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The stability of the MRI scanner throughout a given study is critical in minimizing
hardware-induced variability in the acquired imaging data set. However, MRI scanners
do malfunction at times, which could generate image artifacts and would require the
replacement of a major component such as its gradient coil. In this article, we examined
the effect of low intensity, randomly occurring hardware-related noise due to a faulty
gradient coil on brain morphometric measures derived from T1-weighted images and
resting state networks (RSNs) constructed from resting state functional MRI. We also
introduced a method to detect and minimize the effect of the noise associated with
a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric
measures and RSNs before and after gradient coil replacement. Our results showed
that gradient coil noise, even at relatively low intensities, could introduce a large number
of voxels exhibiting spurious significant connectivity changes in several RSNs. However,
censoring the affected volumes during the analysis could minimize, if not completely
eliminate, these spurious connectivity changes and could lead to reproducible RSNs
even after gradient coil replacement.

Keywords: resting state networks, reproducibility, gradient coil noise, gradient coil replacement, resting
state fMRI

INTRODUCTION

Resting state functional magnetic resonance imaging (fMRI) is an imaging technique that does
not require participants to perform any task during the scan, making the approach attractive in
investigating healthy brain functions as well as in examining changes occurring in the diseased
brain. Resting state fMRI is commonly used to examine functional connectivity among spatially
distributed brain regions that form the so-called resting state networks (RSNs; Greicius et al., 2003;
Beckmann et al., 2005; Fox et al., 2005; Damoiseaux et al., 2006). In healthy population, resting
state fMRI has been proven useful in investigating the very early development of these RSNs in
infancy (Fransson et al., 2007; Smyser et al., 2010) and how these RSNs are transformed across
the lifespan (Tomasi and Volkow, 2012; Betzel et al., 2014; Sala-Llonch et al., 2015). In clinical
population, resting state fMRI has also been used to examine changes in functional connectivity
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within RSNs in chronic pain conditions (Baliki et al., 2008,
2014; Martucci et al., 2015; Li et al., 2016), Parkinson’s disease
(Hacker et al., 2012; Szewczyk-Krolikowski et al., 2014; Yao
et al., 2014), Alzheimer’s disease (Greicius et al., 2004; Dai et al.,
2015), patients with brain tumor (Esposito et al., 2012; Maesawa
et al., 2015), and other neuropsychological disorders (Greicius,
2008). Using resting state fMRI, RSNs have also been shown
to be highly reproducible across participants (Beckmann et al.,
2005; Chen et al., 2008) and within participants over multiple
sessions (Damoiseaux et al., 2006; Chen et al., 2008; Choe et al.,
2015), making resting state functional connectivity a promising
biomarker for clinical applications (Shimony et al., 2009; Fox and
Greicius, 2010; Lee et al., 2013).

The reproducibility of RSNs, however, could be affected by
several factors. One of these factors is the hardware used to
acquire the imaging dataset. For multisite studies, differences
in MRI providers, magnet field strengths, software and coil
architectures need to be considered. Even with the same
MRI scanner, maintaining the scanner’s stability throughout
a given imaging study is very important in minimizing
hardware-related variability in the acquired imaging dataset.
For cross-sectional studies, scanner stability ensures that the
variability in any MRI-derived measures is mainly due to the
population being studied. For longitudinal studies, scanner
stability guarantees that changes observed over time are driven by
disease progression, for example, and not by instrument-related
factors. However, MRI scanners do malfunction at times, which
could necessitate replacement of major components such as the
scanner’s gradient coil. This major change in hardware could
introduce unwanted variability into the imaging dataset. Faulty
MRI scanner gradient coil could also generate artifacts in the
acquired images, the degree of which could vary depending on
the severity of the problem. Large artifacts are easier to detect
but low intensity, randomly occurring artifacts are difficult to
discover. Some low intensity gradient-coil-generated noise are
barely noticeable, but have the potential to significantly affect the
outcome of the analysis.

In this study, we examined the effects of low intensity gradient
coil noise on resting state fMRI data on the reproducibility
of RSNs and introduced a method to minimize these effects.
We further examined whether RSNs constructed from resting
state fMRI and values of regional gray matter (GM) volume
estimated from T1-weighted images are reproducible using
data acquired before and after gradient coil replacement.
For this, we performed voxel-wise statistical comparisons of
RSNs and GM between sessions to identify differences at the
voxel level. To compare RSNs, we used group independent
component analysis (ICA) and dual regression analysis (Filippini
et al., 2009), which have been found effective and reliable in
analyzing resting state fMRI data (Zuo et al., 2010). To assess
differences in GM, we used voxel-based morphometry (VBM;
Ashburner and Friston, 2000), a commonly used approach
for analyzing T1-weighted images. Finally, we also computed
regional GM volume from several regions of interest (ROIs) and
other RSN-derived metrics including within-network functional
connectivity (WNFC) and similarity measures for test-retest
reliability assessment.

