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Emotion regulation (ER) refers to the “implementation of a conscious or non-conscious
goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al.,
2015). Whereas multiple brain areas have been found to be involved in ER, relatively little
is known about whether and how ER is associated with the global functioning of brain
networks. Recent advances in brain connectivity research using graph-theory based
analysis have shown that the brain can be organized into complex networks composed
of functionally or structurally connected brain areas. Global efficiency is one graphic
metric indicating the efficiency of information exchange among brain areas and is utilized
to measure global functioning of brain networks. The present study examined the
relationship between trait measures of ER (expressive suppression (ES) and cognitive
reappraisal (CR)) and global efficiency in resting-state functional brain networks (the
whole brain network and ten predefined networks) using structural equation modeling
(SEM). The results showed that ES was reliably associated with efficiency in the fronto-
parietal network and default-mode network. The finding advances the understanding of
neural substrates of ER, revealing the relationship between ES and efficient organization
of brain networks.
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INTRODUCTION

Emotion regulation (ER) refers to ‘‘the processes that influence which emotions we have,
when we have them, and how we experience and express them’’ (Gross, 1998). People
adopt a wide variety of ER strategies, such as situation selection, situation modification,
attentional deployment, cognitive change and response modulation (Gross, 1998). In face
of the complexity of ER, Gross and John (2003) suggested to focus on a smaller number of
well-defined strategies: ‘‘Our focus on two specific, well-defined processes is predicated on the
belief that our understanding of complex emotion regulatory processes is best advanced if we
focus intensively on one or two processes at a time’’. The two major ER strategies or forms as
suggested by Gross and John (2003) are expressive suppression (ES) and cognitive reappraisal (CR).
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ES refers to the alteration of one’s response to an emotional
incident, while CR refers to the change of how one views
the emotional incident in order to alter one’s feelings. For
example, when feeling sad after a heart-broken breakup, one
could withhold any sad expression in order to control the intense
feelings (i.e., ES); or he/she could persuade himself into thinking
that the finished relationship is perhaps actually good for both
(i.e., CR). Using ER tasks that typically instruct participants to
use the ES or CR strategy when presented with emotionally
negative stimuli or adopting the ER questionnaire (ERQ) that
was specifically developed to assess the habitual ES and CR usage
(Gross and John, 2003), CR has been shown to produce affective,
cognitive and social consequences that are more beneficial,
whereas ES has been consistently linked to more detrimental
consequences such as depressive symptoms (Gross, 2002; Gross
and John, 2003; Goldin et al., 2008).

Neural mechanisms of ER have been under investigation
using brain-imaging approaches. Task-based functional
magnetic resonance imaging (fMRI) studies have shown
the involvement of the ventrolateral prefrontal cortex (vlPFC),
inferior frontal gyrus (IFG), insula and amygdala in ES (Goldin
et al., 2008; Lee et al., 2008) and the engagement of the
dorsomedial PFC (dmPFC), dorsolateral PFC (dlPFC), vlPFC,
insula, temporal cortex, parietal cortex and amygdala in CR
(Kalisch, 2009; Diekhof et al., 2011; Buhle et al., 2014; Gross,
2015). Using the ERQ, studies analyzing gray matter volume and
surface thickness have shown that brain structural variations
in the ventromedial PFC (vmPFC), dorsal anterior cingulate
cortex (dACC), dmPFC, superior frontal gyrus (SFG) and insula
are associated with ES (Welborn et al., 2009; Giuliani et al.,
2011a; Hermann et al., 2014; Wang et al., 2017), and CR is
related to structural variations in the superior frontal cortex
(SFC), vmPFC, dACC and amygdala (Welborn et al., 2009;
Giuliani et al., 2011b; Hermann et al., 2014; Moore et al., 2016).
Moreover, using the ERQ and resting-based fMRI, Wang et al.
(2017) found that functional connections between the SFG
and regions including the medial PFC (mPFC), precuneus and
parahippocampal gyrus were related to ES gender difference.

Previous brain-imaging findings thus suggest the involvement
of multiple brain areas in ER and indicate that ER may be related
to the functioning of brain networks, which are composed of
structurally or functionally connected brain regions (van den
Heuvel and Hulshoff Pol, 2010; Smith et al., 2013). Whereas
prior studies have investigated functions of individual brain
regions in ER, it remains unknown whether and how ER is
supported by global functioning of brain networks. To this
end, we used global efficiency, one of the graph theory’s global
metrics, to assess the role of global functioning of brain networks
in ER. There has been a growing interest to investigate the
structural and functional organization of the brain by graph-
theory based analyses, which consider the brain as organized into
complex networks consisting of nodes (brain regions) and edges
(structural or functional connectivity between regions; Rubinov
and Sporns, 2010; De Vico Fallani et al., 2014; Mears and Pollard,
2016). The topological properties of complex networks can be
assessed by a variety of measures (for reviews, see Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010; Wang et al., 2010;

