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Objective: The objective of this study was to test whether properties of 1-s segments

of spontaneous scalp EEG activity can be used to automatically distinguish the awake

state from the anesthetized state in patients undergoing general propofol anesthesia.

Methods: Twenty five channel EEG was recorded from 10 patients undergoing general

intravenous propofol anesthesia with remifentanil during anterior cervical discectomy and

fusion. From this, we extracted properties of the EEG by applying the Directed Transfer

Function (DTF) directly to every 1-s segment of the raw EEG signal. The extracted

properties were used to develop a data-driven classification algorithm to categorize

patients as “anesthetized” or “awake” for every 1-s segment of raw EEG.

Results: The properties of the EEG signal were significantly different in the awake and

anesthetized states for at least 8 of the 25 channels (p < 0.05, Bonferroni corrected

Wilcoxon rank-sum tests). Using these differences, our algorithms achieved classification

accuracies of 95.9%.

Conclusion: Properties of the DTF calculated from 1-s segments of raw EEG can be

used to reliably classify whether the patients undergoing general anesthesia with propofol

and remifentanil were awake or anesthetized.

Significance: This method may be useful for developing automatic real-time monitors

of anesthesia.

Keywords: monitoring general anesthesia, directed transfer function (DTF), electroencephalography (EEG),

consciousness, general anesthesia

INTRODUCTION

Monitoring the level of consciousness in patients undergoing general anesthesia is important
in clinical medicine. Every year, about 26,000 patients experience unintended intra-operative
awareness during general anesthesia in the US alone (Sebel et al., 2004; Ghoneim et al., 2009). To
reduce this problem, devices designed for automated monitoring of patients’ conscious state (i.e.,
whether they are fully anesthetized or awake) are in clinical use (Bischoff and Rundshagen, 2011;
Punjasawadwong et al., 2014). However, the reliability and validity of the existing monitors are
debated (Myles et al., 2004; Avidan et al., 2008; Schnakers et al., 2008;Mashour et al., 2012; Goddard
and Smith, 2013), and there is still a need for improved clinically viable tools for monitoring depth
as well as quality of general anesthesia (Kreuzer, 2017).
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The search for such tools should be guided by scientific
findings related to changes in brain activity induced by loss of
consciousness in general, and general anesthesia in particular.
Over the past decades, studies have revealed many reproducible
changes in electroencephalography (EEG) activity related to
anesthesia-induced loss of consciousness, such as changes in
frontal low frequency power and coherence in EEG signals
(Mhuircheartaigh et al., 2013; Purdon et al., 2013) and a partial
reduction in functional and effective connectivity (Alkire, 2008;
Hudetz, 2012), as well as signal complexity of perturbed and
spontaneous EEG (Casali et al., 2013; Schartner et al., 2015).
Altered cortico-cortical connectivity between frontal and parietal
regions has been reported to underlie spectral EEG changes
during propofol-induced loss of consciousness (Boly et al., 2012).
Indeed, changes in fronto-parietal connectivity upon loss of
consciousness have been reported across a range of anesthetics
with distinct molecular and neurophysiologic effects (Lee et al.,
2009, 2013; Hudetz and Mashour, 2016), and also in sleep
(Kaminski et al., 1995; Gennaro et al., 2004) and disorders of
consciousness (Boly et al., 2011; Di Perri et al., 2014). However,
there is also evidence speaking against the hypothesis that
prefrontal cortical areas and their connections to other parts
of the cortex are crucial for consciousness, and this issue is
currently debated (Koch et al., 2016; Boly et al., 2017; Storm et al.,
2017).

Nevertheless, there is substantial evidence that there are
several changes in functional and effective connectivity during
general anesthesia (Alkire, 2008; Hudetz, 2012), and for the
practical purpose of finding an EEG marker for monitoring level
of consciousness under anesthesia, measures quantifying brain
connectivity have proven to be among the most useful (Höller
et al., 2014). Unfortunately, most of the promising measures
that have been used experimentally to distinguish states of
consciousness require extensive data processing, long recordings,
repeated measurements, or combinations of these. Although
these requirementsmay often bemet in basic research, such time-
consuming steps are problematic for clinical applications and
make the measures unsuitable for real-time monitoring of the
conscious state during anesthesia in patients.

Here, we investigated whether properties of short segments
of spontaneous, raw scalp EEG could be sufficient for
distinguishing the anesthetized state from the awake state in
patients. To this end, we applied a mathematical procedure
called the Directed Transfer Function (DTF) (Kaminski and
Blinowska, 1991) to one-second (1-s) segments of raw EEG
data collected from patients undergoing general anesthesia. The
DTF is a measure of apparent “effective connectivity” in the
Granger causality family. It quantifies the apparent relevant
influence of one time-series on another, at a specific frequency,
given a multivariate autoregressive (MVAR) model (Greenblatt
et al., 2012). For an in depth mathematical description of
the DTF, see for example (Kaminski and Blinowska, 1991;
Kaminski et al., 2001; Gennaro et al., 2004; Florin et al.,
2011).

The DTF has previously been used to measure changes
in directed connectivity when healthy volunteers fall asleep,
and to characterize the level of awareness in patients suffering

from disorders of consciousness (DOC) (Kaminski et al., 1995;
Gennaro et al., 2004; Bertini et al., 2009; Höller et al., 2014).
However, to our knowledge, there are no previous studies
investigating how properties of the DTF changes when patients
undergo general anesthesia.