MATERIALS AND METHODS

Participants
Twenty healthy volunteers (male/female = 15/5) from Nagoya
University were recruited for this study. The participants’ age
ranged from 20 years to 25 years (mean = 22 years, standard
deviation (SD) = 1.26 years). All participants had no history of
psychiatric or neurological disorder. Participants were scanned
four times, twice before (sessions S1 and S2) and twice after
(sessions S3 and S4) the MR gradient coil was replaced, using
the same scanning protocol. The average inter-scan interval was
67.8 days between S1 and S2, 44.0 days between S2 and S3, and
31.0 days between S3 and S4. Gradient coil noise affected some of
the scans in S1 and S2 (pre-replacement) but not scans in S3 and
S4 (post-replacement). The study was approved by the Ethical
Committee of Nagoya University Graduate School of Medicine
with approval number 1014-2. All participants signed a written
informed consent before joining the study.

Magnetic Resonance Imaging
Magnetic resonance images were acquired using a Siemen’s
Magnetom Verio (Siemens, Erlanger, Germany) 3.0T MRI
scanner with a 32-channel head coil. For each scanning session, a
T1-weighted MR image was acquired using a 3D Magnetization
Prepared Rapid Acquisition Gradient Echo (MPRAGE; Siemens;
Mugler and Brookeman, 1990) pulse sequence with the following
imaging parameters: repetition time (TR)/MPRAGE repetition
time = 7.4/2500 ms, echo time (TE) = 2.48 ms, inversion time
(TI) = 900 ms, flip angle (FA) = 8 degrees, 192 sagittal slices with
a distance factor of 50% and 1-mm thickness, FOV = 256 mm,
acquisition matrix dimension = 256 × 256, and in-plane voxel
resolution of 1.0 × 1.0 mm2, with a total scan time of 5 min
49 s. Resting state functional MRI scans were also acquired using
gradient echo (GE) echo planar imaging (EPI) with the following
parameters: TR = 2.5 s, TE = 30 ms, 39 transverse slices with a
0.5-mm inter-slice interval and 3-mm thickness, FOV = 192 mm,
matrix dimension is 64 × 64, FA = 80 degrees, 3 × 3 × 3 mm3

voxel resolution and 198 volumes. Participants were instructed
to close their eyes during the scan but not to fall asleep. Other
MRI scans were also acquired during the same imaging session,
however the analysis of these datasets will be reported elsewhere.

Preprocessing for T1-Weighted MR Images
All images were preprocessed using SPM12 (Wellcome Trust
Center for Neuroimaging, London, UK) running on Matlab
R2016b (MathWorks, Natick, MA, USA). The T1-weighted
images were first segmented into component images including
GM, white matter (WM), cerebrospinal fluid (CSF), and other
non-brain tissues using SPM12’s segmentation approach.
A common template for the GM images was created using
DARTEL (Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra; Ashburner, 2007), which was then
normalized to the Montreal Neuroimaging Institute (MNI)
standard space. The obtained transformation information,
together with the deformation fields from DARTEL, were used
to normalize the component images to MNI. The normalized
images were modulated to preserve the amount of signal from
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each region, re-sampled to an isotropic voxel size equal to
2 × 2 × 2 mm3, and smoothed using an 8-mm full-width-at-
half-maximum (FWHM) Gaussian filter. These preprocessed
images were then used in the succeeding analysis.

Voxel-Based Morphometry
To compare differences between sessions at the voxel level,
we used VBM, a commonly used approach for the analysis
of T1-weighted images. For this, the preprocessed GM images
were entered into a paired sample t-test to identify changes
between sessions using SPM12. In particular, we performed S1 vs.
S2 and S3 vs. S4 to compare datasets obtained using the same
gradient coil as well as S1 vs. S3, S1 vs. S4, S2 vs. S3, and
S2 vs. S4 to compare datasets obtained from different gradient
coils. Resulting statistical maps were corrected for multiple
comparisons using a family-wise error (FWE) correction rate
with p< 0.05.

Reliability Assessment of Regional GM
Volume
Aside from voxel-wise comparisons to assess differences between
sessions in anatomical (T1) images, we also estimated other
metrics for test-retest reliability assessment. These metrics were
then entered into an intra-class correlation (ICC) analysis, where
ICC is defined as:

ICC(3, 1) =
BMS− EMS

BMS+ (k− 1)EMS
In the above equation, BMS is the between-subject variance,

EMS is the condition error variance, and k is the number of
conditions (Shrout and Fleiss, 1979). ICC values range from
0 to 1, with higher values (i.e., closer to 1) indicating that the
between-subject error dominates, while lower values (i.e., closer
to 0) indicating that the effect of conditions dominates the error.

For this analysis, we used regional GM volumes computed
from the preprocessed GM images from several ROIs defined by
the AAL template (Tzourio-Mazoyer et al., 2002), which divides
the whole GM into 116 ROIs. The estimated regional GM volume
for each ROI from all participants and sessions were then entered
into the ICC analysis.

