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Sleep staging, the process of assigning labels to epochs of sleep, depending on the

stage of sleep they belong, is an arduous, time consuming and error prone process as

the initial recordings are quite often polluted by noise from different sources. To properly

analyze such data and extract clinical knowledge, noise componentsmust be removed or

alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the

sleep analysis of electroencephalographic signals is described. Two novel methods of

functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet

Entropy/RWE) are comparatively investigated for automatic sleep staging through

manually pre-processed electroencephalographic recordings. A multi-step process that

renders signals suitable for further analysis is initially described. Then, two methods that

rely on extracting synchronization features from electroencephalographic recordings to

achieve computerized sleep staging are proposed, based on bivariate features which

provide a functional overview of the brain network, contrary to most proposed methods

that rely on extracting univariate time and frequency features. Annotation of sleep epochs

is achieved through the presented feature extraction methods by training classifiers,

which are in turn able to accurately classify new epochs. Analysis of data from sleep

experiments on a randomized, controlled bed-rest study, which was organized by the

European Space Agency and was conducted in the “ENVIHAB” facility of the Institute

of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany

attains high accuracy rates, over 90% based on ground truth that resulted from manual

sleep staging by two experienced sleep experts. Therefore, it can be concluded that the

above feature extraction methods are suitable for semi-automatic sleep staging.

Keywords: computerized sleep staging, electroencephalogram, feature extraction, functional connectivity, graph

theory, classification, artificial intelligence

INTRODUCTION

Sleep is a biological process that is essential for human physical and mental health. Sleep quality is
associated with quality of life (Reid et al., 2006; Ioannides et al., 2017) and, therefore, studying sleep
mechanisms may provide insights into various diseases such as diabetes, cardiovascular diseases
and memory impairment (Skeldon et al., 2014). Sleep quality may be evaluated in terms of duration
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as well as the duration of each sleep stage (Buysse et al., 1989).
According to the American Sleep Medical Association, sleep is
initially divided in two main types: Rapid Eye Movement sleep
(REM) and Non Rapid Eye Movement sleep NREM (AASM,
2007). Normal sleep proceeds in 90-min cycles of REM and
NREM stages (Rechtschaffen and Kales, 1968). The latter type
is further divided in three stages namely N1, N2 and N3. This
categorization results in a total of four sleep stages, and is based
on the different electroencephalographic (EEG) rhythms that are
observed during each of the sleep stages.

Assigning sleep stages to a given portion of an
electroencephalographic recording is known as sleep staging
and is usually conducted by specialized experts (Agarwal and
Gotman, 2001). This process, however, is cumbersome, error
prone and time consuming and delays further data processing
(Younes, 2017). Assuming normal sleep duration equal to 8 h,
during which the EEG is recorded, these recordings are split into
30 s epochs, resulting in about 960 epochs that must be assigned
to a sleep stage. When multiple recordings are gathered during
a study that involves a group of participants, the task of sleep
staging appears daunting. As a result many methods have been
proposed for automatic sleep staging in order to reduce the time
required, effort spent and number of errors (Younes, 2017).

In most automatic sleep staging methods proposed, sleep
stage classification is achieved by combining time and frequency
linear and non-linear features calculated from EEG signals; with
maximum accuracy rates reaching from 80% (Radha et al., 2014)
to 94% (Lajnef et al., 2015). In (Bajaj and Pachori, 2013) authors
use the time-frequency image of EEG signals to achieve automatic
sleep staging which is calculated through the smoothed pseudo
Wigner–Ville distribution, achieving close to 93% accuracy. In
Hassan and Bhuiyan (2016a) and Hassan and Bhuiyan (2016b)
an estimation of the initial signal in the time-frequency domain
is achieved through Empirical Mode Decomposition reporting
very high accuracy rates in some cases exceeding 95%. Other
approaches in sleep stage classification include energy features
achieving about maximum 87% accuracy (Hsu et al., 2013)
or entropy features reporting an accuracy of around 80%
(Rodríguez-Sotelo et al., 2014). Despite these high accuracy rates,
there is lack of information regarding the functional co-operation
among electrode sites. This type of information is hypothesized to
produce novel insights into the brain macro-architecture during
sleep (Ioannides et al., 2017) and to enhance the algorithm’s
applicability into generic sleep datasets other than the employed
training and validation sets.

More specifically, most of the aforementioned approaches
focus on specific EEG properties either on time-frequency
features (Bajaj and Pachori, 2013; Radha et al., 2014; Lajnef
et al., 2015; Hassan and Bhuiyan, 2016a,b) or energy and entropy
features (Hsu et al., 2013; Rodríguez-Sotelo et al., 2014). These
properties track the main sleep characteristics on single channels
and the EEG grapho-elements (K-complexes and spindles)
that were used to perform automatic sleep staging. However,
they do not consider the sensor level activity among distant
electrode locations during sleep. Coupling among electrodes
and more importantly among brain regions have demonstrated
to play a pivotal role to the consciousness level (Horovitz

et al., 2009). Previous studies have demonstrated that the sleep
deepening is associated with disconnection of key nodes of the
Default Mode Network (DMN) even from the early sleep stages
(Sämann et al., 2011). These neuroscience findings highlight the
significance of a new approach for semi-automatic sleep staging
which regards the brain activity as an integrated functional
network with dynamic co-operative activity among its key
elements (nodes).