We aimed to test whether properties of the DTF, calculated
from 1 s segments of raw EEG, were sufficient to distinguish
between the awake and anesthetized states in a group of patients
undergoing propofol anesthesia during surgery.

We hypothesized that the analysis would reveal significant
changes in the DTF properties when patients become
anesthetized, and that the observed changes could be used
to distinguish between awake and anesthetized states. The main
results of this study have previously been presented in abstract
form at meetings (e.g., Juel et al., 2016).

MATERIAL AND METHODS

Study Design
This was a single-center observational study of patients
undergoing general propofol anesthesia with remifentanil. The
patients included in the study were scheduled for anterior
cervical discectomy and fusion, and the surgery was performed
under total intravenous general anesthesia at Oslo University
Hospital, Rikshospitalet between August and December 2013.
The study was approved by the Regional Committee for Research
Ethics (case number 2012/2014), and all patients included in
the study signed a written consent form after oral and written
information.

Inclusion and Exclusion Criteria
The patients included in this study were (1) American Society
of Anesthesia I–III patients (ASA Physical Status Classification
System. American Society of Anesthesiologists; https://www.
asahq.org/resources/clinical-information/asa-physical-status-
classification-system) (2) between 18 and 83 years old, and
(3) seen as otherwise healthy based on a complete health
examination. Patients were excluded if they had known
hypersensitivity to any of the anesthetic drugs, soy oil or egg
allergy, liver or renal disease affecting drug pharmacodynamics,
heart or lung disease causing physical limitations (unable to
climb two stairs without rest), any abuse of drugs and alcohol
causing impaired general health, organ damage, or neurological
or psychiatric disease.

Anesthetic Management
The premedication consisted of oral paracetamol (Paracet R©,
Weifa, Oslo, Norway) 1.5 g, midazolam (Dormicum R©, Basel,
Switzerland) 3.75–7.5mg for sedation, and oxycodone sustained
release tablet (opioid analgesic; OxyContin R©, Dublin, Ireland)
10mg. The drugs used for anesthesia were propofol (general
anesthetic) 20 mg/ml (Propolipid R©, Fresenius Kabi, Uppsala,
Sweden) and remifentanil (a potent, short-acting synthetic
opioid analgesic) 50µg/ml (Ultiva R©, GlaxoSmithKline, Parma,
Italy) administered by computer controlled infusion pumps
(B Braun Perfusor Space R©, Melsungen, Germany) programmed
to achieve brain concentrations of the anesthetic drugs resulting
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in anesthesia and analgesia sufficient for surgery. Before
induction of anesthesia, all patients received a 5 ml/kg IV
infusion of Ringer’s-Acetate counteracting hypotension during
induction. When the anesthesia started, the patients were given
3–5ml lidocaine 10 mg/ml IV to avoid injection pain from
propofol. Before the patients stopped verbally communicating
because of the anesthesia, they were pre-oxygenated with 100%
oxygen, and as soon as they stopped spontaneous breathing
due to respiratory depression from the remifentanil/propofol
combination, manual ventilation with 100% oxygen was
started.

The brain is the target and effect-site organ for propofol and
remifentanil, and the target controlled infusion (TCI) program
used for propofol was the Schnider model (Schnider et al., 1998)
for effect-site TCI in µg/ml. For remifentanil the Minto model
(Minto et al., 1997) was used for effect site TCI in ng/ml. The
calculated effect-site/brain concentration of propofol necessary
for surgical anesthesia varied between 2.5 and 5µg/ml and
the brain concentration range of remifentanil was 3–8 ng/ml.
The highest effect-site concentrations were necessary during
the intubation procedure, and at the start of surgery. To
facilitate endotracheal intubation, a single IV dose, 2 mg/kg,
of the non-depolarizing muscle relaxant cisatracurium 2 mg/ml
(Nimbex R©, GlaxoSmithKline, Oslo, Norway) was given. As soon
as correct placement of the endotracheal tube was verified,
mechanical ventilation with 40% oxygen was started. Nitric
oxide was not used. All the patients received local anesthetic
infiltration with 5ml 5% bupivacaine in the area of the skin
incision.

Clinical Assessment of Consciousness
In the present study, the state of the patient was continuously
assessed clinically by the anesthesiologist, using standard
tools and practices. The Modified Observer’s Assessment of
Alertness/Sedation Scale (MOAAS) (Chernik et al., 1990)
was used to measure the depth of sedation, until loss
of verbal contact and loss of response was reached. The
MOAAS assessment was employed by the anesthesiologist
maintaining verbal communication with the patient during
propofol administration, and the patients were considered
anesthetized and unconscious when they could no longer
maintain verbal communication or respond to their name being
called (MOAAS level 2). When the patient could no longer
communicate, the MOAAS assessment was discontinued, until
the patient was about to wake up again. The time points
of propofol administration, loss of consciousness as assessed
clinically (i.e., corresponding to loss of verbal contact and
behavioral response), and return of verbal communication
after anesthesia were recorded immediately. The depth of
anesthesia was continuously monitored clinically by observing
the heart rate, blood pressure, sweating, tear production, eye
and eyelid reflexes, pupil size and symmetry, and any limb
movements with standard clinical equipment. Furthermore, the
raw EEG, especially the recordings from the frontal electrodes,
were observed providing information regarding the depth of
anesthesia. Blood pressure was measured noninvasively with an
oscillometric blood pressure monitor.