Preprocessing for Resting State fMRI Data
For the resting state fMRI data, the first five volumes were
discarded to account for the initial image inhomogeneity. The
remaining images were then slice-time corrected relative to
the middle slice, realigned to the mean functional image,
co-registered to the bias-corrected anatomical image, normalized
to MNI space using the transformation information obtained
from the segmentation of the individual anatomical image,
resampled to an isotropic voxel size equal to 2 × 2 × 2 mm3,
and finally smoothed using an 8-mm FWHM Gaussian blurring
kernel. To correct for headmotion, the six estimated realignment
parameters (three for translation and three for rotation), the
parameters’ square, difference, and difference square were
regressed out from the preprocessed data (Power et al., 2014).
Mean signals from selected ROIs within WM and CSF and the
global signal, plus the temporal difference of these signals, were
also removed. The cleaned data were then bandpass filtered
within 0.01–0.1 Hz.

Group Independent Component Analysis
Group ICAwas performed usingMultivariate Exploratory Linear
Optimized Decomposition into Independent Components
(MELODIC; Beckmann et al., 2005), a component of the FSL
software package1 to extract group-level RSNs. We used a
temporal concatenation approach in MELODIC by temporally
concatenating all preprocessed resting state fMRI data from
all participants in all sessions. Using data from all participants
and sessions in one group ICA maximizes sensitivity and
avoids the problem of identifying similar components from
different sessions if ICA was performed per session. We
extracted 30 group-level independent components (ICs) to
be consistent with the way the RSN templates2 we used were
generated (Shirer et al., 2012). These group ICs were then used
in the succeeding dual regression analyses (Filippini et al., 2009).

Dual Regression Analyses
To extract participant-specific RSNs for each session, we used
dual regression analysis. For each preprocessed resting state fMRI
data, the identified full set of group ICs obtained from group
ICA were used as spatial regressors and regression parameters
were estimated at each time point giving a series of parameter
estimates associated with each group IC. The estimated time
courses of the regression parameters for all group ICs were
then used as temporal regressors in the second regression
analysis using the same resting state fMRI data to construct
participant- and session-specific RSNs associated with the group
RSNs. These participant-specific RSNs were then used in paired
sample t-tests using nonparametric permutation testing (Nichols
and Holmes, 2002) with 5000 permutations to identify regions
that showed significant differences in functional connectivity.
We compared RSNs generated using datasets obtained from
the same gradient coil (S1 vs. S2 and S3 vs. S4) and RSNs
generated using datasets from different gradient coils (S1 vs.
S3, S1 vs. S4, S2 vs. S3, and S2 vs. S4). For all analyses,
a threshold-free cluster enhancement technique (Smith and
Nichols, 2009) was used and the resulting statistical maps were
corrected for multiple comparisons by controlling FWE rate with
p< 0.05.

We performed three dual regression analyses to examine
the contribution of head motion and gradient coil noise in
the observed differences in functional connectivity. In the first
analysis, we used the bandpass filtered and cleaned resting state
fMRI data from all participants without additional correction.
This analysis will be referred to as the ‘‘no-correction’’ analysis.
In the second, volumes with frame-wise displacement (FD) value
greater than 0.2 were censored (scrubbing) before dual regression
analysis was carried out. This analysis will be referred to as
‘‘motion-corrected’’ analysis. The FD value of a given volume
i was calculated as FDi = |∆xi| + |∆yi| + |∆zi| + |∆αi| +
|∆βi| + |∆γi|, where ∆xi = x(i−1) − xi is the difference of the
estimated realignment parameter (translation) along the x-axis
of volumes i and (i − 1). Similarly, ∆yi, ∆zi, ∆αi, ∆βi, and
∆γi correspond to the other translation parameters yi and zi and

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2http://findlab.stanford.edu/functional_ROIs.html
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rotation displacements αi, βi, and γi, respectively (Power et al.,
2012). Rotation parameters were converted to displacements
along the surface of a sphere with radius equal to 50 mm, this
value being the approximate mean distance from the cerebral
cortex to the center of the head. In the third analysis, referred to
as ‘‘noise-corrected’’ analysis, we censored volumes with gradient
coil noise before running dual regression analysis. An algorithm
to detect the gradient coil noise is outlined in ‘‘Detection of
Gradient Coil Noise’’ section.

Other Metrics for Reliability Assessment of
RSNs
For each RSN, we also computed the mean WNFC value. To
estimate WNFC, we first generated RSN-specific masks. To
do this, for a given RSN, we performed a one-sample t-test
using participant-specific RSN images from all participants in
all sessions using SPM12. For example, to generate the mask
for the dorsal default mode network (DMN), a one-sample
t-test was performed using participant-specific dorsal DMN
images from all participants and sessions. A threshold value
equal to p < 0.0001, corrected for multiple comparisons
using FWE correction, was then applied to the resulting
statistical map and all voxels with p-values below the threshold
were included in the mask. We used a stringent threshold
value to include only voxels with very significant network
connectivity. To get the value of WNFC for a given RSN,
the generated mask for that RSN was then applied to the
participant-specific RSN image and the mean of the voxel values
within the mask was computed and assigned to WNFC. The
estimated WNFC values from all participants and sessions were
then entered into the ICC analysis for test-retest reliability
assessments.