De Vico Fallani et al., 2014), among which network efficiency is
considered to be a ‘‘more biologically relevant metric’’ describing
networks in terms of information exchange among brain regions
(Wang et al., 2010). Network efficiency can be measured by
global efficiency and local efficiency at the global and local level,
respectively (Wang et al., 2010; De Vico Fallani et al., 2014;
Stanley et al., 2015). Note that global efficiency is inversely
related to path length and is suggested to be ‘‘easier to estimate
than path length when studying sparse networks’’ (Bullmore and
Sporns, 2009); and local efficiency is positively associated with
clustering coefficient. Given the purpose of investigating global
functioning of brain networks, the present study focused on
the metric of global efficiency, which is defined as the average
inverse shortest path length in the network (Beaty et al., 2016).
Global efficiency has been found to be related to cognitive
(e.g., intelligence (Li et al., 2009; van den Heuvel et al., 2009),
working memory (Alavash et al., 2015; Stanley et al., 2015)) and
social (e.g., personality trait (Beaty et al., 2016) functions, as
well as mental disorders (e.g., major depressive disorder (Meng
et al., 2014), bipolar disorder (Collin et al., 2016), attention
deficit/hyperactivity disorder (Wang et al., 2009)).

Global efficiency can be analyzed for the whole brain network
(Li et al., 2009; Wang et al., 2009; Meng et al., 2014; Stanley
et al., 2015) or subnetworks (Sheffield et al., 2015; Beaty et al.,
2016). For subnetworks, research of resting-state functional
connectivity has shown that the brain can be organized into
networks composed of functionally connected brain regions (van
den Heuvel and Hulshoff Pol, 2010; Power et al., 2011; Raichle,
2011; Cole et al., 2013; Smith et al., 2013). In brain connectivity
research the brain is usually divided into a set of non-overlapping
regions and the definition of brain networks is related to the
brain parcellation (note that a validated parcellation strategy is
still lacking; Power et al., 2011; Wig et al., 2011). Power et al.
(2011) divided the brain into 264 putative regions and showed
that 13 networks based on the 264 regions are in good agreement
with major functional systems of the brain. Cole et al. (2013)
further reduced the 13 networks into 10 networks by excluding
two networks with less clear functionality and combing the
‘‘hand’’ and ‘‘face’’ networks based on consensus of a unified
primary motor system. The 10 networks based on the 264-region
parcellation were the somato-motor network (SMN), cingulo-
opercular network (CON), auditory network (Aud.), default
mode network (DMN), visual network (Vis.), fronto-parietal
network (FPN), salience network (SAN), subcortical network
(Sub.), ventral attention network (VAN) and dorsal attention
network (DAN); and have been widely adopted in studies
investigating relationships between network properties and
cognitive functions (Cole et al., 2014b; Thompson and Fransson,
2015; Uddin, 2015; Vatansever et al., 2015; Long et al., 2016). For
the major brain areas that have been found to be involved in ER,
the lateral PFC is a core region of the FPN (Cole et al., 2013),
the media PFC is a key region of the DMN (Buckner et al., 2008;
Broyd et al., 2009), and the ACC is an important component
of the CON (Power et al., 2011; Sadaghiani and D’Esposito,
2015). Based on the relationships between individual brain areas
and ER and the relationships between individual brain areas
and networks, it could be indicated that global efficiency in the
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FPN, DMN and CON is more likely to be associated with ER.
This inference, however, remains to be verified by experimental
data and would be difficult to be considered as a strong
prior hypothesis. For example, a study examining the Big Five
personality traits showed that extraversion and agreeableness
were correlated with activities in the midline regions of the
DMN and neuroticism, openness and conscientiousness were
correlated with activities in the parietal regions of the DMN
(Sampaio et al., 2014). However, Beaty et al. (2016) found that
only openness was associated with global efficiency in the DMN
and suggested that the involvement of a brain region in a
cognitive process does not necessarily imply the engagement of
global functioning of the network to which that brain region
belongs, because individual regions ‘‘are related to a wide range
of cognitive, behavioral and emotional variables’’.

Taken together, the present study aimed to examine the
relationship between ER and global functioning of brain
networks. The ERQ was used to assess trait measures of
the two ER strategies, ES and CR (Gross and John, 2003;
Wang et al., 2007). Graph theory-based methods were applied
to resting-state fMRI data (Bullmore and Sporns, 2009), and
global functioning of the whole brain network and the 10
predefined networks (Cole et al., 2013) was examined by
analyzing global efficiency. The association between the ER
strategies and global efficiency in the brain networks was
evaluated using structural equation modeling (SEM) that models
error variance separately from true measurement variance (Beaty
et al., 2016). We hypothesized that ER would be associated
with global functioning of brain networks as indexed by global
efficiency. More specifically, we inferred that global efficiency
in the FPN, DMN and CON is likely to be associated with
ER. In addition to the FPN, DMN and CON, the whole brain
network and other networks in the 10 predefined networks
were also analyzed, with the purpose of a more comprehensive
understanding of the relationship between global efficiency in
networks and ER.