EEG Methods
Twenty five channel EEG was recorded during the surgical
procedure. The electrodes were placed in accordance with the
10–20 system with additional low row electrodes (F9, F10, T9,
T10, P9, P10). The reference electrode was placed at CP1 (10–10
system). The signal was recorded through an EEG amplifier
(Pleasanton, California, USA) and digitized at 512 samples per
second. The signal was bandpass filtered between 0.5 and 70Hz
upon acquisition. Figure 1 shows examples of raw and wavelet
transformed EEG data.

For all patients, the EEG recordings were split into three
segments: before anesthesia, during anesthesia, and after
anesthesia. However, due to technical difficulties, the recording
of patient #2 started only after the anesthetics were administered.
In the analysis, patients were considered “awake” before
administration of anesthesia and after waking up from the
anesthesia with regained verbal communication. These EEG
segments were pooled to make up the “awake” state data.
Similarly, the EEG recordings gathered while the patient was
considered to be under stable general anesthesia (from 10min
after starting the administration of the anesthetics until 10min
before the patients woke up and was able to communicate
verbally) were pooled to make up the “anesthetized” state
data.

Data Processing
The raw EEG data was inspected using BESA Research
software (version 6.0; BESA GmbH, 82166 Gräfelfing Germany;
http://www.besa.de/), and time points for the administration
of anesthesia, loss of verbal contact, and return of verbal
communication were extracted. The data were then loaded into
Matlab R2015a using the Biosys toolbox as implemented in
EEGlab (Delorme and Makeig, 2004), and the resulting data was
processed using in-house scripts. Specifically, the “DTF” function
in the eConnectome toolbox (He et al., 2011) was employed to
calculate the DTF for every 1-s segment of the raw data, without
any filtering or artifact removal. Filtering and artifact removal
was deliberately avoided to simulate a clinical setting, and comply
with the demands of clinically viable real-time monitors of
anesthesia.

In this study, we applied analyses in a similar way to
Schumacher et al. (2015), calculating the DTF in the alpha band
(8–12Hz) from 1-s segments of EEG and using a relatively low
MVAR model order, O = 8. (These were the only parameters
applied for the calculation of the DTF for this initial proof-
of-concept study, but a broader search of the parameter space
for optimizing the method will be presented in a follow-up
study).

We transformed the measure of information flow (in the
DTF sense) by taking the logarithm of the DTF values (LDTF).
This gave us the main metric that we used for comparing
the states of the patients, LDTFij(f) = log(DTFij(f)). Here,
DTFij(f) denotes the sensor space “information flow” from
electrode j to electrode i, at frequency f. Taking the median
of these values over the frequency range of interest, yields
a matrix representing the normalized directed “connectivity,”
or “information flow,” between all electrodes within the given
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FIGURE 1 | Examples of raw EEG and time-frequency plots for a channel (Cz of patient 6) and the LDTF timecourse across the transition from wake to anesthesia.

(A,B) Show zoomed segments of raw EEG samples and time-frequency plot taken from the regions marked by blue vertical bars in (C). The wavelet transform used

2 s windows, with 68 wavelets (covering 2–70Hz) each with 12 cycles within the window. (C) Shows a raw EEG (top), time-frequency plot of wavelet transformed EEG

data (middle), and LDTF source strength timecourse (bottom) accross the wakefulness to anesthesia transition (the red vertical line marks the time at which the

anesthesiologist indicated the patient was anesthetized).

range of frequencies (Figure 2A). To investigate how the
activity in each channel typically influenced the activity in all
other channels, the matrix of LDTF values was compressed,
yielding a 1 × 25 array of values quantifying the median
“information outflow” from each channel (Figure 2B). Thus,
the “information outflow” from channel j was calculated by
taking the median of all LDTFij-values directed from a channel
j at time t, LDTFj(f) = median(LDTFij(f)). Calculating the
LDTFj(f) sequentially for all 1-s segments from a given patient,

results in a time-course describing how the information outflow
from each channel changes with a 1-s temporal resolution
(Figure 2C).

Throughout this study, the median was used when a summary
statistic was needed, because it is more robust than the mean
with regards to outliers caused by artifacts in the EEG data
(Schumacher et al., 2011; Dukic et al., 2017). This is particularly
important since the data in this study was not manually inspected
and cleaned.
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FIGURE 2 | Explanations of the plots used to visualize the DTF analysis. Each panel shows different properties of the connectivity as quantified by the DTF in our

analysis. (A) Visualization of the full connectivity matrix within a given frequency range (here 8–12Hz) for a specific 1-s segment from a given patient (#6). Each

element in this matrix represents the median LDTF from a given source channel (x-axis) to a given sink channel (y-axis), and the strength is given by the color (color

bar, right). Two examples are indicated by black arrows and circles in the matrix, showing the relatively strong (red) information flow from Cz to T7, and the relatively

weak (blue) information flow in the opposite direction, from T7 to Cz. (B) Topographical representation of the source channels’ strengths of information outflow from

the same 1-s segment presented in (A). The positons of channel labels indicate their relative locations on the head as seen from above (nose pointing up). In this 1-s

segment, the medial channels are strong, whilst more lateral channels are weaker, sources of information outflow. (C) Shows how each channel’s strength of

information outflow changes with time (x-axis). Red arrows mark important points. Here, it marks the time of the 1-s segment visualized in the figures in (A,B). All

figures use the same color scale, shown by the color bar.