Aside from WNFC, we also assessed the spatial similarity of
the participant-specific RSNs relative to the mean RSN image
computed over all participants and sessions. We used a spatial
similarity measure given by η2 (Cohen et al., 2008; Choe et al.,
2015):

η2 = 1−
∑N

i = 1 (ai −mi)
2
+ (bi −mi)

2∑N
i = 1 (ai − M̄)2 + (bi − M̄)2

where ai and bi are values at voxel i in maps a and b, respectively,
mi is the mean value of the two images at voxel i, M̄ is the
grand mean across the mean imagem, and N is the total number
of voxels. Here, a is the participant-specific RSN and b is the
mean RSN. η2 values can vary from 0 to 1, with 0 indicating
no similarity and 1 being identical. The main advantage of this
measure is that it enables the quantification of the similarity or
the difference between two images instead of just the correlation
between the two images.

Detection of Gradient Coil Noise
Since gradient coil noise could randomly appear in any volume
during the scan, a method to automatically detect corrupted
volumes was developed. Our data showed that the gradient coil
noise has: (1) low intensity, approximately 5% to 10% of the
brain’s intensity; (2) affects the entire image within a slice, both
within and outside the brain; and (3) randomly appears in any
volume during a given scan in all or in only some slices within
the image volume. An example image is shown in Figure 1. The
noise is inconspicuous when using the full intensity range to
display the image (Figure 1A) and becomes apparent only when
the image is displayed with intensity values ranging from 10 to 50
(Figure 1B).

FIGURE 1 | Sample echo planar images from the resting state data of subject 001 (volume 60). (A) Slices 5, 17, 30 and 33 displayed using intensity values ranging
from 10 to 1000. (B) Same slices as in (A) but displayed using intensity values ranging from 10 to 50 to highlight the gradient coil noise throughout the image.
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FIGURE 2 | Outline of the proposed method for the automatic detection of gradient coil noise.

To detect the gradient coil noise, we used the mean intensity
of the background image outside the brain. For this, we assumed
the following: (1) the mean background intensity Ibg outside the
brain without gradient coil noise is almost constant throughout
the scan and can have different value for each slice; and (2) the
mean background intensity with gradient coil noise Inoise is
greater than Ibg . To estimate the mean background intensity,
we generated an individualized outside-brain mask using the
outside-brain component obtained from the segmentation of
the anatomical image. This component was co-registered to the
mean functional image to be in the same subject space as the
realigned functional images.

The detection method is outlined in Figure 2. First, the
mean background intensity Im(n) for all slices and volumes was
computed. The variablesm and n are defined as slice and volume
counters, respectively. An example of Im(n) is shown in the top
left image of Figure 2. For a given slice m (red strip in the
figure), we then extracted Im(n) (step 2.1) and estimated the
difference in the mean intensity between successive volumes,
that is, ∆Im(n) = Im(n) − Im(n − 1) (step 2.2). Next, we
identified in step 2.3 the values of n, denoted as np, where this
difference was greater than a set threshold value thr, assumed
to be the minimum jump in mean background intensity due
to the gradient coil noise. This step was intended to capture
sudden jumps from the background intensity Ibg , although it
may also be possible that this step would capture jumps from
Inoise. Next, we computed the minimum of Im(np) for all np (step
2.4) to obtain an approximation of the minimum of Inoise. This
min Inoise value is indicated by a red dash line in the figure.
To estimate Ibg , we then computed the median of Im(n) for

all n where Im(n) < min Inoise (red circles) shown as a blue
dash line in step 2.5. Due to the possibility that some Im(n)
with noise would be included in the estimation of Ibg , we used
the median, which is more robust to outliers, instead of the
mean to minimize the potential overestimation of Ibg . The main
purpose of steps 2.2–2.5 was to get an estimate of Ibg . After
obtaining this estimate, we then used it to identify volumes with
noisy mth slice, that is, any n satisfying Im(n) > Ibg + thr. To
do this, Ibg was subtracted from Im(n) for each n and any n
where the difference was greater than thr was labeled as ‘‘noisy’’
(red bars in step 2.6). This process was then repeated for other
values of m. Representative result of this labeling is shown in
the lower left image of Figure 2 where noisy slices are shown
in yellow. Volumes with at least one slice labeled as noisy were
censored in the noise-corrected analyses. In order to obtain
a reasonable estimate of the individualized RSNs, participants
whose remaining number of volumes after noise correction was
less than 120 volumes (5 min) were excluded.

