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Motor learning studies face the challenge of differentiating between real changes
in performance and random measurement error. While the traditional p-value-based
analyses of difference (e.g., t-tests, ANOVAs) provide information on the statistical
significance of a reported change in performance scores, they do not inform as to the
likely cause or origin of that change, that is, the contribution of both real modifications
in performance and random measurement error to the reported change. One way
of differentiating between real change and random measurement error is through
the utilization of the statistics of standard error of measurement (SEM) and minimal
detectable change (MDC). SEM is estimated from the standard deviation of a sample
of scores at baseline and a test–retest reliability index of the measurement instrument
or test employed. MDC, in turn, is estimated from SEM and a degree of confidence,
usually 95%. The MDC value might be regarded as the minimum amount of change
that needs to be observed for it to be considered a real change, or a change to which
the contribution of real modifications in performance is likely to be greater than that of
random measurement error. A computer-based motor task was designed to illustrate the
applicability of SEM and MDC to motor learning research. Two studies were conducted
with healthy participants. Study 1 assessed the test–retest reliability of the task and
Study 2 consisted in a typical motor learning study, where participants practiced the
task for five consecutive days. In Study 2, the data were analyzed with a traditional
p-value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings
showed good test–retest reliability for the task and that the p-value-based analysis alone
identified statistically significant improvements in performance over time even when the
observed changes could in fact have been smaller than the MDC and thereby caused
mostly by random measurement error, as opposed to by learning. We suggest therefore
that motor learning studies could complement their p-value-based analyses of difference
with statistics such as SEM and MDC in order to inform as to the likely cause or origin
of any reported changes in performance.

Keywords: motor learning, neurorehabilitation, plasticity, inferential statistics, p-value, reliability, standard error
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INTRODUCTION

In motor learning studies, investigators typically assess
individuals for their performance on a motor task before,
during, and after a period of training on the same task (e.g.,
Pascual-Leone et al., 1994; Karni et al., 1995; Reis et al., 2009;
Debas et al., 2010; Abe et al., 2011; Platz et al., 2012a,b). One of the
challenges in such studies is to differentiate between real changes
in performance and random measurement error. The latter
corresponds to changes that occur at random in performance
scores, as opposed to, for instance, changes due to learning.
Potential sources of random measurement error include, among
others: (i) differences in individual factors such as level of
motivation, fatigue, attention, etc. at different test sessions, (ii)
an intrinsic variability of the measurement instrument or test
employed to measure performance, or (iii) a combination of
both (Beninato and Portney, 2011; Portney and Watkins, 2015).
In fact, any measurable change in motor performance is likely to
be a compound of both real modifications in performance and
random measurement error, each contributing at varying degrees
to the observed change (Beninato and Portney, 2011; Portney
and Watkins, 2015).

Research on motor learning and its enhancement in humans
is relevant to many fields of applied research. It can contribute
for instance to improve learning in sports, music, industry,
and medical training (Schmidt and Lee, 2014), and has also
been extensively linked to sleep research (Landmann et al.,
2014). Another relevant application includes the optimization
of (re)learning in patients undergoing physical rehabilitation,
for example, after brain damage such as stroke (Dayan and
Cohen, 2011; Censor et al., 2012; Winstein et al., 2014; Krakauer,
2015; Torriani-Pasin et al., 2016; Buch et al., 2017). Therefore,
given its practical relevance, it seems important that motor
learning studies provide information not only on the statistical
significance and size, but also on the likely cause or origin
of any reported changes in performance, that is, on the
contribution of both real modifications in performance and
random measurement error to the reported changes.

