshaw et al., 2005; Jacobs et al., 2009; LeVan and Gotman,
2009; Leal et al., 2016). A finer representation of the seizure
dynamics can be achieved by dividing these epileptic events into
a succession of stages (e.g., early ictal, clinical seizure onset and
late ictal), and modeling each stage by a separate boxcar function
(Thornton et al., 2010). In the case of IEDs, the amplitude of
the stick functions can be modulated by different IED features,
namely their amplitude, energy or width, which has been found
to improve the correlation with BOLD signal changes (Bénar
et al., 2002; LeVan et al., 2010). When recording icEEG, the
amplitude, width, slope of the rising phase, energy and spatial
extent of IEDs are possible predictors of epilepsy-related BOLD
changes; in a recent study, only the width was found to explain
additional variance to that of unitary regressors (Murta et al.,
2016).

More generally, in stimuli/task-based EEG-fMRI studies,
features extracted from the associated ERPs on a trial-by-trial
basis can also be used to predict BOLD fluctuations, namely
the trial-specific amplitude and response latency (Debener et al.,
2005; Bénar et al., 2007; Fuglø et al., 2012; Nguyen and
Cunnington, 2014; Wirsich et al., 2014).

Spectral Features
In order to account for the rich temporal and spectral profiles
of the EEG, more complex transfer functions between the
EEG and BOLD signals have been proposed based on time-
frequency decompositions of the EEG signal (Goldman et al.,
2002; Moosmann et al., 2003; Laufs et al., 2006; Scheeringa et al.,
2008). One of the first studies using spectral features mapped EEG
alpha fluctuations by extracting the average EEG power within
the alpha band across four occipital channels, at epochs of the
same duration as the repetition time of the fMRI acquisition
sequence (Goldman et al., 2002). A similar procedure can be
applied to other EEG rhythms. By including the EEG power
over multiple frequency bands as regressors in a GLM analysis
of the fMRI data, their individual contributions to the BOLD
signal, as well as their interactions, can be investigated (Mantini
et al., 2007b; de Munck et al., 2009). Besides the EEG power
across specific frequency bands, several other features of the
spectrogram have also been proposed to explain the BOLD signal,
namely: total power (Wan et al., 2006b), linear combination of
band-specific power values (Goense and Logothetis, 2008), mean
frequency (Rosa et al., 2010b), and root mean squared frequency
(RMSF) (Kilner et al., 2005; Rosa et al., 2010b). Studies comparing
the predictive power of these features in healthy subjects (Rosa
et al., 2010b), and in an epilepsy case study (Leite et al., 2013),
found that RMSF outperformed other power-weighted metrics,

in agreement with the heuristic model proposed by Kilner et al.
(2005). In icEEG recordings, the single-trial phase-amplitude
coupling strength when performing a motor task has been found
to explain BOLD variance in addition to that from a combination
of EEG power across several frequency bands (Murta et al.,
2017).

Multivariate Methods
Multivariate methods use data from multiple EEG channels in
order to capture spatial information, which cannot be assessed by
univariate approaches. They include methods based on the spatial
correlation of the EEG with reference spatial maps, functional
connectivity measures across different EEG channels, as well as
other multiway decomposition methods.

Spatial Correlation Methods
In resting-state studies of healthy volunteers, BOLD correlates
of EEG microstates have been investigated, based on the
hypothesis that resting-state networks are reflected in both
signals. Predictors of spontaneous BOLD fluctuations occurring
during rest have been obtained, by spatially correlating the
concurrent EEG topographies at each time point with the
previously identified EEG microstates (Britz et al., 2010; Yuan
et al., 2012). Such EEG microstates can be derived by clustering
(Britz et al., 2010), ICA (Yuan et al., 2012), or topographic
time-frequency decomposition (Schwab et al., 2015). The latter
combines knowledge from techniques for time-domain spatial
analysis of EEG and time-frequency decomposition of single
time-courses (Koenig et al., 2001).