MATERIALS AND METHODS

Participants
The present study recruited 54 participants from Sun Yat-sen
University. Two participants were excluded for excessive motion
in the MRI scan and four participants were excluded for
missing behavioral data, and finally 48 participants (all right-
handed, 13 male, mean age ± SD 22.77 ± 1.59) were
included in the subsequent analyses. All participants were
healthy and reported no history of neurological or psychiatric
disorders, or cognitive or affective impairments. This study
was carried out in accordance with the recommendations of
research protocol approved by the Institutional Review Board
of Psychology Department of Sun Yat-sen University with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Institutional
Review Board of Psychology Department of Sun Yat-sen
University.

MRI Data Acquisition and Preprocessing
The participants were scanned using a Siemens 3.0 Tesla
MRI scanner (Siemens, Erlangen, Germany) located at South
China Normal University (Guangzhou, China). Whole brain
T2∗-weighted resting-state functional images were acquired
for 8 min as participants relaxed (stayed awake without
thinking anything) with eyes closed, using an echo-planar
imaging (EPI) sequence: repetition time (TR) = 2000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 90◦, field of view
(FOV) = 224 × 224 mm2, slices = 32, matrix = 64 × 64, slice
thickness = 3.5 mm, voxel size = 3.5 × 3.5 × 3.5 mm3,
240 volumes, and interleaved slice ordering. Whole
brain T1-weighted structural images were obtained in
a sagittal orientation using the magnetization-prepared
rapid gradient-echo (MPRAGE) sequence: TR = 2300 ms,
TE = 3.24 ms, FA = 9◦, FOV = 256 × 256 mm2, inversion
time = 900 ms, matrix = 256 × 256, slices = 176, slice
thickness = 1 mm, and voxel size = 1× 1× 1 mm3.

The data were preprocessed using Statistical Parametric
Mapping (SPM121) and Data Processing Assistant for Resting-
State fMRI (DPARSF; Yang and Zang, 2010). Preprocessing
consisted of standard resting-state functional connectivity
preprocessing procedures as implemented in DPARSF, including
removing the first 10 volumes of functional images, slice
timing correction, motion correction (data of two participants
were excluded under the criterion of 2 mm displacement
or 2◦ rotation in any direction), coregistration of structure
images to functional images, segmentation with the DARTEL
method (Ashburner, 2007), normalization to the standard MNI
space with the DARTEL method and resampling functional
images at a voxel size of 3 × 3 × 3 mm3, removing
linear trends, regressing out nuisance variables (head motion
parameters, whitematter signals, and cerebrospinal fluid signals),
filtering (0.01–0.1 Hz), and spatial smoothing (4-mm FHWM).
Following previous work analyzing functional connectivity
using graphic approaches (Zhao et al., 2012; Cole et al.,
2013; Arnold et al., 2014; Santarnecchi et al., 2014; Beaty
et al., 2016), in the present study whole brain signal was not
regressed out as a nuisance variable because of the current
controversy over global signal regression (Murphy et al.,
2009) and the potential impact of global signal removal on
topological properties of brain networks (Santarnecchi et al.,
2014).

Network Construction and Graphic
Analyses
Graph analyses were conducted using graph theoretical network
analysis (GRETNA; Wang et al., 2015). The present study
adopted the 10 predefined networks based on the parcellation
of the brain with 264 cortical and subcortical 10-mm diameter
spherical regions (for detailed information, see Power et al.,
2011; Cole et al., 2013). For each of the 10 networks in
each participant’s dataset, regional time series were calculated
by averaging voxel time series in each of the N regions in
that network, and a N × N functional connectivity matrix

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Illustrating the small-world-ness of networks under different thresholds. Whole brain network (WBN), somato-motor network (SMN), cingulo-opercular
network (CON), auditory network (Aud.), default mode network (DMN), visual network (Vis.), frontoparietal network (FPN), salience network (SAN), subcortical
network (Sub.), ventral attention network (VAN) and dorsal attention network (DAN) represent the WBN, SMN, CON, Aud., DMN, Vis., FPN, SAN, Sub., VAN and
DAN, respectively. For each threshold (Fisher transformed r ranging from 0.15 to 0.85 in 0.05 steps; totally 15 thresholds), it was first evaluated whether small word
property of a network was estimable. The thresholds at which small word property of the network was not estimable were not included in following analyses and are
not presented in the figure. The small-word-ness (σ) was then calculated with σ > 1 indicating that a network exhibits small-world property. The thresholds at which
σ > 1 are indicated by black circles, and the thresholds at which σ ≤ 1 are indicated by gray circles and were not included in following analyses.