While the traditional p-value-based approaches for examining
differences in motor performance (e.g., t-tests, ANOVAs, etc.)
provide information on the statistical significance of a given
change in performance scores, they do not inform as to the
likely cause of that change. One way to address this issue and
differentiate between real change and random measurement
error is through the utilization of the statistics of standard
error of measurement (SEM) and minimal detectable change
(MDC), both of which are considered best practice in the
clinical domain and therefore have been widely employed in
the clinical literature (Fritz et al., 2009; Beninato and Portney,
2011; Scalzitti, 2014; Portney and Watkins, 2015). SEM is
estimated from the standard deviation of a sample of scores at
baseline and a test–retest reliability index of the measurement
instrument or test used (e.g., SEM = sbaseline × (

√
1 − intra-

class correlation coefficient (ICC); see Supplementary Material)
(Beninato and Portney, 2011; Portney and Watkins, 2015). The
SEM value might be considered an estimation of the expected
random variation in scores when no real change has taken place

(Beninato and Portney, 2011; Portney and Watkins, 2015). MDC,
in turn, is estimated from SEM and a degree of confidence, usually
95% (e.g., MDC95 = SEM × 1.96 ×

√
2; see Supplementary

Material) (Beninato and Portney, 2011; Portney and Watkins,
2015). The MDC value might be regarded as the minimum
amount of change that needs to be observed, at either the group
or individual level, for it to be considered a real change (Fritz
et al., 2009; Beninato and Portney, 2011; Portney and Watkins,
2015), or a change to which the contribution of real modifications
in performance is likely to be greater than the contribution of
random measurement error.

We designed a computer-based motor task to illustrate the
applicability of SEM and MDC to motor learning research.
Two studies were conducted with healthy participants. Study 1
assessed the test–retest reliability of the task and served as the
basis for Study 2, which in turn consisted in a typical motor
learning study, where participants practiced the task for five
consecutive days. In Study 2, the data were analyzed with a
traditional p-value-based analysis of difference (ANOVA) and
also with the statistics of SEM and MDC, in order to unravel the
likely origin of any changes in performance that would emerge
from training.

MATERIALS AND METHODS

Participants
Thirty-three adult individuals were recruited for Studies 1 and
2 and those who took part in one study did not participate in
the other. Individuals were students or members of staff from
the University of Surrey and were all right-handed. Both studies
were approved by the University of Surrey’s Ethics Committee
and all participants gave written consent prior to participation.
Two participants withdrew from the studies (one from Study 1
and one from Study 2), leaving N = 16 for Study 1 and N = 15
for Study 2. Participation was reimbursed with £5 for Study 1 and
£25 for Study 2. The latter also included a performance-related
cash bonus to encourage motivation. Demographic data for both
studies are presented in Table 1.

Motor Task
A computer-based motor task which involves the dexterous
manipulation of an adapted vertical mouse was used in Studies
1 and 2. The adapted mouse comprised a commercially available
wireless vertical mouse (Penguin Ambidextrous Vertical Mouse,
Posturite Ltd., United Kingdom) with a plastic bottle attached
to its vertical handle in order to increase task difficulty and
counter possible familiarity with vertical mouse use (Figure 1A).

TABLE 1 | Demographic data from the participants who completed Studies
1 and 2.

Age (years) Gender

Study 1 (N = 16) 29.38 (±8.89) 10 Females

Study 2 (N = 15) 20.93 (±3.22) 12 Females

Data presented as M (±SD).
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FIGURE 1 | The adapted vertical mouse that had to be controlled by participants while performing the computer-based motor task during Studies 1 and 2 (A),
what the task consisted in (B), and the experimental setup for Studies 1 and 2 (C).

The task was based on a freely available online game1 which
allows customization of many of its gaming settings. Two bespoke
versions of the game were programmed for Studies 1 and 2.

In Study 1, the game comprised one block of four trials,
consisting in a 15-s familiarization trial followed by three 1-min
practice trials (Figure 2A). A 10-s countdown preceded the
familiarization trial and a 30-s countdown was given prior to
commencement of every practice trial. For Study 2, the game
consisted of five blocks. The first and last blocks had four trials
each, as in Study 1 (one familiarization trial plus three practice
trials), while the remaining blocks were comprised of three
practice trials each (Figure 2B). A 1-min rest interval spaced
blocks 1, 2, 3, and 4 from each other. Blocks 4 and 5 were spaced
by a 5-min rest interval. All other parameters were similar to
Study 1.