In a similar approach, one study proposed to use epilepsy-
specific spatial templates derived from separate, long-term EEG
recordings of epileptic activity (Grouiller et al., 2011). They
found that the spatial correlation between these templates and
the EEG scalp topographies measured at each time point during
simultaneous EEG-fMRI recordings provided a good BOLD
predictor. This approach may be advantageous in cases where
it is not possible to detect epileptic events on the EEG recorded
simultaneously with fMRI.

In a somewhat related approach, local estimates of electrical
activity can be obtained by electrical source imaging (ESI).
This tool estimates the location of EEG sources in the brain
responsible for generating a given topography measured at
the scalp. Considering a topography representative of epileptic
activity, Vulliemoz et al. (2010) determined the averaged current
density within the ESI solution for the whole EEG (continuous
ESI), and used it to predict the associated local BOLD changes.
One study showed that this approach yielded a more accurate
epileptic network mapping when compared to that described
in Grouiller et al. (2011), providing concordant electro-clinical
localization of the epileptic focus in all investigated patients
(Elshoff et al., 2012).

Functional Connectivity Methods
Other multivariate EEG measures have been employed,
particularly with the purpose of reflecting functional connectivity
across the brain. In one study, the partial directed coherence
(a directed measure of functional connectivity) across different
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frequency bands has been correlated with BOLD, in order
to map the intra- and inter-hemispheric flow of information
measured with EEG (Biazoli et al., 2013). Most interestingly,
EEG phase synchronization measures can also be used, with
the advantage that they do not depend on the amplitude of
the EEG signal, in contrast with most temporal and spectral
features, which renders them less susceptible to artifacts.
However, such measures have been scarcely used as predictors
of BOLD. In particular, Mizuhara et al. (2005) successfully
mapped task-dependent BOLD signal changes using the phase
synchronization index (PSI) computed for a specific frequency
and channel pair. A global connectivity measure has also
been employed, global field synchronization (GFS), which
quantifies the overall EEG synchrony across the scalp. In a
task-based EEG-fMRI study, Kottlow et al. (2012) used GFS
to predict BOLD changes associated with face integration.
In a resting-state study, GFS measures within the lower
(8.5–10.5 Hz) and upper (10.5–12.5 Hz) alpha band were
found to be positively correlated with the BOLD-fMRI-derived
dorsal attention network and the default mode network,
respectively (Jann et al., 2009). More recently, a study by
our group applied both PSI and GFS in an EEG-fMRI study
of epilepsy (Abreu et al., 2018). We showed that PSI within
a frequency band of interest outperformed power-weighted
metrics, as well as GFS, in predicting BOLD changes associated
with epileptic activity. More importantly, we showed that
PSI more specifically reflects epileptic activity, rather than
motion-related spurious signal changes. We believe that the
potential use of EEG synchronization measures for predicting
BOLD fluctuations of interest should thus be further explored in
different applications.

Other Multivariate Methods
By applying multiway decomposition methods, the multi-
dimensional EEG spectrum can be blindly decomposed
into patterns characterized by spatial, spectral and temporal
signatures. The use of these methods allowed the mapping
of thalamic substructures associated with scalp EEG signals
(Schwab et al., 2015), as well as task-related BOLD signal changes
more accurately than commonly used power-weighted EEG
features (Marecek et al., 2016).

In a different approach, Meir-Hasson et al. (2014) tested the
accuracy of different combinations of features (frequency band
and time delay) extracted from each channel to predict BOLD
fluctuations of interest in the visual cortex. In each iteration, the
prediction error is used as feedback to guide the next combination
of features to be tested; upon convergence, an optimal EEG-
derived model of BOLD is obtained for each channel, and thus
avoiding the spatial filtering step.