Classification Algorithm
To assess whether the LDTF could distinguish between the
anesthetized and awake state in patients, we needed a method for
objectively classifying the data driven purely by the LDTF values.
This was done by separating the data set into two parts: a learning
set and a test set. The training set is was used to quantify the
properties of the LDTF in the anesthetized and awake state for
all except one patient in the data set. Then the generalizability of
these differences was tested by their ability to correctly classify the
state of the final patient every second.

More concretely, an in-house algorithm was implemented to
objectively classify the patient as anesthetized or awake based on
the LDTF values calculated from 1-s segments of raw EEG. To
achieve this, a 5-s moving median LDTF was calculated for a
patient, yielding a smoothed time-course of LDTF values with
1-s time resolution (the test set). The LDTF values from all
other patients were pooled together (resampled to control for
autocorrelation time in the LDTF and to make the number of
data points in each condition of equal size), and were used to

generate distributions of LDTF values for all channel pairs (the
training set). So, when classifying the state of a given patient,
the basis for the classification were the empirical distributions of
LDTF values from all the other patients.

Since the anesthesiologist had marked the time points when
each patient transitioned between anesthetized and awake states
throughout the clinical procedure, we had a ground truth for
the state if the patient at every time point. Each time point
in the smoothed time-course of LDTF values in the test set
was compared with the distributions of LDTF values from
the awake and anesthetized state from the training set. If a
patient’s LDTF values for a given time-point were more likely
to be drawn from the awake than anesthetized distribution, the
time-point would be classified as awake. Otherwise it would be
classified as anesthetized. Finally, this data-driven classification
was compared with the anesthesiologist’s clinical classification to
indicate the accuracy of our algorithm.

The algorithm is explained in more detail below, and the
implementation is visualized in pseudo-code in Textbox 1.
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TEXTBOX 1 | Pseudocode for the classi�cation algorithm.

for all_patients

for all_other_patients

for all_channel_pairs (ij)

% generate training sets for classification

pool all data from anesthesia into one variable

pool all data from awake state into another

% calculate statistics for each state

calculate median of LDTF across anesthetized and awake state

calculate standard deviation of LDTF for each states

% making classification for current patient

for all_one-second_segments (from fifth second)

for all_channel_pairs (ij)

calculate median LDF_ij across previous 5 seconds (mLDTF_ij(t))

% given a matrix mLDTF(t) containing all mLDTF_ij(t) values

calculate likelihood, P_state, of drawing mLDTF(t) from each state

if P_awake > P_anesthetized

classify as awake

else

classify as anesthetized

calculate accuracy, sensitivity, and specificity of classification

As can be seen from the pseudo code, the classification
algorithm was developed, implemented, and tested using a
“leave one out”-cross validation approach. For each patient, the
data from all other patients were pooled together into either
“awake” (before or after anesthesia) or “anesthetized” (during
stable anesthesia) categories. The pooled data of LDTFij(f) values
formed the training set that the state classification was based
on. From this training set, the median of LDTFij(f) over all
time points within a given state (“awake” or “anesthetized”)
was calculated, giving the matrix of median “information flow”
between all EEG electrodes: mLDTFstate (as in Figure 2A).
The standard deviation, sstateij , of the information flow within

a given state was also calculated, for each channel of interest.
These statistics were sufficient to define distributions of LDTFij(f)
values for all channel pairs, conditional on the patient state.

To classify the state of a patient at time t, we compared
that patient’s LDTFij(f) values at time t, with the training set
distributions generated from the other patients’ data. To get a less
noisy estimate of the test-patient’s LDTFij(f) values at time t, we
calculated the median of LDTFij(f) values across the preceding

5 s to give the matrix of test parameters,mLDTF (t)test. In other
words, this matrix contains the median strength of information
flow between all channel pairs of interest in the 5-s interval
leading up to the current time, t. This can be understood as the
typical LDTFij(f) values in the 5 s leading up to the time t.

From the mLDTF (t)test values, we could quantify the
likelihood that the values arose from “awake” and “anesthetized”
state distributions characterized by the training set described

above. This was done by taking the product, across all channel
pairs, of the probability that the observed mLDTF (t)test values
at a given time was drawn from the distributions of LDTF
values observed from the other patients in the study. To calculate
the relevant probabilities, we assumed that the distributions
LDTF values for each channel pair was approximately Gaussian,
which can be described by the empirical medians (mLDTFstate)
and standard deviations (sstate). The formula for the likelihood
that the mLDTF (t)test values were drawn from “awake” and
“anesthetized” state distributions then becomes the following:

P
(

state|mLDTF (t)test
)

=
L

∏

i6=j

1

sstateij

√
2π

exp







−
(

LDTFtestij (t) −mLDTFstateij

)2

2 ∗
(

sstateij

)2







Here, mLDTF (t)test is an L-by-L matrix containing all the
information flow values from the test-patient at time, t, between
the L channels of interest, and state is either “anesthetized”
or “awake.” Each term in this product is just the probability
of drawing a given value of LDTFtestij (t), given a Gaussian

distribution with meanmLDTFstateij and standard deviation sstateij .