RESULTS

Gray Matter Changes Across Sessions
All paired sample t-test comparisons of preprocessed GM images
did not show any significant difference between sessions using
FWE p < 0.05. Estimated ICC values for the 116 ROIs in
the AAL template are plotted in Figure 3A. The mean ICC
value across all ROIs was 0.96 (SD = 0.02) and ICC values
ranged from 0.87 to 0.99. All values are close to 1 indicating
that between-subject differences dominate compared to the
differences among the four sessions. This result is reasonable as
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FIGURE 3 | Intra-class correlation (ICC) values of regional gray matter (GM)
volume within 116 AAL regions of interest (ROIs; A) and estimated η2 values of
the 18 resting state networks (RSNs; B). PVis_A, primary visual (anterior);
Lang, language; LECN, left executive control; MedSM, sensorimotor (medial);
PVis_B, primary visual (medial); RECN, right executive control; HVis_A, high
visual (medial); Prec, precuneus; Visuo, visuospatial; vDMN, ventral default
mode; dDMN, dorsal default mode; Cer, cerebellum; Aud, auditory; aSal,
anterior salience; pSal, posterior salience; latSM, sensorimotor (lateral);
HVis_B, high visual (lateral); BG, basal ganglia.

T1-weighted images appeared to be not affected by the faulty
gradient coil.

Low Intensity Gradient Coil Noise
Figure 1 demonstrates the effect of a faulty gradient coil on the
echo planar images obtained during sessions S1 and S2. The
generated gradient coil noise was not immediately visible when
slices were viewed at full intensity range (Figure 1A). However,
the noise, characterized by a striped pattern throughout the
image, became more evident at low intensity values (Figure 1B).
This gradient coil noise appeared randomly, sometimes affecting
most of the volumes (and slices within the volume) in the scan,
but at other times, only affecting a limited number of volumes or
slices or none at all.

The performance of the proposed method for the automatic
detection of volumes with gradient coil noise is illustrated
in Figure 4, which shows the number of detected ‘‘noisy’’

volumes as a function of the threshold. From the figure, it is
evident that for clean datasets, a sharp drop in the number of
detected ‘‘noisy’’ volumes from 193 (total number of volumes)
to 0 could be observed as the threshold value approached to 2.
On the other hand, datasets affected with the gradient coil noise
showed a different pattern. A sharp decrease in the number of
detected volumes could still be observed, but the plot’s value
did not completely reach 0. Instead, the plot plateaued, then
slowly decreased towards 0. We surmised that the range of
threshold values where the plot plateaued could serve as the
effective range of intensity values separating Ibg from Inoise.
The receiver operating characteristic (ROC) curves constructed
from two representative noisy datasets are shown in the inset.
Representative output of the automatic detection method for
threshold value equal to 3 indicated by the blue vertical dash line
in Figure 4 is shown in Figure 5 for two resting state fMRI data
severely corrupted by the gradient coil noise. Mean background
intensity for the entire image (1st row) and per slice (2nd row)
showed sharp intensity increases in volumes/slices corrupted by
the noise. The number of slices considered as noisy for each
volume is plotted in the 3rd row with the specific noisy slices
shown in the last row. A value of 3 was chosen for the threshold in
the succeeding analyses since most noisy datasets have plateaued
at around this value.

Resting state fMRI scans severely affected by gradient coil
noise included those of subject 001 in S1 (Figure 5A), subject
002 in S2 (Figure 5B), subject 017 in S1, subject 018 in S1, and
subject 019 in S3. We note that the last case (subject 019 in S3)
was not really due to scanner noise but rather due to one of
the slices that was not properly reconstructed. Some volumes
from subject 019 in S1 were also affected. Censoring volumes
affected by the gradient coil noise resulted in some datasets with
less than 120 volumes (5 min). For this reason, we excluded
some participants in the noise-corrected dual regression analyses.
The number of censored volumes due to gradient coil noise is
listed in Table 1. A full list of excluded participants for different
comparisons is also given in Table 2.

Resting State Networks
From the 30 group ICs, we identified 18 components related
to known RSNs. These include primary visual (anterior and
posterior), high visual (medial and lateral), language, left
executive, sensorimotor (medial and lateral), right executive,
precuneus, visuospatial, default mode (ventral and dorsal),
cerebellum, auditory, salience (anterior and posterior) and basal
ganglia networks.

Mean Within Network Functional
Connectivity
The mean and SD of WNFC values across participants for all
sessions are summarized in Table 3. The computed ICC values
for all RSNs are also included in the last column. Following
the characterization of Li et al. (2015), 15 out of 18 RSNs
had ICC values that could be considered as fair (>0.4). Three
networks including salience (posterior and anterior) and lateral
high visual networks had good ICC values (>0.6), while the
language, precuneus, and ventral DMNs had poor ICC (<0.4).
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FIGURE 4 | Performance of the proposed automatic detection method. Plots of the detected number of volumes with gradient coil noise as a function of the
threshold value ranging from 0.1 to 10 for all datasets. Inset: receiver operating characteristic (ROC) curves for two representative datasets (from subject 001 in
S1 and subject 002 in S2) affected by gradient coil noise.

ICC values greater than 0.4 are still reasonable as fMRI results
with ICC values ranging from 0.33 to 0.66 are considered as
typically reliable (Bennett and Miller, 2010).