was constructed by computing the Pearson correlation (with
Fisher transformation) between each pair of regional time
series of the N regions. The brain regions represented network
nodes and the correlations between nodes represented network
edges. The adjacency matrix was then computed from the
correlation matrix by applying a threshold, which resulted in the

binary undirected graph. Note that different thresholds would
generate graphs of different connection density or sparsity,
and network properties are suggested to be examined over a
wide range of thresholds since currently there is no ‘‘good’’
threshold for graphic analysis (Bullmore and Sporns, 2009;
Langer et al., 2012; Power et al., 2013). Therefore network

TABLE 1 | Connection density.

Threshold WBN (264) SMN (35) CON (14) Aud. (13) DMN (58) Vis. (31) FPN (25) SAN (18) Sub. (13) VAN (9) DAN (11)

0.15 52.97 67.67 N\A 70.25 72.10 N\A 72.10 73.76 N\A 70.66 N\A
0.2 40.60 57.90 N\A 59.56 63.06 75.23 63.03 64.50 78.90 61.81 65.19
0.25 30.43 49.04 61.77 50.40 54.42 68.01 54.40 55.07 70.14 51.56 N\A
0.3 22.40 41.11 53.64 41.03 46.13 60.77 46.02 46.53 60.92 N\A N\A
0.35 16.25 34.07 45.26 33.31 38.59 53.04 38.30 38.45 51.47 N\A N\A
0.4 11.61 27.80 37.29 N\A 31.53 45.30 30.85 31.37 42.52 N\A N\A
0.45 N\A N\A N\A N\A 25.24 37.86 N\A N\A 33.79 N\A N\A
0.5 N\A N\A N\A N\A 19.93 31.25 N\A N\A N\A N\A N\A
0.55 N\A N\A N\A N\A N\A 25.66 N\A N\A N\A N\A N\A
0.6 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
0.65 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
0.7 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
0.75 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
0.8 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
0.85 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

Average connection density (%; i.e., actual number of edges in a graph relative to the total number of possible edges) across participants is listed for all networks at all
thresholds (Fisher transformed r). The number of regions in a network is indicated below each network name. Note that the thresholds at which small word property of
a network was not estimable and was not presented were not included in the following analyses and are marked by N\A (see Figure 1). Other conventions are as in
Figure 1.
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thresholding in the present study used Fisher transformed r
values ranging from 0.15 to 0.85 (Achard et al., 2006; He et al.,
2007; Langer et al., 2012; Arnold et al., 2014; Santarnecchi
et al., 2014), with the aim of a more comprehensive analysis.
Moreover, whether a network would have the property of the
small world was evaluated for each threshold. The small-world
topology is characterized through the characteristic path length
L and clustering coefficient C (Watts and Strogatz, 1998). The
characteristic path length is defined as the average of the shortest
path lengths between any pair of nodes in the network. The
clustering coefficient is defined as the average of the clustering
coefficients over all nodes, where the clustering coefficient of a
node is defined as the proportion of possible connections that
actually exist between the nearest neighbors of a node. Compared
with random networks that have the same number of nodes,
same mean degree and same degree distribution as the real
network (e.g., brain network) of interest, if the real network
has higher clustering coefficient and similar characteristic path
length (i.e., γ = Cnet/Cran > 1, λ = Lnet /Lran∼ 1, with Cnet
and Lnet indicating the clustering coefficient and characteristic
path length of the real network, respectively, and Cran and
Lran indicating the clustering coefficient and characteristic path
length of the random network, respectively), the real network
would be considered as a small world (Watts and Strogatz,
1998). The ratio between the two parameters γ and λ (γ/λ)

can be defined as a parameter σ to measure the small-word-
ness, with σ > 1 indicating that a network exhibits small-
world property (Humphries et al., 2006). Moreover, before
calculating the small-world-ness, it is recommended to first
evaluate whether small word property of a network is estimable,
which is indicated when the mean degree (k) of the network
is larger than the log of the number (n) of the network’s
nodes (i.e., k > log(n); Watts and Strogatz, 1998). Note that
small-world property tends to be not estimable for higher
thresholds. This is because as the threshold increases, more
weak connections will be removed from the network and the
network will become sparser. As a result, the mean degree will
decrease and is more likely to be less than the log of the number
of the network’s nodes (Watts and Strogatz, 1998; Achard
et al., 2006; He et al., 2007). In the present study investigating
brain networks, for each of the whole brain network and the
10 predefined networks, following the procedure described by
Jäncke and Langer (2011) and Langer et al. (2012), the correlation
matrices of all participants were first averaged to obtain an
average correlation matrix and the corresponding adjacency
matrix was calculated. Then for each threshold, whether small
word property of a network is estimable was evaluated, and
the small-word-ness (σ) was calculated. Note that the following
analyses only included the thresholds at which small word
property of a network was estimable (i.e., k > log(n)) and

TABLE 2 | Association between expressive suppression (ES) and network global efficiency.