For each time step, P (anesthetized | mLDTF (t)test) was
compared with P (awake | mLDTF (t)test), and the patient was
classified based on the following rule:
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PredictedState (t) =
{

anesthetized, ifP
(

anesthetized|mLDTF (t)test
)

> P
(

awake|mLDTF (t)test
)

awake, otherwise

This means that the patient was classified as anesthetized at some
time, t, if the corresponding LDTFstate values were most likely to
be drawn from the observed distributions of LDTF values from
other patients under anesthesia. In contrast, if the LDTFstate

values at some time, t, were most likely to be drawn from the
observed distributions of LDTF values from other patients
in the awake state, the patient was classified as awake. The
classifications were then compared to the reported clinical states,
and this comparison was used as the basis for calculating the
accuracy of the algorithm. Similarly, the algorithm’s sensitivity
and specificity of classification were calculated to avoid bias in
the accuracy calculation due to the data set from anesthetized
state being larger than that from the awake state.

Statistical Tests
We tested which, if any, LDTFj(f) values changed between
the awake and anesthetized states by applying independent
Wilcoxon rank-sum tests between conditions for each channel,
with Bonferroni correction for multiple comparisons. First, the
tests were done using all available data, before the tests were
redone with downsampled data to make distributions from the
wake and anesthetized states of equal size and controlling for
autocorrelation in the LDTF values. The downsampling consisted
of choosing LDTF values from every 100th 1-s segment to
reduce autocorrelation in the data (increasing independence
between data points), and further downsampling the anesthesia
distribution (using only 1 of every 50 segments) to make the
distributions of comparable size. Based on the post-hoc analyses
of the LDTF distributions, the full analysis described above was
redone starting from a reduced number of EEG channel, only
including those channels that were found to be different between
the wake and anesthetized states for the full model.

RESULTS

Ten patients (8 male, 2 female) were recruited to the study, but
one of the recording files was lost due to technical failure of the
recording station. One patient that fell asleep before the surgical
anesthesia was started was also excluded, leaving us with eight
adult patients (6 male, 2 female), with a median age of 59 years
(range: 39–83 years), that were included in the analysis. From
each of these patients, continuous 25 channel EEG was recorded
throughout the surgical procedure (median duration: 3 h 15min;
range: 2 h 11 min−3 h 48min). Each recording contained a
section from anesthesia in which the patient was regarded as
fully “anesthetized” (median: 2 h 43min; range: 1 h 40 min−3 h
23min), and shorter sections from before anesthesia (median:
6min; range: 0 min−11min) and after anesthesia (median:
3min; range: 1 min−10min) in which the patient was considered
“awake.”

Analyzing the properties of the DTF calculated from these
recordings revealed differences between the “anesthetized”
and “awake” patients. Qualitatively, the overall pattern of
“information outflow” changed from being heterogeneous in the

“awake” state, to being more homogenous in the “anesthetized”
state (Figures 3A,B). In particular, in the “awake” state, a
relatively strong source of outflow was apparent in the posterior
region (e.g., Pz in Figure 3A3), whereas this region appeared
far less prominent in the “anesthetized” state (Figure 3B3).
The differences in the DTF-derived properties were apparent
for individual patients when investigating the sources of
“information outflow” as a function of time (Figure 3C). The
structure of “information outflow” changed with time, and it
did so abruptly around the time points when the patient’s
state of anesthesia was reported to change. When the patient
regained consciousness as assessed by the anesthesiologist, the
pattern changed back, becoming qualitatively similar to before
anesthesia.

Even though the main patterns of the LDTF values were
quite stable within states, they were not static, but varied within
state specific distributions (Figures 4A,B). The distributions
of “information outflow” in the “anesthetized” state looked
qualitatively quite similar for each channel, while distributions
in the “awake” state seemed to depend more strongly on the
scalp position. Indeed, all channels in the awake state were
found to be significantly different from the “anesthetized” state
distributions (p< 0.01;Wilcoxon rank-sum tests with Bonferroni
correction for multiple comparisons). Also after controlling for
autocorrelation time in the measure (∼100 s), and resampling to
make the populations of similar size (subsampling of anesthesia
data to the size of awake data), the distributions of 8 channels
remained significantly different with p < 0.05 using the same
statistical test (F4, P4, T8, Pz, FP1, F3, T7, and T9; see Figure 4C).

The distributions of LDTFij values could be used to classify
the state of the patient (i.e., anesthetized vs. awake) solely based
on the EEG data, as described in the section Classification
Algorithm. The clinically observed changes in state were
accompanied by abrupt changes in LDTFj(f) values, and the
data-driven classification produced by our algorithm responded
rapidly and corresponded closely to the state indicated by the
anesthesiologist (Figures 5 B–I).

The accuracy, sensitivity, and specificity of the classification
algorithm are shown in Table 1. These scores depended on
whether the input data came from (1) all recorded EEG channels,
or (2) only the channels with significantly different information
outflow in the two states.