Other Integration Approaches
Although a GLM framework is by far the most commonly used
for the integration of EEG and fMRI, alternative methods have
also been proposed in order to overcome assumptions regarding
the shape of the HRF, the linearity between EEG activity and
the BOLD signal, and the probability distribution of noise in the
data (e.g., Caballero-Gaudes et al., 2013). Even within the GLM

framework, several approaches have been proposed to account
for variable HRF shapes, and hence improve the sensitivity of
detecting BOLD changes. A popular method consists of allowing
variations around the canonical HRF, by adding its temporal
and dispersion derivatives to the GLM, in order to account
for deviations in both time-to-peak and time of onset (Friston
et al., 1998). More flexible methods can be used by considering
Fourier or finite basis sets (Goutte et al., 2000; Thornton et al.,
2010). Ultimately, the shape of the HRF can be estimated freely
as a finite impulse response for each voxel separately (Glover,
1999; Lu et al., 2006; de Munck et al., 2007; Storti et al., 2013).
One study employed a set of gamma-based HRFs in which
the two main parameters (time-to-peak and time of onset)
were systematically varied, in order to choose the best suited
to model the HRF in epilepsy patients (Grouiller et al., 2010).
Subject- and pathology-specific HRFs can also be defined by
estimating combinations of multiple HRFs peaking at different
latencies (Bagshaw et al., 2005). Nonetheless, studies assessing
the minimal degree of spatial specificity (e.g., voxel versus brain
regions) that is required in order to accurately map BOLD
fluctuations of interest without the risk of overfitting are still
missing.

Most EEG-informed fMRI studies focus on predicting the
BOLD signal measured at each voxel based on the EEG.
However, new opportunities for EEG-informed fMRI have
recently been created by the growing interest in the study
of the temporal fluctuations of BOLD functional connectivity
across the brain, the so-called dynamic functional connectivity
(dFC) (Hutchison et al., 2013; Calhoun et al., 2014; Preti et al.,
2016). In fact, a number of studies have already attempted to
incorporate EEG data in dFC analyses, which are reviewed in
Tagliazucchi and Laufs (2015). Normal brain function was first
investigated by correlating EEG fluctuations of interest (mainly
band-specific EEG power) with dFC fluctuations, in order to
identify electrophysiological correlates of functional connectivity
patterns (Scheeringa et al., 2012; Tagliazucchi et al., 2012; Chang
et al., 2013; Allen et al., 2017). The relevance of using EEG to
inform analyses of BOLD dFC fluctuations in epilepsy is also
starting to be investigated, with promising results regarding the
identification of epileptic networks that are no longer assumed to
be static over time, as in standard EEG-informed fMRI studies as
those described in the previous sections (Preti et al., 2014; Abreu
et al., 2017a). Although the field of dFC is relatively recent and
further studies are needed to better understand the physiological
meaning of functional connectivity fluctuations, the inclusion of
EEG in dFC analyses appears to be a promising avenue to achieve
such goal, opening new lines of EEG-fMRI research.

CONCLUSION

In this review, we overviewed the several challenges associated
with each step of the data analysis pipeline in EEG-informed
fMRI, and provided a comprehensive description and discussion
of the plethora of methods available to address each of
those challenges. The motivation underlying the concurrent,
multimodal acquisition of EEG and fMRI was first highlighted,
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including a brief description of the fundamentals of each
neuroimaging modality. Special attention was then given to the
critical problems concerning EEG and MRI data quality, by
characterizing the artifacts induced by each modality on the
other, as well as the most important modality-specific artifacts,
and describing the respective artifact reduction techniques.
Finally, we focused on multimodal data integration in the
context of the EEG-informed fMRI approach, surveying both
univariate and multivariate methods used to extract EEG
features that may predict BOLD signal changes. This review
may help the identification of the processing pipeline that best
fits each study, in order to optimize data quality as well as
the sensitivity and specificity of the brain networks obtained
by EEG-informed fMRI analysis. The optimal method for the
integration of data from the two modalities remains an open
question, mainly because a deeper understanding about the
substrates of each modality and the extent to which these
substrates overlap is still needed. Furthermore, more extensive,
critical and independent validation studies are needed to guide
the interpretation of the findings obtained using the methods
described above.
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