Aiming to enhance the field of computerized sleep staging
based on macroscopic investigation of the brain function
(system level), the approach presented in this paper employs
contemporary mathematical tools quantifying the EEG
functional connectivity during sleep through the notions
of the Synchronization Likelihood/SL (Stam and Van Dijk,
2002) and Relative Wavelet Entropy/RWE (Rosso et al.,
2001). Synchronization metrics have been used to study brain
connectivity on various aspects of sleep. To begin with, it
has been shown that sleep deprivation impacts functional
connectivity and graph metrics of prefrontal cortical areas
(Verweij et al., 2010) leading to structural changes in these
networks which affect cognitive performance. In (Vecchio et al.,
2017) the authors studied cortical connectivity during sleep
onset and conclude that the brain network is less ordered in
the sigma frequency band and displays higher order in lower
frequency bands. Synchronization has also been used to study
the dynamics within sleep stages, as is the case in Achermann
et al. (2016) where the authors conclude that REM sleep is
the most synchronized brain state in humans. Furthermore,
the stability of brain connectivity was studied in Jobst et al.
(2017) through brain computational modeling. Despite the use
of synchronization in other sleep aspects, we found no prior
work which utilizes synchronization metrics for automatic sleep
staging.

In our work, after the calculation of synchronization metrics,
electrode network analysis was conducted through graph
theory, during which global functional characteristics were
calculated namely the small-world property, cluster coefficient,
characteristic path length, node degree and network density
(Watts and Strogatz, 1998; Nicosia et al., 2013; Frantzidis
et al., 2014b). Both the synchronization and the graph metrics
mentioned above are expected to fluctuate during the course
of sleep and these fluctuations are hypothesized to be more
prominent between the different stages of sleep. It must be
noted that minor differences arise during the calculation of the
above metrics since the synchronization matrix given through
synchronization likelihood is undirected, while the one given
through relative wavelet entropy is directed. For instance the
values of graph density and node degrees are omitted from
the wavelet entropy graphs as they contain the same values
over all epochs, due to the fact that these graphs are both
directed and fully connected. This fact introduces similarities
between sleep epochs belonging to different sleep stages which are
undesirable as it will render differentiation between the various
sleep stages harder for the classifiers. In both cases mentioned
above the calculation and use of graphmetrics is bound to further
quantify and describe the synchronization and cooperation of the
various brain regions on a higher level than that provided by the
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synchronization values, rendering the sleep stage classification
task easier. The aim of this study is to investigate whether
a system level notion of computerized sleep stage is feasible
by presenting early results deviating from the traditional time
and frequency analysis. It ventures into calculating features that
describe the functional interactions between electrode sites and
how these vary during the different sleep stages. Furthermore the
accuracy rates achieved through the experimental procedures are
comparable to other state-of-the-art methods.

MATERIALS AND METHODS

The pre-processing pipeline described in section Pre-processing
pipeline was applied on the entire polysomnographic (PSG)
data derived from each participant and divided into five (5)
segments. sections Visual Sleep Scoring and Synchronization
feature extraction describe respectively the visual sleep scoring
and the feature extraction procedures on epoch-level. Finally,
section Classification Methodology Component describes the
classification methodology which was applied on the group level
(features from all the participants).

Experimental Set-up and Initial Data
The full experimental set-up is described in (Kramer et al., 2017)
and was performed in the “ENVIHAB” premises of the German
Aerospace Agency (DLR). The study was funded by the European
Space Agency (ESA) following a 60-day long bed rest head down
protocol aiming to simulate a microgravity environment on 23
healthy male adults between the ages of 23 and 45 (mean: 29
± 6 years). The participants signed a written informed consent
for the various parts of the study, as described in (Kramer
et al., 2017). The study was based on specific guidelines and
regulations, which were approved by the ethics committee of the
Northern Rhine Medical Association (Arztekammer Nordrhein)
in Duesseldorf, Germany, and the Federal Office for Radiation
Protection (Bundesamt für Strahlenschutz). The aim of the
experiment was to study the effect of simulated microgravity on
the human body, such as vital signs (cardiac function, hormones,
and muscle activity), body mass and body composition. During
this study the Greek research team (under the leadership of Greek
Aerospace Medical Association (GASMA) and the Laboratory
of Medical Physics, Medical School of the Aristotle University
of Thessaloniki) conducted an experiment to assess the effect
of microgravity on sleep quality (Gkivogkli et al., 2016).The
study employed PSG recordings 2 weeks before the bed rest
initialization (Baseline Data Collection, BDC-14 phase), 21, 35,
and 50 days after the experiment began (Head Down Tilt,
HDT-21, 35, 50 phases) and finally 7 days after the end of
the bed rest period (Recovery phase). Each of these recordings
included an electroencephalogram (EEG) recorded with 19
Ag/AgCl electrodes positioned according to the International 10-
20 System, as well as, other neurophysiological signals tracking
the electrocardiographic (ECG), chin electromyographic (EMG)
and electroocculographic (both vertical and horizontal EOG)
activity. In this paper only the EEG recordings from the BDC-14
phase of the experiments were used for sleep stage classification
purposes. This was done in order to avoid possible fluctuations

in EEG recordings due to the experimental protocol. The sleep
epochs from this experiment phase were manually staged by two
experienced sleep experts as described in a later section.

Pre-processing Pipeline
Prior to the synchronization analysis component, the pre-
processing component of the pipeline was developed in order
to filter the data and eliminate artifacts. The pre-processing
component of the pipeline is presented in Figure 1. Since the
polysomnographic data acquisition resulted in about 380M
samples, this volume was too large to be handled as a whole. So,
the PSG data were divided in five equal segments for each subject.