Spatial Similarity of RSNs
Box plots of η2 values for the 18 RSNs are shown in Figure 3B.
The degree of spatial similarity of the participant-specific RSNs
compared with the mean RSN was found to be high with mean
η2 values across participants and sessions ranging from 0.73 for
the cerebellum (Cer) to 0.79 for the primary visual (anterior,
PVis_A). Note that there were some participant-specific RSNs
with η2 values that were identified as outliers (red plus sign
in the plot), particularly in primary visual network (PVis_A
and PVis_B) and high visual network (HVis_A), with η2 values
below 0.7.

Dual Regression Analyses
Results of the dual regression analyses are given in Tables 4–6
and Figure 6. When no correction was performed (including
all participants and volumes), clusters of voxels showing
significant changes in functional connectivity between S1 and
S2 could be observed in several networks including primary
visual, sensorimotor, high visual, visuospatial and auditory

networks (Table 4). Within-network connectivity changes for
the primary visual network and high visual network are
shown in Figures 6A,B (1st row). We also observed significant
connectivity changes in primary visual and high visual networks
between S1 and S3, and in high visual network between S1 and
S4. On the other hand, the cerebellum showed significant
connectivity changes between S3 and S4.

Correcting for the effect of headmotion by censoring volumes
with FD values greater than 0.2 reduced the number of voxels
exhibiting significant connectivity changes between S1 and S2
(Table 5). In particular, the number of voxels in the primary
visual, sensorimotor and high visual networks was significantly
reduced when head motion was taken into account. This is also
evident in Figure 6 (2nd row). On the other hand, the effect
of head motion correction on the connectivity changes in the
visuospatial networks was relatively modest. Between S1 and
S3, significant changes in connectivity in the (primary/high)
visual networks was also reduced, although some other networks
(LECN, sensorimotor and visuospatial) also exhibited a slight
increase in the number of voxels showing significant connectivity
changes. The observed changes in the cerebellum for the
no-correction analysis between S3 and S4 disappeared, indicating
that the observed change could be driven by motion artifact.
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FIGURE 5 | Detection of gradient coil noise using the approach described in the main text for two representative datasets from subject 001 (A) and subject 002 (B).
The first row is the mean intensity of all voxels within the individualized outside-brain mask plotted against volume number. The second row is the mean intensity per
slice. The third row is the number of slices affected by the gradient coil noise plotted against volume number as detected by the described method. The last row
shows the same information per slice (shown in yellow). For this analysis, the threshold value was set to 3.

The sensorimotor network, however, showed an increase in the
number of voxels, which was not observed in the no-correction
analysis. Overall, we could observe a reduction in the number
of voxel showing significant connectivity changes when head
motion was taken into account. The list of the number of
censored volumes for each participant and session is given in
Table 1 and the list of participants excluded in the motion-
corrected analyses due to excessive head motion is given in
Table 2.

When datasets were corrected for gradient coil noise,
the number of voxels exhibiting connectivity changes was
significantly reduced especially in comparisons involving S1
(Table 6). Specifically, the total number of significant voxels was
reduced from 3237, 840 and 92 in no-correction analyses to
260, 0 and 30 in noise-corrected analyses in S1 vs. S2, S1 vs.
S3 and S1 vs. S4, respectively. Figures 6A,B (3rd row) shows
the case for the visual networks. This clearly suggests that the
observed connectivity changes were spurious and mainly due
to the gradient coil noise in resting state fMRI data acquired
before the gradient coil was replaced. The remaining voxels with

significant connectivity changes could be due to other factors
including motion artifact. For instance, the number of voxels
in high visual network was reduced when motion was taken
into account. Thus, the remaining 180 voxels in this network
could just be due to head motion. In addition, the 44 voxels
observed in the cerebellum in S3 vs. S4 comparison could also be
due to motion as this cluster disappeared when the analysis was
corrected for motion. Compared to the no-correction analyses,
we also observed an increase in the number of voxels showing
significant connectivity changes in the basal ganglia network
especially in comparisons involving S2. Again, this could be
driven by head motion as the number of voxels with significant
connectivity changes in this network were very limited in the
motion-corrected analyses (Table 5) and subject 013 had high
motion data in both S2 and S4 (Table 1). Based on these
results, censoring volumes affected by gradient coil noise could
lead to reproducible RSNs on datasets obtained with the same
gradient coil (i.e., S1 vs. S2 and S3 vs. S4) and between
different gradient coils (i.e., S1 vs. S3, S1 vs. S4, S2 vs. S3
and S2 vs. S4).
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TABLE 1 | Number of resting state functional magnetic resonance imaging (fMRI) volumes censored due to head motion (mean FD > 0.2) and gradient coil noise
(threshold = 3).