DISCUSSION

We found significant differences in the properties of the DTF
calculated from 1-s segments of raw EEG when comparing data
from patients in the anesthetized state with data from the same
patients when they were awake before or after the anesthesia. The
observed differences could be used to objectively classify the state
of single patients as “awake” or “anesthetized,” with a high degree
of accuracy and high time resolution before, during, and after the
anesthetic-induced unconsciousness.
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FIGURE 3 | Qualitative summary of the DTF analysis. (A,B) Summarize the structure of median connectivity in the “awake” and “anesthetized” states respectively,

given by LDTF, calculated from the data pooled from all patients. (A2,B2) Show the full directed connectivity matrices. Each element in the matrix quantifies the

median information flow, mLDTFij, between the j’th source channel (x-axis) and the i’th sink channel (y-axis). The topographical plots show the distribution of

information outflow and inflow regions (sources and sinks) on the scalp. (A3,B3) Depict the median information outflow from each point, while (A1,B1) depict the

information inflow to each point, on the scalp. (C) Shows the time courses of information outflow from all channels for a single patient (#7), illustrating the dynamics of

the measure over time. The time-course is smoothed using a moving median calculation, taking the previous five 1-s segments into consideration. The two red arrows

indicate the time of loss of verbal contact and response (left) and the time point when the patient again responded verbally (right). Note that only a few of the channels

in (A2,B2,C) are labeled because of space restrictions. See Figure 2 for the full set of channel labels. All figures show the median logarithm of DTF within the alpha

frequency range. The color scale on the right indicates the LDTF values for all panels: red colors indicate strong, while blue colors indicate weak, information flow.

DTF-Derived Properties Changed Abruptly
When Propofol-Induced Loss of
Consciousness Was Reported
The properties of the DTF calculated from 1-s segments of
raw EEG changed abruptly when consciousness was lost, but
rapidly returned to the wake-like pattern when the patient woke
up and regained communication. The heterogeneous pattern of
“information outflow” observed in the “awake” patients changed
to a much more homogenous pattern during anesthesia.

It is widely recognized that the concept of consciousness
encompasses at least two dimensions: the level (i.e., arousal
or wakefulness), and the content of consciousness (Laureys,
2005). In this study, we focused on the level of consciousness
and the related behavioral responsiveness, which are obviously
affected by general anesthesia and can readily be assessed by
clinical examination. Thus, the patients were considered to be

unconscious when they were behaviorally unresponsive as judged
by the anesthesiologist. However, the intrinsic subjective state of
the patient was not measured or controlled for, leaving open the

possibility that some patients had dreamlike experiences during

the surgery (Eer et al., 2009).
At least four previous studies have investigated how DTF is

affected by changing states of consciousness (Kaminski et al.,
2001; Gennaro et al., 2004; Bertini et al., 2009; Höller et al., 2014).
Höller et al. (2014) tested DTF as a part of a larger study to

find the measures best suited to classify patients with DOC at
the group level. They found that differences in DTF, together
with partial coherence, were the strongest classifiers for the

separating vegetative and minimally conscious patients. Earlier,
Bertini et al. (2009) investigated how the interhemispheric
connectivity changed as a function of sleep stages and found
that apparent “connectivity” quantified by DTF changed between
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FIGURE 4 | Comparing the distributions of information outflow from different EEG channels. Each plot in (A) visualizes the distributions of information outflow values

from a single channel, from the “awake” (blue) and “anesthetized” (red) states. Again, the data is pooled from all patients in the given state. The vertical positions of the

stars indicate the proportion of outliers on the indicated sides of the distributions. The axes are equal in all panels [shown only for F9, upper left in (A)], with the y-axis

showing the probability density of observations (range: 0 to 1), and the x-axis indicating the LDTF value (range: −10 to 0). The panels are ordered topographically as if

the head is seen from above with the nose pointing up. The panels with a bright green frame mark the channels with significantly different distributions between the

“awake” and “anesthetized” states. In (B), the same information is given as boxplots with the same color coding. The mean of each distribution is given by a filled

circle in each box, and the whiskers indicate the standard deviation of the distributions. Outliers have been omitted. The y-axis shows the information outflow, and

corresponds to the x-axes of the plots in (A). (C) Shows a topographical plot of the results from the statistical test comparing the distributions of LDTF information

outflow values for each channel between awake and anesthetized states—controlling for autocorrelation in the information outflow, resampling to make the data sizes

similar, and correcting for multiple comparisons. Green colors indicate regions with significantly different median information outflow distributions in awake and

anesthetized states.

wakefulness and stage 2 sleep. The change was particularly
clear in the alpha frequency “connectivity” between the parietal
electrodes P3 and P4, which are close to the region where
we found clear changes from strong to weaker information
outflow when going from awake to anesthetized state (Figure 2).
Gennaro et al. (2004) showed that the DTF changed just after

sleep onset. In particular, they found that “connectivity” from
posterior electrodes to frontal electrodes was reduced upon
falling asleep. Finally, Kaminski et al. (2001) also observed similar
changes in DTF structure at the onset of sleep, specifically a
“diminishing role of the posterior sources and an increasing effect
of the anterior areas.” These findings, together with indications
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FIGURE 5 | Visualization of results from classification algorithm. Here, data from all channels with significantly different distributions of median information outflow

between states were used for continuous classification the patient state. (B–I, zoomed example in A). Show the time course of the LDTF information outflow channels

for each patient, the patient’s state as reported by clinical staff, and the classification made by the algorithm. The middle region of each panel, containing the LDTF

values for every channel, follows the color scheme defined in the color bar. The top and bottom bars show the corresponding conscious state of the patient as

suggested by the algorithm and reported by the clinical staff respectively, and have their own color scheme: blue means “awake” while red means “anesthetized.” (A)