Then, the mean value x of the each channel x was computed as:

x =
1

S

∑S

i=1
xi (1)

This mean value was subtracted from every sample point of the
corresponding channel, resulting thus in a new signal, which has
a mean value equal to zero rendering it suitable for computerized
sleep staging since no DC bias is present. Then, digital filtering
was performed through the Matlab environment. The filters used
are third order Butterworth filters first described in 1930 by
Stephen Butterworth (Bianchi and Sorrentino, 2007):

1. High pass filter with cut off frequency at 0.5Hz (remove low
frequency noise).

2. Low pass filter with cut off frequency at 50Hz (remove high
frequency noise).

3. Band stop filter in the range between 47 and 53Hz (remove
industrial noise).

4. Band stop filter in the range between 97 and 103Hz (remove
industrial noise harmonic).

The application of the abovementioned filters to the EEG signal
results in the removal of the unwanted spectral content that is
irrelevant to brain activity. This content originates from various
sources, such as power line noise, interference from other devices,
body/muscle movements, linear trends, bad electrode placement,
ECG modulation and also various unknown sources that pollute
the EEG data.

Then, the application of Independent Component
Analysis, ICA took place (Bell and Sejnowski, 1995). ICA is
a computational method capable of de-convolving a complex
signal into independent components/sources that created the
signal. This de-convolution is achieved through a generalization
of Infomax, a method that aims tomaximize information transfer
by minimizing mutual information between input and output
elements using a neural network, composed of neurons with
a linear activation function. However this method is extended
in the above paper in order to cover non-linear activation
functions, sigmoid in this case, and with inputs that follow
arbitrary distributions. The Infomax method de-convolves
N inputs to N outputs that are as much as possible independent
from one another. This is achieved through mutual information
reduction, denoted as I, between the input and output, which is
calculated as:

I(Y ,X) = H(Y)−H(Y|X), (2)
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FIGURE 1 | Pre-processing pipeline: After the EEG signal has been recorded it is segmented into five parts which are digitally filtered through Butterworth filters of 3rd

order. Then, Independent Component Analysis is performed through the EEGLAB graphical interface and components corresponding to industrial noise, linear trends,

muscle movements, bad electrode placement, eye blinks are visually rejected. Finally, epochs of 30 s of continuous, non-overlapping, artifact free data are formed

according to the guidelines of the American Association of Sleep Medicine (AASM).

where Y and X is the output and input of the neural network
respectively and H denotes the entropy. This and the next
analysis steps were performed through the EEGLAB graphic user
interface (Delorme and Makeig, 2004).

From the independent components calculated during the
previous step, only a subset is used to reconstruct the EEG
signal. Specific components were manually rejected (pruned)
as displayed in Figure 1. The number of components removed
is not stable across segments, but usually ranged from 1-3
components. These components were considered to introduce
noise and unwanted artifacts in the signal, which result
from various noise sources such as eye movement, noise
from the electrocardiogram, body movements as well as from
other unknown sources. By rejecting these components a
cleaner version of the signal can be reconstructed which

is more suitable for further analysis. This process however
tends to remove a portion of the EEG signal, and as
such, while rejecting each component, the effect on the
reconstructed signal was taken into account so that only but
miniscule distortions are observed in the reconstructed EEG
signal.

The final step of the pre-processing pipeline includes the
partitioning of the EEG signal into 30 s epochs. This partitioning
allows the calculation of the synchronization features and graph
metrics for each epoch enabling the construction of a feature
vector for each given epoch to be used for computer-assisted
sleep staging. The proposed pipeline involves digital filtering
adjusted to the 50Hz power supply, which is valid in most
European countries. However, it should be adjusted to the
power supply standards of other countries such as the USA.
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Segmentation was also used to reduce the computational cost
of the pipeline and is not an essential task. The same holds for
the manual ICA component pruning, which may be omitted
in order to allow fully automatic processing of EEG data used
for sleep staging. The latter was hypothesized to improve the
quality of derived features but may be not employed in real-
time applications or in case of employing fewer electrodes.
In our case ICA was used since an extended version of the
same dataset would be used in forthcoming neuroimaging
studies.

Visual Sleep Scoring
To analyze collected data, visual sleep scoring was performed by
adopting the criteria of American Academy of Sleep Medicine
(AASM society) (AASM, 2007). Sleep data were divided into
epochs of 30 s duration. During sleep stages alteration of brain
rhythms was present since every sleep stage demonstrated
different dominant rhythms. Descent to sleep (N1 stage) is the
transition from wakefulness to the first sleep stage. The main
characteristic of light sleep (N1), which lasts for 5% of total sleep
time, is a low voltage mixed frequency (LVMF), pattern mainly
consisted of alpha and theta activity. There are also vertex sharp
waves. The N2 stage is the most common one (45% of the total
sleep duration) and is characterized by sleep grapho-elements like
K-complexes and spindles, while EEG slowing results in greater
dominance of the theta rhythm. Deep sleep follows then and
lasts ∼ 20–25% of total sleep time with further EEG slowing
resulting in delta rhythm and minimal eye and chin movement.
Delta waves are maximally seen in frontal regions electrodes.
Finally, the dreaming phase of sleep (REM stage) lasts 20–25%
of sleep time. The EEG is consisted of alpha (1–2Hz slower
than wake Alpha) and theta waves. It is seen maximal over
central regions. Body movement is minimal during that stage,
while rapid eye movement and sawtooth waves co-exist with
theta and alpha activity. There is also a noticeable increase of
high frequency activity (beta and gamma). So, manual scoring
was based on three electrodes located on the right hemisphere
on frontal (F4), central (C4), and occipital (O2) regions. In
case of severe noise contamination not corrected during the
pre-processing pipeline the homologous electrode sites of the
left hemisphere were used. The sleep experts also examined
peripheral activity derived from EOG, ECG, and EMG signals
as well as spectral analysis of the EEG channels. The sleep
experts independently analyzed the same dataset. In case of
disagreement for a given epoch, they discussed the issue and
revisited the AASM manual until they reached a consensus. If
the disagreement remained, this epoch was excluded from further
analysis.