In both versions of the game, the task consisted in hitting
circular targets on an 18.5 cm × 20.5 cm computer screen

1www.aimbooster.com

frame by moving a cross-hair controlled by the adapted vertical
mouse (Figure 1B). Touching a target with the cross-hair already
counted as a hit; no clicking was needed. After each target was hit,
another one would immediately pop up on the screen following a
pseudorandomised spatial distribution pattern. No penalty was
incurred if participants missed the targets and/or moved the
cross-hair outside the screen frame. However, these indirectly
reduced performance because of time costs. Participants were
instructed to hit as many targets as possible during the practice
trials.

The adapted mouse was placed on a 50 cm × 42 cm smooth
mouse pad (HyperX FURY Pro Gaming mouse pad, Kingston
Technology Corporation, United States), which was fixated to
a height-adjustable table (Figure 1C). The task was performed
in a standing position in order to increase task difficulty by
adding postural demands. Table height was individually adjusted
so that the participants’ right upper limb would not touch the
mouse pad, again to place greater demand on motor control.
Individuals were instructed to keep their left upper limb hanging
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FIGURE 2 | The two versions of the game used in the two present studies. The version used in Study 1 comprised only one block (A), while the version used in
Study 2 comprised five blocks (B). 15s, 15 s familiarization trial; 1m, 1 min practice trial.

on the side. The cross-hair on the screen was to be controlled
by sliding the mouse across the pad without lifting it. Every trial
started from a central position, i.e., with the cross-hair and the
mouse at the center of the computer screen frame and the pad,
respectively. The apparatus was slightly shifted to the right so
that participants remained aligned to the center of the computer
screen (Figure 1C).

Procedures
Study 1 (Test–Retest)
Performance was assessed on two separate days with a minimal
interval of 3 days (7 days maximum; M = 4.5, SD = 1.37).
Repeated-measures sessions (Session 1 on day 1 and Session 2
on day 2) were completed in the laboratory, with identical
instructions. Sessions lasted 4 min and were controlled for time
of day. No performance feedback was given after Session 1
or immediately before Session 2 to ensure the integrity of the
test–retest reliability measure.

Study 2 (Motor Learning)
Performance was assessed on five consecutive weekdays (Sessions
1–5), with an interval of 24 h between two consecutive
sessions, and after a 1-week long-term retention interval (Session
6). Before commencement of Sessions 2–5, participants were
informed about their performance on the previous session;
no performance feedback was given before commencement of
Session 6. The game version from Study 1 (one block with
four trials) was used for Session 6. Repeated-measures sessions
(Sessions 1–5) were completed in the laboratory throughout the
week, from Monday to Friday, with identical instructions and
a 30-min duration each. One week from Friday (Session 5),
another experimental session (Session 6; 4-min duration) was
performed in order to assess the long-term retention of the
participants’ skill on the task. All sessions were controlled for time
of day.

Data Analysis
For both studies, the number of targets hit and the average
response time (RT), defined as the time in milliseconds elapsed
between a target appearing on the screen and being hit, served as
outcome parameters for statistical analysis.

Study 1 (Test–Retest)
The number of hits and the average RT from the three practice
trials were averaged for each participant and session. The data
were assessed for outliers and the assumption of normality. As
the latter was met, paired-samples t-tests were then conducted to
examine performance differences between the two experimental
sessions. The ICC was estimated as an index of test–retest
reliability, using the model of random effects and the form of
single-measures, i.e., ICC (2,1) (see Supplementary Material).
Alpha level was set to 5% and the Statistical Package for the Social
Sciences (SPSS, version 22) was used for statistical analysis.

Study 2 (Motor Learning)
The number of hits and the average RT from the three
practice trials from the first block were averaged for each
participant and session. No outliers were identified and the
assumption of normality was met. One-way repeated-measures
ANOVAs, with Session as the within-subjects factor, were then
conducted for both number of hits and RT data to assess
performance changes across the six experimental sessions. The
method of Simple Contrast was used and Session 1 was defined
as the Reference Category. In order to adjust for multiple
comparisons, the Bonferroni correction method was applied.
When the assumption of sphericity was not met, as assessed
through Mauchly’s test, the Greenhouse–Geisser correction was
performed (Field, 2013). Alpha level was set to 5% and the data
were handled with the SPSS (version 23).