Participant ID Head motion Gradient coil noise

S1 S2 S3 S4 S1 S2 S3 S4

s001 39 11 37 42 121(∗) 0 0 0
s002 14 5 11 18 0 80(∗) 0 0
s003 12 2 1 0 0 0 0 0
s004 17 55 55 40 0 0 0 0
s005 25 60 35 47 0 0 0 0
s006 1 4 15 3 0 0 0 0
s007 3 24 14 13 0 1 0 0
s008 50 61 30 50 0 0 0 0
s009 19 6 2 15 0 1 0 0
s010 7 7 10 55 0 0 0 0
s011 8 18 22 16 0 0 0 0
s012 6 32 74(∗) 53 0 1 0 0
s013 11 101(∗) 53 105(∗) 0 6 0 0
s014 19 46 69 35 0 0 0 0
s015 29 1 31 15 0 0 0 0
s016 37 20 11 20 0 0 0 0
s017 5 2 11 39 121(∗) 0 0 0
s018 12 11 22 3 97(∗) 0 0 0
s019 9 2 14 4 47 0 119(∗) 0
s020 2 3 9 11 5 0 0 0

(∗) Indicates datasets excluded during motion-corrected or scanner-noise-corrected dual regression analyses.

TABLE 2 | Participants’ data excluded in paired sample comparisons for the
motion-corrected and scanner-noise-corrected dual regression analyses.

Excluded dataset (subject ID)

Comparisons Gradient coil noise Head motion

Session 1 vs. Session 2 001, 002, 017, 018 013
Session 1 vs. Session 3 001, 017, 018, 019 012
Session 1 vs. Session 4 001, 017, 018 013
Session 2 vs. Session 3 002, 019 012, 013
Session 2 vs. Session 4 002 013
Session 3 vs. Session 4 019 012, 013

Scrubbing volumes affected by head motion and scanner noise resulted in datasets
with number of volumes less than 120 (5 min).

Unfortunately, simultaneously censoring both gradient coil
noise and head motion was not possible since it would result
to several datasets with volumes less than 120. However for
completeness, we included in Supplementary Table S1 (excluded
data sets) and Supplementary Table S2 (voxel count) the
case where both gradient coil noise and head motion were
simultaneously censored lowering the minimum number of
volumes to 96 (4 min) and for a limited data set.

DISCUSSION

We examined the effect of low intensity gradient coil noise and
gradient coil replacement on the reproducibility of T1-weighted
images and resting state fMRI data. Our main findings showed
that: (1) T1-weighted images were not affected by this noise
and metrics derived from T1 were highly reproducible even
after gradient coil replacement; (2) in spite of being low
in intensity, the observed gradient-coil-generated noise could
introduce significant connectivity changes in several RSNs

affecting WNFC values, which consequently, resulted to only
fair ICC values; and (3) these spurious connectivity changes
could be eliminated by censoring volumes corrupted by gradient
coil noise in the same manner as minimizing the effects
of head motion by censoring volumes with high motion
(Power et al., 2015). After gradient coil noise correction,
spurious connectivity changes were significantly reduced, if
not completely removed, in comparisons between sessions
within the same gradient coil (S1 vs. S2) and across different
gradient coils (e.g., S1 vs. S3 and S2 vs. S4) suggesting
the reproducibility of RSNs before and after gradient coil
replacement.

RSN Reproducibility
Previous studies have shown that RSNs are reproducible within
participants over durations of weeks to months (Damoiseaux
et al., 2006; Wisner et al., 2013) and even longer periods (Guo
et al., 2012; Choe et al., 2015). A study comparing test-retest
reliability of resting state fMRI data using temporal signal
to noise ratio (tSNR) within two RSNs as a metric after a
major hardware repair had also shown consistent tSNR across
conditions (Huang et al., 2012). However, the authors did not
mention the presence of noise in the used resting state fMRI data
before gradient coil replacement or considered the effect of noise
on the reproducibility of resting state fMRI.

In this study, we have focused on the effect of gradient
coil noise on the reproducibility of RSNs. Our results showed
that before the gradient coil was changed, the gradient coil
noise significantly affected several RSNs in terms of spurious
detectable connectivity changes. The gradient coil noise also
affected the estimates of the mean WNFC as can be seen
in Table 3, where the primary visual (anterior) and high
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TABLE 3 | Mean and standard deviation (SD) of within-network functional connectivity (WNFC) values across participants for each session and the estimated intra-class
correlation (ICC) value.

Resting state networks Mean SD ICC

S1 S2 S3 S4 S1 S2 S3 S4

Primary visual (anterior) 1.07 1.54 1.44 1.28 0.64 0.81 0.61 0.56 0.51
Language 0.58 0.61 0.63 0.58 0.18 0.16 0.14 0.15 0.36
LECN 0.59 0.57 0.57 0.56 0.18 0.15 0.12 0.14 0.56
Medial sensorimotor 0.69 0.84 0.86 0.86 0.36 0.35 0.32 0.35 0.52
Primary visual (posterior) 0.99 1.33 1.33 1.16 0.47 0.58 0.54 0.45 0.46
RECN 0.56 0.54 0.53 0.53 0.12 0.13 0.09 0.12 0.53
High visual (medial) 0.76 0.96 0.98 0.92 0.34 0.37 0.41 0.38 0.52
Precuneus 0.82 0.82 0.82 0.75 0.21 0.18 0.20 0.18 0.37
Visuospatial 0.57 0.70 0.69 0.63 0.18 0.23 0.17 0.19 0.54
Ventral DMN 0.52 0.52 0.53 0.48 0.14 0.12 0.12 0.13 0.32
Dorsal DMN 0.55 0.52 0.54 0.52 0.11 0.13 0.12 0.14 0.44
Cerebellum 0.42 0.47 0.48 0.44 0.13 0.12 0.12 0.11 0.59
Auditory 0.64 0.77 0.79 0.66 0.21 0.24 0.26 0.19 0.45
Anterior salience 0.42 0.47 0.46 0.43 0.09 0.13 0.13 0.10 0.63
Posterior salience 0.63 0.62 0.61 0.57 0.16 0.15 0.17 0.15 0.60
Lateral sensorimotor 0.72 0.82 0.82 0.77 0.29 0.26 0.23 0.27 0.57
High visual (lateral) 0.49 0.62 0.61 0.58 0.17 0.20 0.19 0.19 0.60
Basal ganglia 0.59 0.63 0.67 0.59 0.13 0.16 0.13 0.17 0.50