Synchronization Feature Extraction
After the pre-processing steps the data are apt for the main
processing phase, indicated as feature extraction component. As
indicated in Figure 2, the feature extraction component employs
alternatively two different methodologies for synchronization
analysis. The first one calculates the synchronization likelihood
between electrode pairs (Stam et al., 2003) and the second
one calculates the relative wavelet entropy between the

electrode pairs (Rosso et al., 2001). Each of these methods
results in the calculation of a synchronization matrix which
can be regarded as the adjacency matrix of a weighted
graph. The nodes of the graph represent the electrode sites
and the edges the interactions among electrode pairs. As
such various graph metrics (small-world property, cluster
coefficient, characteristic path length, etc.) are calculated for each
given graph, following the calculation of the synchronization
values.

Synchronization Likelihood
Stam et al. (2003) defined synchronization likelihood as the
measure of the degree of synchronization between two or
more time series. This is based on the concept of generalized
synchronization between two dynamic systems Q1 and Q2and
requires the existence of a continuous injective function F
mapping the response of system Q2 to the responses of
Q1 according to Q2 = F(Q1). To calculate the synchronization
likelihood of two system outputs, it is required to define the
system states, signal values and a similarity metric between these
values.

The general framework for the calculation of the
synchronization likelihood matrices is presented in Stam
and Van Dijk (2002) in which it assumed that there exist
M simultaneously recorded signals, in this case the k channels
recorded during the electroencephalogram, and assuming
discrete time i = 1, ...,N, where N denotes the number of
samples. From each signal xk the time-delay embedded vectors
xk,i are defined as:

xk,i =
(

xk,i, xk,i+l, xk,i+2l, . . . , xk,i+(m−1)l

)

, (3)

in which xk,i corresponds to the values of signal x at channel k and
time i, l denotes the time delay, andm the embedding dimension.
The probability Pε

k,i
that two embedded vectors are closer to each

other than a distance ε, for each channel k and time instance i, is
equal:

Pεk,i =
1

2 (w2 − w1)

∑N

j = 1
w1 <

∣

∣i− j
∣

∣ < w2

θ
(

ε − |xk,i − xk,j|
)

(4)

in which w1 is the window for Theiler correction, w2the window
for time resolution sharpening, θ is the Heaviside step function
and |•| denotes the Euclidean distance.When P

εk,1
k,i

= pref , pref ≪
1 the number of channels Vi,j within the current window that are
closer than distance εk,i are:

Vi,j =
∑M

k=1
θ

(

ε − |xk,i − xk,j|
)

, (5)

which takes integer values in the range [0,M], representing the
number of channels that are similar to each other.

The synchronization likelihood Sk,i,j for each channel k at
times i and j is equal to:

Sk,i,j =

{

Vi,j−1

M−1 , if
∣

∣xk,i − xk,j
∣

∣ < εk,i
0, if

∣

∣xk,i − xk,j
∣

∣ ≥ εk,i
(6)
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FIGURE 2 | Feature extraction: For each epoch, the feature extraction procedure takes place during which features that quantify the macroscopic organization of the

brain during sleep are extracted. Two alternative functional connectivity methodologies (Synchronization Likelihood and Relative Wavelet Entropy) are investigated. The

synchronization matrices are used through concepts derived from graph theory (small-world property, cluster coefficient, characteristic path length, betweenness

centrality, node degree) to form the feature vectors used for the computerized staging.

Finally, the synchronization likelihood Sk,i is averaged over j as:

Sk,i =
1

2 (w2 − w1)

∑N

j = 1
w1 <

∣

∣i− j
∣

∣ < w2

Sk,i,j. (7)

This synchronization likelihood metric represents the level of
synchronization of channel k at time i with reference to all other
channels. The synchronization likelihood values for the four sleep
stages are stored in a M × M matrix S that is considered as a
weighted undirected graph adjacency matrix, which is symmetric
with reference to the diagonal.

Relative Wavelet Entropy
The secondmethod of calculating a synchronizationmatrix is the
RelativeWavelet Entropy (RWE) as defined in Rosso et al. (2001).
The values of this matrix represent the extent to which the energy
distribution (delta, theta, alpha, beta, and gamma rhythmic
activity) from each pair of electrodes are similar to one another.
Relative wavelet entropy is based on the orthogonal discrete
wavelet transform (Simpson, 1993), which is an extension of
the discrete wavelet transform, utilizing wavelets that define
an orthogonal basis, used to decompose the initial signal. The
continuous wavelet transform of a signal x(t) with scaling α ∈
R
+∗

and at time b∈ R is defined as:

Xw =
1
√
α

∫ +∞

−∞
x(t)ψ

(

t − b

α

)

dt, (8)

whereψ(t) denotes a continuous function of time and frequency,
known as mother wavelet, • is the conjugate complex number.
Through function ψ it is possible to define a family of wavelet
functions for different combinations of α and b as:

ψa,b (t) = |α|−
1
2 ψ

(

t − b

α

)

. (9)

Since an orthogonal basis is required this family must define
an orthogonal basis in Hilbert space L2(R), abiding to two
conditions, the first one being αj = 2−j and the second one
bj,k = 2−jk with j, k ∈ Z and is defined as:

ψj,k (t) = 2
j
2ψ

(

2jt − k
)

. (10)

For a given uniformly sampled signal x which is decomposed in
N levels the orthogonal wavelet transform is given by:

Xt =
∑−1

j=−N

∑

k
Cj(k)ψj,k (t) (11)

in which Cj(k) denotes the wavelet coefficients at times k.
The amplitude of these coefficients quantifies the degree of
similarity between the mother wavelet and the signal, while its
sign describes if this similarity has positive or negative polarity.
Through the calculated wavelet coefficients it is possible to
calculate the overall energy as:

Etot =
∑

j<0

∑

k
|Cj

(

k
)

|2. (12)

The relative energies pj for each level are given by the ratio of
the energy at level j over the total energy. Finally the relative
entropy between two signals p and q at level j is given through
the Shannon entropy (Segal, 1960) as:

H
(

p
∣

∣q
)

= −
∑

j<0
pj ln

(

pj

qj

)

, (13)

which calculated for each pair of electrodes defines a
synchronization matrix similar to the one calculated through
synchronization likelihood. However the main difference is that
relative wavelet entropy represents the adjacency matrix of a
weighted directional graph which is not symmetric.
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Apart from the relative wavelet entropy values five more
features are calculated through the above process. These features
are the ratios of the energies of the five main brain wave rhythms,
namely delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ)
over the total energy of the signal. These features are calculated
during the four different sleep stages, since different rhythms are
prominent in the EEG recordings and thus it is possible to further
differentiate between the sleep stages through the above energy
ratios.