The statistics of SEM and MDC95 were estimated for both hits
and RT data (as described in the Supplementary Material). For
estimating SEM, the standard deviation from the first block of
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Session 1 and the test–retest reliability index obtained in Study 1
were used (Beninato and Portney, 2011; Portney and Watkins,
2015). At the group level, for a change in performance to be
considered a real change, that is, a change that is likely to be due
mostly to real modifications in performance, the 95% confidence
interval (CI) of the respective mean of the differences had to
be outside the range of random measurement error, i.e., outside
the interval spanning between the ±MDC95 values (Fritz et al.,
2009; Beninato and Portney, 2011; Portney and Watkins, 2015).
MDC95 proportions were also calculated. These represented the
percentages of participants showing motor learning during the
training period, i.e., showing an improvement in performance
that was equal to or greater than the absolute values of the MDC95
(Portney and Watkins, 2015). By definition, changes equal to
or greater than the MDC95 are outside the range of random
measurement error and hence are likely to be caused mostly by
real modifications in performance, e.g., by learning (Beninato and
Portney, 2011; Portney and Watkins, 2015).

RESULTS

Study 1 (Test–Retest)
The number of hits was higher in Session 2 (M = 78.25, SD = 7.61)
than in Session 1 (M = 76.75, SD = 7.59). This difference,
1.50 ± 2.94, 95% CI (−0.07, 3.07), however, was not statistically
significant, t(15) = 2.04, p = 0.06, and represented a small-sized
effect, d = 0.20. A similar pattern was observed for RT, which
was smaller in Session 2 (M = 728.24 ms, SD = 58.98) than
in Session 1 (M = 738.86 ms, SD = 60.81). Likewise, this
difference, –10.63± 24.11 ms, 95% CI (−23.47, 2.22), was not
statistically significant, t(15) = 1.76, p = 0.098, and represented
a small-sized effect, d = 0.18.

Estimated ICCs for number of hits and RT were 0.91, 95% CI
(0.75, 0.97), F(15) = 25.65, p < 0.001, and 0.91, 95% CI (0.75,
0.97), F(15) = 23.69, p < 0.001, respectively, indicating good
test–retest reliability for the task. The results are summarized in
Table 2.

Study 2 (Motor Learning)
For both parameters, participants performed increasingly better
in Sessions 2–5, when compared to Session 1, and the

TABLE 2 | Number of hits and RT data from both experimental sessions from
Study 1.

Session 1 Hits 76.75 (±7.59)

RT 738.86 ms (±60.81)

Session 2 Hits 78.25 (±7.61)

RT 728.24 ms (±58.98)

Difference Hits 1.50 (±2.94), 95% CI (−0.07, 3.07), d = 0.20

RT −10.63 ms (±24.11), 95% CI (−23.47, 2.22), d = 0.18

ICC (2,1) Hits 0.91, 95% CI (0.75, 0.97)

RT 0.91, 95% CI (0.75, 0.97)

The differences between sessions and the estimated ICCs are also displayed.
Data presented as M (±SD).

improvements in performance achieved at the end of the
training period were largely sustained over the 1-week long-term
retention interval (Session 5 to 6) (Figure 3 and Table 3). These
observations were corroborated by a main effect of Session on
number of hits and RT. Post hoc comparisons revealed statistically
significant improvements in performance from Session 1 to 2, 1
to 3, 1 to 4, and 1 to 5, and retention from Session 5 to 6. The
results are summarized in Table 4.

The estimates of SEM and MDC95 were, respectively, 1.88
and 5.21 for number of hits, and 14.42 and 39.97 ms for RT.
At the group level, for both number of hits and RT, from 1 to
4 days/sessions of training on the task, the 95% CI of the mean
of the differences in performance moved away from the interval
corresponding to the range of random measurement error,
suggesting a trend toward a real improvement in performance
with training, i.e., learning (please refer to Figure 4). Analysis
of individual data confirmed this trend by showing an increase
in the MDC95 proportion (60–80%) from 1 to 4 days/sessions
of training, for both number of hits and RT, hence indicating a
motor learning effect for individual participants (please refer to
Figure 5).