Threshold WBN (264) SMN (35) CON (14) Aud.(13) DMN (58) Vis. (31) FPN (25) SAN (18) Sub. (13) VAN (9) DAN (11)

0.15 −0.257 0.110 N\A −0.343 −0.427 N\A −0.357 −0.269 N\A −0.229 N\A
0.09 >0.50 N\A 0.03 0.05 N\A 0.04 >0.50 N\A >0.50 N\A

0.2 −0.249 0.008 N\A −0.349 −0.436 −0.127 −0.342 −0.293 −0.067 −0.129 0.128
0.09 >0.50 N\A 0.06 0.04 >0.50 0.06 >0.50 >0.50 >0.50 >0.50

0.25 −0.241 0.058 −0.223 −0.350 −0.418 −0.141 −0.395 −0.253 −0.066 −0.061 N\A
0.10 >0.50 >0.50 0.11 0.06 >0.50 0.01 >0.50 >0.50 >0.50 N\A

0.3 −0.235 0.072 −0.278 −0.369 −0.423 −0.134 −0.355 −0.335 −0.106 N\A N\A
0.11 >0.50 >0.50 0.06 0.07 >0.50 0.03 0.17 >0.50 N\A N\A

0.35 −0.233 0.114 −0.277 −0.265 −0.404 −0.155 −0.421 −0.302 −0.239 N\A N\A
0.13 >0.50 >0.50 0.34 0.12 >0.50 0.00 0.38 >0.50 N\A N\A

0.4 −0.228 0.065 −0.255 N\A −0.399 −0.127 −0.467 −0.325 −0.189 N\A N\A
0.14 >0.50 >0.50 N\A 0.14 >0.50 0.00 0.28 >0.50 N\A N\A

0.45 N\A N\A N\A N\A −0.357 −0.144 N\A N\A −0.196 N\A N\A
N\A N\A N\A N\A 0.29 >0.50 N\A N\A >0.50 N\A N\A

0.5 N\A N\A N\A N\A −0.348 −0.147 N\A N\A N\A N\A N\A
N\A N\A N\A N\A >0.50 >0.50 N\A N\A N\A N\A N\A

0.55 N\A N\A N\A N\A N\A −0.141 N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A >0.50 N\A N\A N\A N\A N\A

0.6 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.65 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.7 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.75 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.8 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.85 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

For each network at each threshold, association β value (up row in a data cell) and corrected p value (Bonferroni corrected for the 10 networks, bottom row in a data
cell) are presented. Associations with pcorrected values ≤ 0.05 are marked with the red color and associations with pcorrected values ≤ 0.1 are marked with the orange color.
Other conventions are as in Table 1.
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FIGURE 2 | Illustration of association between expressive suppression (ES) and global efficiency in the FPN. Shown are the results for thresholds 0.15 (top row), 0.25
(middle row) and 0.35 (bottom row). For each threshold, structural equation modeling (SEM) is presented on the left, which shows effects of the latent emotion
regulation (ER) variables on FPN efficiency. es1–4 refer to the four questionnaire items for ES and cr1–6 refer to the six questionnaire items for cognitive reappraisal
(CR). The paths are standardized coefficients. NA indicates negative affect. Scatter plot of the association between latent ES and FPN efficiency is presented in the
middle. Note that all variables were standardized by Z-transformation. Nodes and edges that were used to define FPN are presented on the right for a representative
participant (the size of nodes represents the degree). Other conventions are as in Table 2.

existed (σ > 1). After that, global efficiency was calculated for
each network at each threshold for each participant, which was
mathematically expressed as the inverse of the average shortest
path length in the network (Wang et al., 2010; Beaty et al.,
2016).