Graph Metrics
Having calculated the synchronization matrices, and regarding
them as adjacency matrices, it is possible to calculate various
graph metrics that describe the connectivity between the
electrodes and therefore the interactions between different
neuronal groups. The metrics (Deuker et al., 2009; Nicosia
et al., 2013; Frantzidis et al., 2014b; Deo, 2017) used in this
paper are presented in Table 1. These metrics range from the
fundamental network properties (node degree and network
density) to global network characteristics quantifying the overall
network performance (small-world property), the network’s
information flow across the network nodes (characteristic
path length) and the capacity of local information processing
as expressed by the mean cluster coefficient. Centrality
metrics as the relative betweenness centrality have been
used to quantify the importance of each specific node to
the integration of the information capacity. These features
have been visualized in Figure 2. More information regarding
these network metrics may be found in (Frantzidis et al.,
2014b).

Classification Methodology Component
This is the core component of the proposed pipeline, since it
employs the features extracted from the synchronization and
brain network analysis in order to perform the computerized
sleep staging based on functional, system-level information.
After calculating the synchronization metrics and graph metrics
it is possible to construct a feature vector for each epoch,
to be used for semi-automatic sleep stage classification. Both
synchronization matrices have dimensions 19 × 19and must
be vectorized in order to allow classifier training. However
the main diagonal contains the synchronization values of

TABLE 1 | Graph metrics.

Network Metric Network Description

Node degree Number of immediate neighbors of each node

Clustering coefficient Strength of node connection

Characteristic path

efficiency and length

Length and efficiency of the shortest path

connecting all nodes

Connection density Number of connections present in a graph divided

by the total possible connections of the same graph

Centrality Number of shortest paths connecting all other pairs

of nodes that incorporate the given node

Small world metric Quantifies the average distance between nodes in a

graph

each electrode with itself, information that is not needed,
as each electrode is synchronous to itself. Therefore the
values of the diagonal are omitted. The matrix calculated
through synchronization likelihood is symmetric, containing
redundant information as each synchronization value is observed
twice. As such only the strictly lower triangular matrix is
vectorized resulting in 171 distinct synchronization values,
which along with the 7 graph metrics calculated results in
a feature vector of 178 dimensions. In the case of relative
wavelet entropy the synchronization matrix is not symmetric
and all synchronization values are incorporated in the feature
vector, except the values of the main diagonal. This results in
342 distinct values along with 5 graph metrics and 5 brain
rhythm energy ratios resulting in a final feature vector of 352
dimensions. All values were normalized per feature in the range
[0, 1].

From the initial set of data, 2,447 epochs were manually
selected after the pre-processing step, in which noise did not
distort the signal significantly. These epochs were randomly
divided in two sets, one training and one testing each
containing 1,711 (70%) and 736 (30%) epochs respectively. The
randomization was performed on the entire dataset and not per
participant. Moreover, the number of epochs per participant was
not equal, since some of them had no N1 epochs and some
other did not successfully transition to deep sleep (N3 & REM).
Each set contained equal proportions of each sleep stage. The
training and testing sets are subsequently used to train and
evaluate the accuracy of three different classifiers, namely k-
Nearest Neighbors classifier (k-NN), Support Vector Machines
(SVM) (Chang and Lin, 2011) and Neural Networks (NN). It
must be noted that due to the significant differences that are
observed in the duration of each sleep stage the classification task
is quite difficult.

For each classifier used in the experimental procedure a
set of different parameter values where used in order to
assess the sleep staging potential of each one. In more detail,
in the case of the k-Nearest Neighbor classifier experiments
were ran by adjusting the number of nearest neighbors, for
k = 1, 3, and 5, and three distance metrics namely the
Euclidean and Cityblock distances and Cosine similarity. For
SVM’s, the parameters studied were the value of the penalty
imposed on misclassified training data, C = 0.1, 10, 100, and
the kernel type along with each kernel’s parameters. Three
different kernel types where used the linear, polynomial and
the Gaussian kernel. Finally experiments where ran on neural
networks with one and two hidden layers of various sizes. The
SVM and NN parameters were optimized using 10 fold cross-
validation.

RESULTS

The experimental results are summarily presented in Table 2.
In this table the classification accuracies are displayed for both
training and test sets as well as for each feature extractionmethod,
classifier and classifier parameter set, an outline of which is
displayed in Figure 3.
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TABLE 2 | Sleep stage classification results.