At the 1-week long-term retention test, at the group level,
for both number of hits and RT, the 95% CI of the mean of the
differences in performance between Sessions 5 and 6 was within
the interval corresponding to the range of random measurement
error (please refer to Figure 4). At that same time point, 75% of
the participants (9 out of 12) who after 4 days/sessions of training
displayed learning, i.e., an improvement in performance that was
equal to or greater than the absolute values of the MDC95, showed
a change in performance which was within the range of random
measurement error (please refer to Figure 5). Altogether, these
findings indicate good long-term retention of motor learning
from Session 5 to 6.

Table 5 displays the estimates of SEM and MDC95 for
both the number of hits and RT data. The respective MDC95
proportions at the end of the training period are also
displayed.

DISCUSSION

Motor learning studies face the challenge of differentiating
between real changes in performance and random measurement
error. One way of meeting that challenge is through the
utilization of the statistics of SEM and MDC. The MDC value
represents the minimum amount of change that needs to be
observed for it to be considered a real change, or a change
that exceeds random measurement error and therefore is likely
to be produced mostly by real modifications in performance.
We designed a computer-based motor task to illustrate the
applicability of SEM and MDC to motor learning research.
Two studies were conducted with healthy participants. Study 1
assessed the test–retest reliability of the task and Study 2 consisted
in a typical motor learning study, where participants practiced
the task for five consecutive days. In Study 2, the data were
analyzed with a traditional p-value-based analysis of difference
(ANOVA) and also with SEM and MDC, in order to determine

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 95

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00095 March 20, 2018 Time: 18:0 # 6

Furlan and Sterr Real Change in Motor Learning

FIGURE 3 | Performance across experimental sessions, in terms of number of hits (A) and RT (B). The round dots represent the averages of the three practice trials
from the first block of each experimental session, which were used to measure motor learning. The vertical dashed lines represent the 1-week long-term retention
interval spanning between Sessions 5 and 6. Group data are displayed. Error bars = 95% CI.

the likely cause of any changes in performance emerging from
training.

Overall, the results showed that our task is reliable and that
the p-value-based analysis alone identified statistically significant
improvements in performance over time even when the observed
changes could in fact have been smaller than the MDC and
thereby caused mostly by random measurement error, as opposed
to by motor learning.

Study 1 (Test–Retest)
According to general guidelines (e.g., Portney and Watkins,
2015), our results suggest good test–retest reliability for the
computer-based motor task we designed (Table 2). Although
performance improved slightly from test (Session 1) to retest
(Session 2), these differences were not statistically significant and
represented small effects and, more importantly, did not affect
test–retest reliability (Table 2).

Ensuring the test–retest reliability of a task/test not only gives
researchers more confidence for attributing potential changes
in performance scores to an experimental manipulation but,
critically, it also allows for the estimation of the statistics of SEM

TABLE 3 | Performance scores for both hits and RT data from Study 2.

Hits Session 1 M = 78.11, SD = 6.26

Session 2 M = 83.98, SD = 5.23

Session 3 M = 86.60, SD = 5.42

Session 4 M = 86.93, SD = 6.61

Session 5 M = 89.93, SD = 5.38

Session 6 M = 88.02, SD = 6.41

RT Session 1 M = 728.69 ms, SD = 48.08

Session 2 M = 685.02 ms, SD = 38.18

Session 3 M = 664.76 ms, SD = 38.00

Session 4 M = 660.04 ms, SD = 44.46

Session 5 M = 640.16 ms, SD = 36.14

Session 6 M = 653.35 ms, SD = 47.13

and MDC, which in turn can contribute to unravel the likely
origin of those changes (Beninato and Portney, 2011; Portney and
Watkins, 2015).