Behavioral Assessment
Participants completed a Chinese version of the ERQ (Gross
and John, 2003; Wang et al., 2007). The Chinese version

of ERQ has satisfactory internal consistency and test-retest
reliability (Wang et al., 2007). The ERQ had 10 items, with
four items measuring ES and the other six items measuring
CR. An example item for ES was: ‘‘I control my emotions
by not expressing them’’; and an example item for CR was
‘‘When I want to feel more positive emotion (such as joy or
amusement), I change what I’m thinking about’’. Participants
answered to these items on a 1-to-7 Linkert scale (‘‘1’’ = ‘‘strongly
disagree’’; ‘‘7’’ = ‘‘strongly agree’’), to indicate their habitual
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FIGURE 3 | Illustration of association between ES and global efficiency in the DMN. Results for thresholds 0.15 (top row) and 0.2 (bottom row) are shown. Other
conventions are as in Figure 2.

use of these two ER strategies. Participants further completed a
Chinese version of negative affect (NA) subscale of the Positive
and NA Schedule (PANAS; Watson et al., 1988; Qiu et al.,
2008). The Chinese version of NA subscale had nine items,
and participants indicated their general frequency of negative
mood states on a 1-to-5 Likert scale (‘‘1’’ = ‘‘not at all’’,
‘‘5’’ = ‘‘extremely’’).

Structural Equation Modeling (SEM)
The relationship between trait measures of ER (ES/CR) and
global efficiency of a network was examined using SEM, which
used latent variables to model error variance separately from
true measurement variance (Skrondal and Rabe-Hesketh, 2004;
Beaty et al., 2016; Figure 1A). ES and CR were formed as latent
variables by specifying their corresponding questionnaire items
(four items for ES and six items for CR) as indicators. Age
and gender were modeled as observed variables. Note that in
order to control for NA, the NA score was also modeled as
an observed variable (Giuliani et al., 2011a,b). The analyses
without controlling for the NA score are presented in the
Supplementary Materials (see ‘‘Analyses without modeling the
NA score as an observed variable’’, Supplementary Tables S1, S2).
Standardized regression coefficients were reported. SEM analyses
were conducted with Mplus 8 using maximum likelihood robust
estimation.

RESULTS

The mean scores of the two subscales of ERQ were: 2.92
(SD = 1.02) for ES and 4.99 (SD = 0.89) for CR. Consistent
with previous results, the ES and CR scores did not statistically
correlate with each other (r = 0.037, p > 0.05), and the internal
consistency was acceptable (Cronbach’s α was 0.73 and 0.86 for
ES and CR, respectively; Gross and John, 2003; Kühn et al., 2011;
Picó-Pérez et al., 2017). The mean score of the NA subscale was
19.88 (SD = 5.28). Consistent with previous reports (Giuliani
et al., 2011a,b), the NA score did not correlate with the ES score
(r = 0.14, p = 0.32) or the CR score (r = 0.018, p = 0.90), and no
NA outlier (>3 SD) was found.

The relationship between ES/CR and global efficiency of
each of the whole brain network and the 10 networks was
examined using SEM over the 15 network thresholds. In sum,
the data fit the model well regarding the model fit indices,
e.g., comparative fit index (CFI), Tucker–Lewis index (TLI), root
mean square error of approximation (RMSEA) and standardized
root mean square residual (SRMR; Hu and Bentler, 1998;
Brown, 2006; see ‘‘Supplementary description of SEM’’ in the
Supplementary Materials for further details of the SEMmethod),
providing support for the proposed theoretical models. Whether
a network would have small world property was first evaluated
for each threshold, and the following analyses only included
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the thresholds at which small word property of the network
was estimable (i.e., k > log(n)) and was presented (σ > 1; see
the ‘‘Materials and Methods’’ section for details). In general,
consistent with previous findings (Watts and Strogatz, 1998;
Achard et al., 2006; He et al., 2007), networks lacked small
word property for higher thresholds (Figure 1). Connection
density was assessed and listed in Table 1. Global efficiency
distributions under different thresholds are listed for all networks
in Supplementary Figure S1.

The results of ES are listed in Table 2. Note that it has
been suggested to examine network properties over a wide
range of thresholds since currently there is no ‘‘good’’ threshold
for graphic analysis, and findings observed across a range of
thresholds (in contrast to those occasionally observed at only a
single or a few thresholds) would be considered more reliable
(Stam et al., 2006; Bullmore and Sporns, 2009; van den Heuvel
et al., 2009; Langer et al., 2012; Power et al., 2013; Xu et al.,
2015). In the present results the most reliable association was
found between ES and FPN, which was statistically significant
(pcorrected < 0.05, corrected for 10 networks using Bonferroni
correction) for thresholds from 0.15 to 0.4 (although marginally
significant at threshold 0.2; Table 2 and Figure 2). The
association between ES and DMN would also be considered
reliable, which was statistically significant (pcorrected < 0.05)
for thresholds 0.15 and 0.2 and was marginally significant for
thresholds 0.25 and 0.3 (Table 2 and Figure 3). Moreover, ES was

statistically (pcorrected < 0.05) associated with Aud. at threshold
0.15 (the association was marginally significant for thresholds
0.2 and 0.3) and was marginally associated with the whole brain
network at thresholds 0.15, 0.2 and 0.25; which may not be as
reliable as the associations between ES and FPN and between ES
and DMN.