Classifier Parameters Classification Accuracy

k-Nearest Neighbors Synchronization Likelihood Relative Wavelet Entropy

k Distance Train (%) Test (%) Train (%) Test (%)

1 Euclidean 100.00 72.55 100.00 89.95

3 Euclidean 85.80 74.86 96.26 90.90

5 Euclidean 83.40 76.22 94.39 91.44

1 Cityblock 100.00 67.93 100.00 88.18

3 Cityblock 84.40 71.33 95.79 89.40

5 Cityblock 80.48 73.10 94.16 89.95

1 Cosine 100.00 73.91 100.00 89.95

3 Cosine 88.66 77.17 96.26 91.85

5 Cosine 85.97 78.26 94.45 91.44

Support Vector Machines Synchronization Likelihood Relative Wavelet Entropy

C Kernel Train (%) Test (%) Train (%) Test (%)

0.1 Linear 73.35 71.74 87.61 85.05

10 Linear 89.42 79.35 99.24 90.22

100 Linear 93.28 76.49 100.00 90.49

0.1 Polynomial, d = 3 53.83 52.72 99.65 91.44

10 Polynomial, d = 3 90.77 80.98 100.00 91.58

100 Polynomial, d = 3 99.59 82.07 100.00 91.58

0.1 Polynomial, d = 5 51.14 51.22 100.00 91.58

10 Polynomial, d = 5 86.44 78.94 100.00 91.58

100 Polynomial, d = 5 98.48 82.34 100.00 91.58

0.1 Gaussian, σSL = 1.95 σRWE =0.25 71.65 67.53 80.30 78.13

10 Gaussian, σSL = 1.95 σRWE =0.25 100.00 86.82 100.00 92.93

100 Gaussian, σSL = 1.95 σRWE =0.25 100.00 86.82 100.00 92.80

0.1 Gaussian, σSL = 1.45 σRWE =0.75 72.71 69.57 78.73 74.73

10 Gaussian, σSL = 1.45 σRWE =0.75 100.00 86.28 100.00 92.66

100 Gaussian, σSL = 1.45 σRWE =0.75 100.00 86.28 100.00 92.66

Neural Networks Synchronization Likelihood Relative Wavelet Entropy

Layer 1 Layer 2 Train (%) Test (%) Train (%) Test (%)

10 – 85.80 78.26 94.16 87.77

30 – 83.82 79.48 96.67 90.49

50 – 84.04 78.94 95.79 90.22

100 – 86.62 80.16 94.39 88.59

50 50 86.73 78.13 96.20 89.54

100 50 86.09 79.89 97.49 89.13

100 100 86.97 79.08 95.27 88.72

Bold values are the maximum achieved accuracy for each feature extraction method.

Synchronization Likelihood Results
The first classifier evaluated using the feature vectors calculated
through synchronization likelihood is the k-NN classifier. For
k = 1 the accuracy on the training set is, as expected, equal
to 100% for all distance metrics used. This is true since all
training samples are closest to themselves, at zero distance and
with similarity equal to one, and as such are always classified
correctly and therefore these values are omitted. Using the
Euclidean distance as the distance metric leads to a maximum

accuracy equal to 85.80% for the training data and 76.22%
for the test data for k = 3 and k = 5 respectively. For the
Cityblock distance the training set accuracy is lower than the
Euclidean distance equal to 84.40 and 73.91% for the training
set, for the same number of nearest neighbors mentioned above.
The best results with the k-NN classifier are given through
the cosine similarity metric reaching an accuracy of 88.66%
for the training data (k = 3) and 78.26% for the test set
(k= 5).
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FIGURE 3 | Computer-assisted classification is performed with various classifiers such as the k-Nearest Neighbors (kNN), Support Vector Machines (SVMs) and

Neural Networks (NNs). Various classification parameters are employed in a comparative analysis.

Three different kernels where evaluated using SVM classifiers.
The first one is the linear kernel that provided a maximum
accuracy percentage equal to 93.28% for the training data and C
= 100 and 79.35% for the test data with C = 10. The polynomial
kernel was used with two different degrees, the first one d =
3, which reached 99.59% (C = 100) in the training set and
82.07% for the test set with the same value of C. For d = 5
the maximum accuracy was 98.48 and 82.34% with C = 100
for the training and test data respectively. The Gaussian kernel
was also evaluated, achieving the maximum accuracy for the
test data equal to 86.82% with σSL = 1.95 and C = 10. This
kernel achieved perfect accuracy for the training data for various
parameter values, hinting that the classifiers may be overfitted but
still capable of performing well on the test data.

In Table 3 the confusion matrix for the Gaussian kernel
SVM with σ = 1.95 which achieved the highest accuracy rate is
presented. As expected the epochs belonging to the N1 sleep stage
are the most difficult to differentiate from the other stages. This
is evident from the fact that from the total of 60 N1 epochs in the
test set only 39 are classified correctly, an accuracy equal to 65%.
In the case of the N2 andN3 sleep stages accuracy rates are higher
reaching 89.9 and 85.8% respectively. The highest accuracy is
achieved for the REM stage equal to 91.9%.

Neural networks of various sizes were the third type of
classifier used in the experimental process. For networks with
one hidden layer the highest accuracy percentage equal to 86.62%
for the training data was achieved with a hidden layer size equal
to 100 which also provided the highest accuracy of 80.16% for
the test data. Larger networks with two hidden layers failed to
provide higher accuracies for the test data, the highest being
79.89% for layers of size 100 and 50, but provided a maximum of
86.97% for the training data. This observation is likely due to the
overfitting of the neural networks since large networks require
a large number of data samples to avoid overfitting and achieve
adequate generalization.

Relative Wavelet Entropy (RWE) Results
Similar experiments were ran for the feature vectors constructed
through Relative Wavelet Entropy (RWE), although the accuracy

TABLE 3 | Confusion matrix for the Gaussian kernel SVM classifier (σ = 1.95) that

achieved maximum accuracy with synchronization likelihood features.