Shows the same information as (D), just enlarged to give a better impression of the dynamics, and numerated axes. Possible misclassifications can be seen as blue

points or regions in the upper bars of each panel where one would expect a red color according to the clinical report (i.e., false positives: predicting “awake” when

clinicians report “anesthetized”), and red regions where the clinical report suggest a blue color (false negatives: predicting anesthetized where clinicians report

“awake”).

TABLE 1 | Summary of predictive values for the classification algorithm.

Channels Accuracy Sensitivity Specificity

All 0.9591 0.9587 0.9591

Significant 0.9579 0.8738 0.9639

that DTF can be used to separate “vegetative” from minimally
conscious and awake states (Höller et al., 2014), suggest that
such changes in DTF may capture properties related to loss of
consciousness in general, not just specific features of propofol
anesthesia.

In addition to the DTF-studies, there is a vast literature
concerning potential EEG properties related to changes in level
of consciousness (Kreuzer, 2017). A comprehensive discussion
of how our results compare to other potential measures
for monitoring level of consciousness during anesthesia is
beyond the scope of the first proof-of-concept study presented
here. Furthermore, the fact that of our preprocessing steps
excluded standard data cleaning procedures (such as spatial or
temporal filtering, artifact rejection, resampling etc.) complicates
comparisons with previous publications. That said, some points
of interest in relation to previous literature should be noted.
First, our finding of clear changes in the alpha band, especially
in the frontal and lateral regions, is reminiscent of typical
changes occipital and frontal alpha oscillations reported to
be EEG signatures of loss and recovery of consciousness
from propofol (Purdon et al., 2013). Secondly, we observed

large changes in apparent information flow from frontal and
posterior areas between wakefulness and anesthesia, while the
asymmetry in information sources seemed to shift. This can
be seen as support for the claim that anesthesia-induced
loss of consciousness is related to a depression or functional
disconnection of lateral frontoparietal networks (Hudetz and
Mashour, 2016). Furthermore, it supports the general idea
that connectivity may be crucial for determining the level of
consciousness (Alkire, 2008; Alkire et al., 2008; Ferrarelli et al.,
2010; Hudetz, 2012; Casali et al., 2013; Höller et al., 2014).
Finally, the strong source of information flow observed near
medial posterior channels in the awake state is reminiscent
the so-called posterior “hot zone” referred to in a recent
review about neural correlates of consciousness (Koch et al.,
2016).

In sum, the method implemented here applied an effective
connectivity approach in a frequency band that is consistently
reported to be subject to change upon loss of consciousness. The
results of our analysis seem, to the extent the comparison is valid,
comparable to previously reported changes observed upon loss
of consciousness. Importantly, DTF variables are calculated from
short segments of EEG, and the observed patterns were quite
stable within conditions and changed abruptly when conditions
changed. These properties bode well for DTF, implemented in the
way suggested here, being useful as a clinical marker of propofol-
induced unconsciousness. However, further validation under
different conditions is required for more general claims, and a
thorough investigation of the parameter space and preprocessing
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steps should be conducted in order optimize the method for
accuracy in classification.

Potentially a Clinically Viable Monitor of
Anesthesia
In this study we used DTF-derived measures calculated from
raw data, without any form of preprocessing such as artifact
removal or corrections, in order to approach the requirements
of a clinically viable monitor of anesthesia. Using this method,
the state of individual patients could be objectively classified
as “anesthetized” or “awake” with high time resolution (1 s),
accuracy, sensitivity, and specificity.

Even though the classification scores could possibly be
improved by using preprocessed data, it is a requirement that
no manual pre- or post-processing is necessary, to be used as
the basis for a clinical monitor. In a real clinical setting, a
monitor will not be used if it requires a lot of extra effort on
the clinician’s side. In particular, setting up a large number of
EEG channels for every patient undergoing anesthesia is not
practical. We showed that reducing the number of channels from
the original 25 EEG channels recorded still reaches relatively
high classification scores. However, the sensitivity suffered, and
the method should be further optimized for lower numbers of
electrodes if it is to become a valuable addition to the clinician’s
toolkit for monitoring anesthesia.

There are already commercially available EEG-basedmonitors
of general anesthesia such as Bispectral Index (BIS), Cerebral
State Monitor, E-Entropy, SedLine, and Narcotrend (Musialowicz
and Lahtinen, 2014). These are often used to reduce the risk
of unintended awareness during general anesthesia, and their
use is recommended in the most recent Cochrane review
(Punjasawadwong et al., 2014). Especially BIS is widely used,
but although it is the most thoroughly studied of the available
monitors, its reliability and validity for monitoring awareness
has been questioned and extensively discussed in the literature
over the last two decades (Myles et al., 2004; Avidan et al.,
2008; Schnakers et al., 2008; Mashour et al., 2012; Goddard and
Smith, 2013). Despite the recommendations, there have been
several cases where patients, after waking up, reported awareness,
explicit memories, and pain during BIS-monitored anesthesia,
even when the monitor indicated deep levels of anesthesia
(Mychaskiw et al., 2001; Schneider et al., 2002; Vuyk et al., 2004;
Avidan et al., 2008).