The results of CR are listed in Table 3. In contrast to ES results
in which reliable associations across thresholds were found for
the FPN and DMN (and less reliable associations for the Aud.
and the whole brain network), CR was not statistically associated
with efficiency in any network at any threshold.

DISCUSSION

The present study examined the relationship between trait
measures of ER (ES and CR) and global efficiency in resting-
state brain networks (the whole brain network and 10 predefined
networks) using SEM over 15 network thresholds (although
in general networks lacked small word property for higher
thresholds). The results showed that ES was reliably associated
with efficiency in the fronto-parietal network (FPN) and
default-mode network (DMN).

The FPN includes primarily portions of the frontal cortex and
parietal cortex, in which the lateral PFC is a core region (Vincent
et al., 2008; Dodds et al., 2011; Cole et al., 2013; Smith et al., 2013).
The lateral PFC is an essential brain area for flexible control of

TABLE 3 | Association between cognitive reappraisal (CR) and network global efficiency.

Threshold WBN (264) SMN (35) CON (14) Aud. (13) DMN (58) Vis. (31) FPN (25) SAN (18) Sub. (13) VAN (9) DAN (11)

0.15 −0.090 −0.236 N\A −0.225 −0.123 N\A 0.101 0.058 N\A −0.116 N\A
>0.50 >0.50 N\A >0.50 >0.50 N\A >0.50 >0.50 N\A >0.50 N\A

0.2 −0.098 −0.021 N\A −0.185 −0.109 −0.001 0.090 0.077 0.053 −0.125 0.173
>0.50 >0.50 N\A >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50

0.25 −0.110 −0.239 0.013 −0.117 −0.134 −0.017 0.113 0.007 0.100 −0.198 N\A
0.48 0.44 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 N\A

0.3 −0.110 −0.276 0.014 −0.064 −0.156 −0.031 0.158 −0.027 0.025 N\A N\A
0.47 0.23 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 N\A N\A

0.35 −0.114 −0.231 −0.004 −0.144 −0.190 −0.041 0.150 0.015 −0.060 N\A N\A
0.43 0.48 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 >0.50 N\A N\A

0.4 −0.120 −0.271 0.014 N\A −0.179 −0.043 0.144 0.072 0.022 N\A N\A
0.39 0.22 >0.50 N\A >0.50 >0.50 >0.50 >0.50 >0.50 N\A N\A

0.45 N\A N\A N\A N\A −0.217 −0.055 N\A N\A −0.056 N\A N\A
N\A N\A N\A N\A 0.50 >0.50 N\A N\A >0.50 N\A N\A

0.5 N\A N\A N\A N\A −0.193 −0.041 N\A N\A N\A N\A N\A
N\A N\A N\A N\A >0.50 >0.50 N\A N\A N\A N\A N\A

0.55 N\A N\A N\A N\A N\A −0.052 N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A >0.50 N\A N\A N\A N\A N\A

0.6 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.65 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.7 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.75 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.8 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

0.85 N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A
N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A N\A

Conventions are as in Table 2.

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2018 | Volume 12 | Article 70

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pan et al. Emotion Regulation and Complex Brain Networks

thoughts and actions (MacDonald et al., 2000; Kerns et al., 2004;
Egner and Hirsch, 2005) and is involved in various cognitive
control tasks (for reviews, see Matsumoto and Tanaka, 2004;
Badre and D’Esposito, 2009). The FPN has been shown to be
related to task control processes (Dodds et al., 2011; Power et al.,
2011; Cole et al., 2013, 2014b). The involvement of the lateral PFC
in ES as shown in previous studies (Goldin et al., 2008) would
be in line with the current finding of the association between
ES and efficiency in the FPN. The DMN comprises majorly
the media PFC, posterior cingulate cortex (PCC) and inferior
parietal cortex (Buckner et al., 2008; Broyd et al., 2009; Power
et al., 2011). The DMN was initially observed when participants
are not focused on an specific task (e.g., in a resting state) and
following studies have suggested that the DMN is related to a
wide range of spontaneous and self-generated processes, such as
episodic future thinking, autobiographical memory processing,
mind wandering and thinking about others (Anticevic et al.,
2012; Andrews-Hanna et al., 2014; Fox et al., 2015; Hamilton
et al., 2015; Stawarczyk and D’Argembeau, 2015). Note that it has
been suggested that the DMN is associated with reflecting about
one’s own emotional state, and understanding others’ emotions
(Andrews-Hanna, 2012; Andrews-Hanna et al., 2014). As a key
region of the DMN, the media PFC has been found to be engaged
in ES (Goldin et al., 2008; Welborn et al., 2009), which would be
in agreement with the present finding of the association between
ES and efficiency in the DMN. Combining these findings, it
could be possible that for ES, efficiency in the DMN is related
to emotional processing of an incident and efficiency in the FPN
is associated with control of emotional responses. Furthermore,
it was worth noting that an association between ES and efficiency
in the CON was not observed, given dACC volume has been
found to be related to ES (Dosenbach et al., 2007; Power et al.,
2011; Hermann et al., 2014). This, in line with previous results
(Sampaio et al., 2014; Beaty et al., 2016), could indicate that
global functioning of a brain network may not be engaged in a
cognitive process even when a brain region within the network is
related to the process. Moreover, the present study systematically
explored the whole brain network and 10 predefined networks
and ES showed less reliable association with the Aud., which
would require further investigation.