O
u
tp
u
t
C
la
ss

N1 39 4 1 0 88.6%

5.3% 0.5% 0.1% 0.0% 11.4%

N2 18 286 31 6 83.9%

2.4% 38.9% 4.2% 0.8% 16.1%

N3 3 23 212 3 88.0%

0.4% 3.1% 28.8% 0.4% 12.0%

REM

0 5 3 102 92.7%

0.0% 0.7% 0.4% 13.9% 7.3%

65.0% 89.9% 85.8% 91.9% 86.8%

35.0% 10.1% 14.2% 8.1% 13.2%

N1 N2 N3 REM

Target Class

O
u
tp
u
t
C
la
ss

N1 39 4 1 0 88.6%

5.3% 0.5% 0.1% 0.0% 11.4%

N2 18 286 31 6 83.9%

2.4% 38.9% 4.2% 0.8% 16.1%

N3 3 23 212 3 88.0%

0.4% 3.1% 28.8% 0.4% 12.0%

REM

0 5 3 102 92.7%

0.0% 0.7% 0.4% 13.9% 7.3%

65.0% 89.9% 85.8% 91.9% 86.8%

35.0% 10.1% 14.2% 8.1% 13.2%

N1 N2 N3 REM

Target Class

percentages were generally higher compared to the one
mentioned above. For the k-NN classifier the classification results
for the training data and k = 1, are omitted for the reasons
mentioned in the previous section. With the Euclidean distance
the highest classification accuracy attained is 96.26% (k = 3) and
91.44% (k = 5) for the training and test sets respectively. The
Cityblock metric fails to achieve higher accuracy rates compared
to the Euclidean distance regardless of data set and values of
k. The highest accuracy of the k-NN classifier on the test set is
achieved with the cosine similarity metric with k = 3 equal to
91.85%.

Support Vector Machines along with RWE features achieved
the maximum accuracy percentage reported in this paper
reaching 92.93% on the test data with a Gaussian kernel with
σRWE = 0.25 and C = 10. The other kernels also achieved
high accuracy rates with the linear kernel achieving a maximum
of 90.49% for C = 100, and the polynomial kernel reaching
91.58% for various parameter values. Perfect accuracy is reported
through SVM’s for various kernels and parameter values.

The confusion matrix for the Gaussian kernel SVM with
σ = 0.25 is presented in Table 4. This classifier achieved the
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TABLE 4 | Confusion matrix for the Gaussian kernel SVM classifier (σ = 0.25) that

achieved maximum accuracy with relative wavelet entropy features.

O
u
tp
u
t
C
la
ss

N1 47 4 0 0 92.2%

6.4% 0.5% 0.0% 0.0% 7.8%

N2 12 300 16 4 90.4%

1.6% 40.8% 2.2% 0.5% 9.6%

N3 1 12 231 1 94.3%

0.1% 1.6% 31.4% 0.1% 5.7%

REM

0 2 0 106 98.1%

0.0% 0.3% 0.0% 14.4% 1.9%

78.3% 94.3% 93.5% 95.5% 92.9%

21.7% 5.7% 6.5% 4.5% 7.1%

N1 N2 N3 REM

Target Class

O
u
tp
u
t
C
la
ss

N1 47 4 0 0 92.2%

6.4% 0.5% 0.0% 0.0% 7.8%

N2 12 300 16 4 90.4%

1.6% 40.8% 2.2% 0.5% 9.6%

N3 1 12 231 1 94.3%

0.1% 1.6% 31.4% 0.1% 5.7%

REM

0 2 0 106 98.1%

0.0% 0.3% 0.0% 14.4% 1.9%

78.3% 94.3% 93.5% 95.5% 92.9%

21.7% 5.7% 6.5% 4.5% 7.1%

N1 N2 N3 REM

Target Class

highest accuracy rate for the RWE features. Similarly to the
results mentioned on the previous section, the lowest accuracy
is reported for the N1 sleep stage equal to 78.3%. The accuracy
rates for the N2 and N3 sleep stages are higher equal to 94.3%
and 93.5% respectively. Again the highest accuracy is achieved
for the REM stage equal to 95.5%.

Neural networks failed to surpass the sleep staging accuracy
of SVM’s with one hidden layer networks achieving 96.67%
accuracy on the training data and 90.49% for test set with a
layer of size 30. For networks with two hidden layers the highest
accuracy for the training set was 97.49% for layers of size 100 and
50, and a maximum accuracy for the test set equal to 89.54% for
two layers of size 50.

DISCUSSION

In this paper two different methods of functional connectivity
estimation (Synchronization Likelihood / SL and Relative
Wavelet Entropy/RWE) have been utilized in computerized sleep
staging. Results indicate that functional connectivity features,
derived either from Synchronization Likelihood or Relative
Wavelet Entropy along with the associated graph metrics
computed and extracted from sleep epochs are suitable for sleep
stage classification purposes. High sleep staging accuracies on
the test data reported above support this evidence building,
as accuracies from 86.82 to 92.93% were obtained for SL and
RWE respectively, either one provided by a Support Vector
Machine with a Gaussian kernel. Obviously, RWE features seems
to be preferable as it achieves better accuracy attained than that
achieved by synchronization likelihood features. The system’s
accuracy is among the highest ones reported by the literature
(Bajaj and Pachori, 2013; Lajnef et al., 2015). So, it is regarded
as adequate for assisting the role of sleep experts during manual
staging. Moreover, we should note that visual sleep staging is
highly dependent on the expert as presented in Danker-hopfe
et al. (2009).