Study 2 (Motor Learning)
Motor learning was assessed through four consecutive short-
term retention tests administered 24 h after completion of the
preceding training session. Such tests corresponded to the first
block of the second, third, fourth, and fifth experimental sessions
(Figure 3). It has been suggested that 24 h since the last practice
session is an adequate minimal interval for the application of
retention tests and thereby the assessment of motor learning (see
Kantak and Winstein, 2012 for further discussion). The long-
term retention of motor learning after 5 days/sessions of training
on the task was also investigated through another retention
test which was administered 1 week after the last training
day/session. This test corresponded to the sixth experimental
session (Figure 3).

At the group level, according to the p-value-based analysis of
difference, for both hits and RT data, motor learning took place
as early as after 1 day/session of training (Session 1 to 2), with
improvements in performance increasing with the number of
days/sessions of training (Figure 4 and Table 4). The analyses
also showed good long-term retention of motor learning 1 week
after the end of the training period (Figure 4 and Table 4).
However, the analyses based on SEM and MDC revealed a
somewhat different scenario. For instance, after 1 day/session of
training on the task (Session 1 to 2), both in terms of number
of hits and RT, the 95% CI of the mean of the differences in
performance overlapped largely with the interval corresponding
to the range of random measurement error, that is, the interval
spanning between the respective ±MDC95 values (Figure 4
and Table 4). This means that, at that stage, the respective
improvements in performance could in fact have been caused
mostly by random measurement error, as opposed to by learning.
The scenario remained rather similar as training progressed to
2 and 3 days/sessions of training on the task. It was only at the
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TABLE 4 | ANOVAs and post hoc comparisons for both hits and RT data from Study 2.

ANOVA Post hoc comparisons

Hits F (5,70) = 17.43, p < 0.001 Session 1 to 2 +5.87, 95% CI (1.35, 10.39), p = 0.006, r = 0.60

Session 1 to 3 +8.49, 95% CI (2.87, 14.11), p = 0.002, r = 0.67

Session 1 to 4 +8.82, 95% CI (1.78, 15.87), p = 0.009, r = 0.58

Session 1 to 5 +11.82, 95% CI (5.28, 18.37), p < 0.001, r = 0.74

Session 5 to 6 −1.91, 95% CI (1.39, −5.22), p = 0.906

RT F (2.64,36.95) = 18.07, p < 0.001 Session 1 to 2 −43.67 ms, 95% CI (−7.10, −80.24), p = 0.013, r = 0.56

Session 1 to 3 −63.93 ms, 95% CI (−20.09, −107.78), p = 0.002, r = 0.65

Session 1 to 4 −68.65 ms, 95% CI (−15.52, −121.78), p = 0.007, r = 0.60

Session 1 to 5 −88.53 ms, 95% CI (−39.22, −137.84), p < 0.001, r = 0.74

Session 5 to 6 +13.19 ms, 95% CI (−12.11, 38.49), p = 1.00

end of the training period, i.e., after 4 days/sessions of practice,
that the 95% CI of the mean of the differences practically did
not overlap anymore with the interval corresponding to the
range of random measurement error—there was no overlap for
the hits data and the overlap was minimum for RT (Figure 4
and Table 4). This indicates therefore that it was only at that
stage that the respective improvements in performance (Session
1 to 5) were more likely to reflect real improvements, i.e., to
have been caused mostly by motor learning, as opposed to by
random measurement error. This observation is critical as it
could be used to inform future studies as to the minimum
amount of training on the task that would be needed in order
to produce robust motor learning. For instance, instead of only
1 or 2, or even 3 days/sessions of training, as suggested by
the p-value-based analyses alone, adopting a longer training
regime, e.g., at least 4 days/sessions of practice, would be a
more appropriate conduct. By doing so, one could then be more
confident that motor learning would be contributing more than
random measurement error to any observed improvements in
performance.