The algorithm described here, made a new classification every
second, based on the previous 5 s of data, giving it a very high
temporal resolution. This beats the speed of some currently
available methods by up to an order of magnitude according
to simulation studies (Pilge et al., 2006). Depending on how
large the changes in EEG-patterns were, and how fast they were
presented, the tested monitors (BIS, Narcotrend, and Cerebral
State Monitor) responded with time delays between 14 and 155 s.
Together, the fast response of the method presented here and its
lack of pre-processing steps give reason to believe this method
may form a basis for a clinically viable monitor of anesthesia.

However, it should be noted, that even though the
classification accuracy reported here are high, the dataset is

much too small to say whether the proposed method has
the capacity to detect extremely rare but relevant events
such as unintended awakenings (Sebel et al., 2004; Ghoneim
et al., 2009). Furthermore, the patients included in this study
did not undergo extensive interviews regarding whether they
experienced anything during the surgery or not. Therefore, we
do not know for a fact that all patients remained unconscious
throughout the surgical procedure, although none of the
patients spontaneously reported an unintended awakening. For
future studies assessing methods for monitoring of conscious
state, this should be improved, and the patient’s own report
of experience should be taken as the ground truth for
classification.

Methodological Considerations
Our choice of focusing on the alpha band was empirically
driven and based on preliminary analyses (see Figure S1). In
addition, the alpha range has repeatedly been reported to change
between presumably conscious and unconscious states in several
relevant studies (Kaminski et al., 1995; Gennaro et al., 2004;
Bertini et al., 2009; Höller et al., 2014). There, the alpha band
was reported to show large changes between conscious and
unconscious states, in anesthesia as well as sleep and disorders
of consciousness.

Pre-processing steps such as filtering and artifact rejection
were omitted deliberately in this study, since one of the main
goals was to test whether DTF could potentially be used in a
clinical setting for robust, real time, classification of anesthetized
and wake states, from clinically relevant EEG data (for results
from tests investigating the effects of typical preprocessing
steps, and other methodological considerations, please see the
Supplementary Material). In particular, we used 1-s segments
of raw EEG to calculate the DTF based measures, in order to
investigate whether there are changes that can be captured by
the DTF calculated from such brief segments of raw EEG. If
we could find changes in the DTF properties calculated from
such short segments, this would suggest that DTF could be a
practical method for monitoring state of anesthesia in clinical
medicine.

Some authors have argued that the DTF should be calculated
from long segments of EEG to give a reliable estimates of
connectivity (Kaminski et al., 2001). However, due to the non-
stationarity of EEG, the use of too long segments may cause
an estimate of the connectivity to reflect a mixture of states. In
addition, the reliability of estimation also depends on the EEG
being devoid of artifacts, as noise in the signal may distort the
estimates of connectivity by the DTF. Since we intentionally
avoided preprocessing steps for cleaning data, we could not be
sure that long segments of EEG would be free from artifacts, and
needed another way to reduce the number of artifacts. We chose
to consistently use short segments of EEG, and take the median
across several segments within conditions to obtain estimates of
the connectivity within that condition. As was mentioned earlier,
the median was chosen due to its robustness to outliers, and this
approach has been shown to be comparable tomanual cleaning of
artifacts in previous work (Schumacher et al., 2011; Dukic et al.,
2017).
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The DTF has been applied to electrophysiological data with
a wide variety of model orders, segment lengths (ranging from
sub-second to several minutes duration), and preprocessing
steps (Kaminski and Blinowska, 1991, 2014; Ding et al., 2000;
Kaminski et al., 2001; Gennaro et al., 2005; Bertini et al.,
2009; Schumacher et al., 2015). That said, our choice of
parameters in the analysis may have had an impact on the
precision of inference about the underlying brain connectivity
(Florin et al., 2011; Kaminski and Blinowska, 2014). However,
whether the scalp level connectivity estimates give good
estimates on the underlying, neural connectivity is in any
case disputed (Brunner et al., 2016; Kaminski and Blinowska,
2017). In addition, to reiterate, the aim of this study was to
investigate whether the anesthetized state could be objectively
separated from the awake state in humans based on properties
calculated from spontaneous, raw scalp EEG, not to estimate
underlying brain connectivity. For this purpose it is of little
importance whether or not the obtained results reflect neural
connectivity.

CONCLUSIONS

We have shown that properties of the DTF calculated from 1-s
segments of raw EEG changed abruptly as patients undergoing
surgical propofol anesthesia with remifentanil lost and regained
wakefulness and behavioral responsiveness as judged by trained
clinical staff. These changes could be used to reliably and
precisely distinguish anesthetized from awake state in individual
patients with a high temporal resolution. These results were
achieved using raw EEG data from as little as eight electrodes,
demonstrating the possible clinical viability of this approach.
Therefore, we propose that data-driven classification algorithms
based on properties of the DTF calculated from 1-s segments
of raw EEG may become useful for developing future tools for

objective, real-time monitoring of the conscious state in patients
undergoing anesthesia.
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