The two feature extraction methods used in this paper,
synchronization likelihood and relative wavelet entropy, quantify
the interaction between each pair of electrodes serving as a

functional connectivity metric. This is contrary to the most
state-of-the-art methods that mainly utilize specific spectral,
statistical and time domain features. Furthermore, using
metrics derived from graph theory it is possible to describe
electroencephalographic activity during sleep on a higher level,
providing a macroscopic and holistic system view. Beyond the
above features, the energy ratios of the five main brain wave
rhythms were also calculated. These features provide an integral
and functional description of electrode activity during sleep as
it is possible to estimate the overall energy distribution and
interaction between electrode pairs. Also, in the experimental
process, the unequal duration of each sleep stage was taken into
account, and no attempt was made to have the same number
of epochs for each sleep stage. This definitely rendered the
classification of specific sleep stages problematic, at the same
time adhered to the realistic scenario in which sleep epochs
are not uniformly distributed over the sleep stages. Finally, the
proposed semi-automatic sleep staging methods rely on time
domain and spectral features while there is limited research
on the macroscopic organization of the brain and the study
of the brain as a network. Both of these concepts are pursued
in this paper. Apart from studying/quantifying the interactions
between specific regions, and how these change during the
various sleep stages, features extracted through graph theory and
the energy ratios provide an integrated and holistic view of brain
functionality during sleep, which can also be used for further
analysis of the brain network.

Classification results are summarized in the confusion
matrices presented in Tables 3, 4, where red squares denote
errors, green squares correct classification, gray squares
classification percentages for each sleep stage and the blue
square represents the average accuracy overall. As it can be
observed from the Tables 3, 4, the N1 sleep stage is the hardest to
differentiate from the others probably due to the proportionately
small number of available epochs for training. While accuracy
rates for the N2 and N3 stages are higher than the N1 stage, it
is clear that these sleep stages are not easily distinguished from
one another due to the common characteristics they share. It is
also observed that N2 is distinguished easier than N3, 89.9% over
85.8% a significant difference for synchronization likelihood
features and 94.3% over 93.5% for RWE features. The highest
accuracy rate in both feature extraction methods studied is
achieved for the REM sleep stage. This is likely due to REM’s
unique characteristics making its classification easier.

The proposed methodologies are capable of achieving high
accuracy rates but there is room for further development, for
instance achieving an accuracy of over 95% and experimenting
with a larger dataset. Furthermore, the effectiveness of the
proposed methods should also be tested with different
electroencephalogram recording setups with fewer or more
electrodes and varying levels of noise.

As mentioned above SVMs with a Gaussian kernel achieved
the highest classification accuracies. However this does not
indicate that this classifier is the most suitable for sleep
stage classification. For a different dataset, different classifier
values or perhaps a different classifier altogether may provide
higher classification accuracies. Therefore, there is need for
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further investigation of the applicability and robustness of the
aforementioned classifiers on different dataset gathered from
different devices and from heterogeneous populations (e.g.,
participants with different ages and patients suffering from sleep
disorders). The inclusion of functional connectivity features,
which track dynamic interactions during sleep, is hypothesized to
facilitate the generalization of the proposed framework. Another
interesting observation on the classifiers evaluated in this paper
is that in some cases SVMs provide higher accuracies than neural
networks. This is likely due to the number of available data, since
neural networks require very large datasets to avoid overtraining
and achieve sufficient generalization. This is probably also the
reason why the k-NN classifier surpasses the accuracy of neural
networks on the test set.

Future work in automatic sleep stage classification will
be targeted at experimenting with a larger number of data
samples and extracting and selecting finer features. Employing
more epochs in our subsequent work will allow us to apply
deep learning methodologies through convolutional neural
networks and restricted Boltzmann machines. We will also
investigate the feasibility of using cortical activations instead
of sensor-level data. This may result in better classifications
results. Another approach to increase sleep staging accuracy
would be to utilize not only electroencephalographic
recordings but to also incorporate features from other
neurophysiological signals recorded during sleep such as features
extracted from electrocardiographic, electrooculographic and
electromyographic activity. Furthermore, we should highlight
that current analysis was focused on the interactions among
EEG activity on sensor level. However, this type of analysis
faces several limitations due to the low spatial resolution of the
recording modality, which results in volume conduction artifacts
due to linear mixing of sources into sensors (Haufe et al., 2013;
Frantzidis et al., 2014a). Future expansion of our work would
focus on estimating cortical functional connectivity metrics,
which may enhance the robustness of our system. Another
limitation of our study is that the randomization procedure may
assign data from the same participant to both the training and
testing sets. However, we should note that the pool of participants
is relatively small (23 participants in total). Moreover, our study
was based on a head-down tilt (6◦) bed-rest study, aiming to
assess pathological deviations from normal sleep due to the
microgravity effect. So, we are interested on identifying features
which facilitate the sleep quality quantification and body-system
interactions. This was the reason that motivated us to perform
the specific epoch assignment to training and test groups and
would be difficult with the current dataset to distribute whole

participants into either the training or the testing set. We
acknowledge that this may provide optimistic results based on
individual patterns persistent across epochs of the same sleep
stage. In the future our dataset will incorporate sleep epochs
from both normal and pathological sleep and will present a
greater challenge in achieving high accuracy sleep staging.

Our system’s accuracy rate can potentially aid sleep experts in
manually scoring sleep epochs, reducing the required time cost
and possible errors, inherent to visual sleep staging. However
our approach should be further validated by different data sets
derived from both healthy and pathological populations such
as those found in the SIESTA Project (Klosh et al., 2001) and
the Sleep-EDF database (Kemp et al., 2000). The interaction
with the above and other databases could be achieved through
online applications that allow data processing and sharing such
as the platform presented in Frantzidis et al. (2010) and Beier
et al. (2017). Another project our system could take part is
the SmokeFreeBrain project which records PSG activity before
and after varenicline-based (pharmacological) smoking cessation
intervention (http://smokefreebrain.eu/). These heterogeneous
sleep data are expected to further improve the methodology
applicability offering a publicly available web-based sleep
analyzer aiming to enhance international and inter-disciplinary
cooperation in the field of automatic sleep research.

Concluding, the proposed methodologies capable of
providing almost optimal sleep stage classification, with
accuracy above 90% compared to expert staging, through
functional connectivity feature extraction and metrics derived
from graph theory.
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