This seeming discrepancy between p-value- and MDC-based
analyses might be due to the fact that the former does not
take into account the random error that is associated with the
measurement instruments producing the means which in turn
are compared by the traditional inferential statistical tests, while
the latter is performed directly from an estimation of the size
of that error (see the respective formulas in the Supplementary
Material). Assuming that measures of motor performance and
their change over time are free from random error, irrespectively
of statistical significance, is at odds with good research practice
and should be avoided. This is a fundamental issue for motor
learning studies, which typically test for improvements in
performance scores from pre- to post-training assessments. In
order to further support our abovementioned findings and
arguments, by using the data obtained in Study 1, we simulated
10 hypothetical motor learning studies on a freely available
statistical software (ESCI2 – Chapters 5 and 6, 2011; see also
Cumming, 2012, 2014 for further information on ESCI). Details

2http://thenewstatistics.com/itns/esci/esci-for-utns/

FIGURE 4 | Changes in performance, in terms of number of hits (A) and RT (B), as a function of the number of days/sessions of training on the task. From left to
right: Means of the differences in performance between Sessions 1 and 2, 1 and 3, 1 and 4, 1 and 5, 1 and 6, and 5 and 6. The thin dashed horizontal lines indicate
a mean difference of 0. The thick dashed horizontal lines indicate the ±MDC95 values (±5.21 for number of hits and ±39.97 ms for RT). The shaded areas between
the ±MDC95 values represent the interval corresponding to the range of random measurement error. Changes in performance that are within this interval,
irrespectively of statistical significance, are likely to result mostly from random measurement error, as opposed to from real modifications in performance, e.g., from
learning. Group data are displayed. Error bars = 95% CI.
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FIGURE 5 | The same type of data as in Figure 4 are displayed, but here data are displayed at the individual level. The percentages represent the MDC95

proportions. These values correspond to the percentages of participants showing motor learning during the training period, i.e., showing an improvement in
performance that was equal to or greater than the absolute values of the MDC95 and that therefore was outside the range of random measurement error, and hence
was likely to have been caused mostly by learning. The rectangular boxes highlight the participants displaying a change in performance at the end of the training
period, i.e., after 4 days/sessions of training, that was smaller than the absolute values of the MDC95. These individuals could be considered “non-learners.”
The percentages at Retention represent the percentages of participants who, having displayed motor learning at the end of the training period, showed a change in
performance at the 1-week long-term retention test (Session 5 to 6) that was smaller than the absolute values of the MDC95 and that therefore was likely to have
been caused mostly by random measurement error.

of how these simulations were performed and their results are
available in the Supplementary Material. In short, these simulated
studies compared performance scores between a pre- and a
post-training assessment, and they all produced two-tailed
p-values < 0.05 for a paired-samples t-test with α = 0.05, and
effect sizes varying from medium to large (minimum of 0.49
and maximum of 0.95). Although all simulated studies yielded
statistically significant results and medium-to-large effect sizes,
hence suggesting improvements in performance, i.e., learning,
from the pre- to the post-training assessments, in 9 out of the 10
studies the 95% CI of the mean of the differences in performance
scores overlapped with the interval corresponding to the range
of random measurement error. In four studies, the overlap was
total. In only 1 out of the 10 studies the 95% CI of the mean
of the differences was completely outside (above) the interval of
random measurement error —this particular result mirrors our
abovementioned result for the improvement in performance, in
terms of number of hits, that took place after 4 days/sessions of
training on our task (Session 1 to 5). Overall, the results from
these simulated studies lend strong support to the argument that
p-value-based analyses of difference alone do not inform as to
the likely origin of changes in performance scores, and that even
improvements in performance which are found to be statistically
significant can sometimes be due mostly to random measurement
error, instead of to motor learning.

During the analysis of individual data, for both number
of hits and RT, from 1 to 4 days/sessions of training on
the task, an increase in the MDC95 proportion was observed
(60–80%) (Figure 5), indicating a motor learning effect for some
participants at the individual level. Nevertheless, at the end of
the training period, i.e., after 4 days/sessions of practice, for both
hits and RT, that proportion did not reach 100%. This was due
to the fact that, at that stage, 20% of the participants (3 out

of 15) displayed a change in performance which was smaller than
the absolute values of the MDC95 (Figure 5). These participants
could be considered “non-learners,” as their respective change in
performance was likely to have been caused mostly by random
measurement error, and not by learning. People differ in the
way they respond to training and although we did not formally
address this issue, it could be speculated for instance that such
individual differences in learning might have emerged from
variations in people’s motor ability, which according to Schmidt
and Lee (2014) may be defined as “a fundamental characteristic of
different individuals that tends to underlie particular skills; ability
is largely inherited genetically and is not modifiable by practice”
(p. 190).