The ERQ assesses the habitual ES and CR usage: the more
frequent one utilizes ES/CR to regulate his/her emotions, the
higher this person will score on the ES/CR scale; and vice versa
(Gross and John, 2003). In previous brain structural studies using
the ERQ, positive relationships between ES and brain region
volumes were often reported (Giuliani et al., 2011a; Kühn et al.,
2011; Hermann et al., 2014; Wang et al., 2017); whereas Welborn
et al. (2009) did not observe such positive associations but rather
found a negative relationship between the vmPFC volume and
ES. It has been suggested that the discrepancies among results of
different studies could be due to different methodological factors
such as whole-brain vs. ROI analysis (Hermann et al., 2014) and
voxel- vs. surface-based analysis (Moore et al., 2016). For the
current analyses of global functioning of brain networks, ES was
negatively associated with efficiency in the FPN and DMN (the
association with the Aud. was less reliable). Global efficiency in
the whole brain networks has been found negatively associated

with some mental disorders (Wang et al., 2009; Meng et al., 2014;
Collin et al., 2016), such as major depressive disorder (Meng
et al., 2014); and notably, ES has been consistently connected to
negative affective and social consequences, including depressive
symptoms (Gross, 2002). This could be one plausible clue for the
currently observed negative association between ES and network
efficiency.

Moreover, association between CR and efficiency in a network
was not observed. While the lack of CR association was
unexpected, it appeared to be in agreement with a report showing
that CR usage as measured with the ERQ was associated with
fewer brain regions as compared to ES usage; while ES was
found to be related to multiple brain regions including the
vmPFC, dmPFC and dACC, CR was only associated with the
amygdala (Hermann et al., 2014). The discrepancies in structural
(Hermann et al., 2014) and functional network (as in the present
study) properties between ES and CR usages require to be further
clarified.

The present study would be considered as a preliminary
attempt to investigate the relationship between ER and complex
brain networks and has many limitations. Besides the limitations
as discussed above, the topological properties of complex
networks can be assessed by a wide variety of measures (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Wang et al., 2010;
De Vico Fallani et al., 2014). While the present study focused on
the global metric of global efficiency, the topological properties
of complex networks would be investigated comprehensively
in future ER studies. In particular, roles of individual nodes
(regions) in ER remain to be addressed by using metrics such
as centrality. Accordingly, the currently adopted 10 predefined
brain networks were defined based on 264 putative brain
regions. While the 264-region parcellation and the 10 networks
are helpful for investigation of network properties in general,
investigation of emotion-related functions would require further
work. Particularly, an emotion-related network is not defined
and amygdala -a key area in emotion processing- is not
specifically defined (Power et al., 2011; Cole et al., 2013).
Future research could define the region of interest (ROI) of the
amygdala structurally or functionally (Poldrack, 2007) and define
an emotion-related network by calculating correlation between
the amygdala ROI with all other voxels in the brain (van den
Heuvel and Hulshoff Pol, 2010). Then topological properties
of the emotion-related network could be calculated and their
relationships with ER could be examined.

In sum, ER is essential for human adaptive functioning
(Gross, 1998; Ochsner and Gross, 2005). Whereas previous
brain-imaging studies have investigated functions of individual
brain areas in ER, the role of global functioning of brain networks
remains unknown. The present finding of the association of ES
with global efficiency in the FPN andDMN suggests that efficient
organization of specific brain networks is a fundamental neural
mechanism for ER. Meanwhile, whereas the results of current
graphic analyses of resting-state functional networks showed
consistency with the regional results from previous task-based
fMRI and structural MRI studies (e.g., association between ES
and areas in the FPN andDMN), discrepancies in the results were
also revealed and would be addressed in future research (e.g.,
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lack of association between ES and efficiency in the CON, lack
of association between CR and network efficiency). Therefore,
while the present findings suggest the important role of global
functioning of brain networks in ER, it is also indicated that
combining different research approaches is required for a better
understanding of neural mechanisms underlying ER.
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