GENERAL DISCUSSION AND
CONCLUSION

Motor training or practice leads to motor learning, that is,
to relatively permanent or stable improvements in motor
performance (Schmidt and Lee, 2014). It has been suggested
that learning a motor task, including tasks requiring the control
of tools such as a computer mouse, involves developing and

TABLE 5 | Statistics of SEM and MDC95 for both number of hits and RT data from
Study 2.

SEM MDC95 MDC95 proportion

Hits 1.88 5.21 80%

RT 14.42 ms 39.97 ms 80%

The respective MDC95 proportions at the end of the training period, i.e., after
4 days/sessions of training on the task, are also displayed.
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optimizing internal models of that task (Wolpert et al., 2001,
2011; Wise and Willingham, 2009). Internal models represent
sensorimotor transformations in the brain, i.e., mappings
between motor commands and their sensory consequences.
Therefore, when learning how to control a device such as a
computer mouse, individuals develop and optimize mappings
between their actions on the device and the consequences
that are generated, in this case on the computer screen (see
Imamizu et al., 2000; Imamizu and Kawato, 2012 for further
discussion). Although this was not formally addressed in our
studies, these model-based mechanisms could in theory explain
the learning that most participants exhibited in Study 2. It is
possible though, that model-free learning mechanisms, including
use-dependent plasticity, operant reinforcement and/or success-
based exploration might also have played a role (Krakauer and
Mazzoni, 2011).

While extensively acknowledged in the clinical literature
(Fritz et al., 2009; Beninato and Portney, 2011; Scalzitti, 2014;
Portney and Watkins, 2015), the issue of differentiating between
real changes and random measurement error, and hence the
use and reporting of statistics such as SEM and MDC, has
not received much attention in motor learning research. Here
we have shown the applicability of these statistical concepts
to the context of motor learning, and how their utilization
might contribute to determine the likely cause of changes in
performance that normally occur in response to training. For
instance, the use of the MDC statistics, which in turn is estimated
from SEM, allows for differentiating between real modifications
in performance and random measurement error. The MDC value
might be regarded as the minimum amount of change that needs
to be observed, at either the group or individual level, for it
to be considered a real change (Fritz et al., 2009; Beninato and
Portney, 2011; Portney and Watkins, 2015), or a change to which
the contribution of real modifications in performance is likely to
be greater than the contribution of random measurement error.
Measurement instruments, including the tests or tasks that are
commonly used in motor learning research, are not free from
random error. Finding statistically significant differences between
pre- and post-training assessments that suggest improvements
in performance, i.e., motor learning, does not preclude the
possibility that such differences are being produced mostly by
random measurement error, as opposed to by learning. Moreover,
p-value-based analyses of difference (e.g., t-tests, ANOVAs,
etc.) tend to focus on group changes while ignoring what is
happening at the individual level. Inter-individual variability has
been a major problem in both the motor learning (Schmidt
and Lee, 2014) and the plasticity and brain stimulation arenas

(Ridding and Ziemann, 2010; Di Lazzaro and Rothwell, 2014;
Buch et al., 2017). Being able to identify and dissociate “learners”
from “non-learners,” or “responders” from “non-responders” in
the case of brain stimulation-based motor learning investigations,
for instance (e.g., Buch et al., 2017), might contribute to better
elucidate both the intervention’s mechanisms and the factors
mediating inter-individual differences. As we have shown here,
the use and reporting of the statistics of SEM and MDC might be
an interesting approach to addressing these issues.

We suggest that motor learning studies could complement
their p-value-based analyses of difference with statistics such as
SEM and MDC in order to inform as to the contribution of both
real modifications in performance and random measurement
error to any reported changes in motor performance.
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