LECN, left executive control network; RECN, right executive control network; DMN, default mode network; ICC, intra-class correlation.

TABLE 4 | Voxel count for no-correction dual regression analyses.

Resting state networks S1 vs. S2 S1 vs. S3 S1 vs. S4 S2 vs. S3 S2 vs. S4 S3 vs. S4

Primary visual(1) 1178 212 0 0 0 0
Language 1 0 0 0 0 0
LECN 2 0 0 0 0 0
Sensorimotor(2) 821 0 0 0 20 0
RECN 0 0 0 0 0 0
High visual(3) 1046 626 83 0 0 0
Precuneus 0 0 0 0 0 0
Visuospatial 158 2 0 0 0 0
DMN(4) 0 0 1 0 0 0
Cerebellum 0 0 0 3 0 56
Auditory 31 0 0 0 0 0
Salience(5) 0 0 0 0 0 0
Basal ganglia 0 0 8 0 16 0
Total 3237 840 92 3 36 56

The indicated number of voxels include both increase and decrease contrasts. S1, session 1; S2, session 2; S3, session 3; S4, session 4; LECN, left executive control
network; RECN, right executive control network; DMN, default mode network. NOTE: Total of (1)anterior and posterior components, (2)medial and lateral, (3)medial and
lateral, (4)dorsal and ventral, and (5)posterior and anterior.

visual (medial) networks have relatively lower WNFC values
in S1, where most of the gradient coil noise was observed,
compared to other sessions. This, in turn, could have affected
the estimates of the ICC values resulting in a relatively fair
reliability of the networks. The box plots of the spatial similarity
measure η2 (Figure 3B) showed several outliers which could
again be driven by the presence of the gradient coil noise
in some resting state fMRI data before the gradient coil was
replaced.

To mitigate this issue, we introduced a technique which
significantly reduced, if not completely removed, spurious
connectivity changes driven by the gradient coil noise in some
resting state fMRI data. We employed a similar method, called
scrubbing or censoring, used to minimize motion artifacts
in the presence of large head motion (Power et al., 2015).
Application of this method reduced the number of voxels

exhibiting spurious connectivity changes in all networks, except
in high visual and basal ganglia networks, in comparisons
involving S1. The remaining voxels could be just due to
other factors including motion artifact. The disadvantage
of the method is that it reduced the number of volumes
included in the analysis and led to the exclusion of the
entire dataset for extremely noisy scans. In this case, a
method that would only remove the noise from the image
without discarding the volumes in the analysis would be more
beneficial.

Another concern with censoring relates to the differences
in the number of volumes included in the analysis (degrees of
freedom) for each participant, which could introduce variability
in the estimates of the correlation values. In our analysis, we
set the minimum number of volumes to 120 (5 min) and
datasets with volumes less than this minimum were excluded.

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2018 | Volume 12 | Article 148

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Bagarinao et al. RSN Reproducibility After Coil Replacement

TABLE 5 | Voxel count for motion-corrected dual regression analyses.

Resting state networks S1 vs. S2 S1 vs. S3 S1 vs. S4 S2 vs. S3 S2 vs. S4 S3 vs. S4

Primary visual(1) 97 1 0 0 1 0
Language 3 0 0 2 0 0
LECN 26 11 0 0 2 0
Sensorimotor(2) 309 21 0 0 0 106
RECN 0 0 0 0 0 0
High visual(3) 316 258 0 0 0 17
Precuneus 0 0 0 0 0 0
Visuospatial 129 46 0 0 0 0
DMN(4) 0 0 0 0 0 0
Cerebellum 4 0 0 15 0 0
Auditory 0 0 0 0 0 0
Salience(5) 16 0 13 0 0 0
Basal ganglia 0 0 5 3 0 0
Total 900 337 18 20 3 123

The indicated number of voxels include both increase and decrease contrasts. S1, session 1; S2, session 2; S3, session 3; S4, session 4; LECN, left executive control
network; RECN, right executive control network; DMN, default mode network. NOTE: same as in Table 4.

TABLE 6 | Voxel count for gradient-coil-noise-corrected dual regression analyses.

Resting state networks S1 vs. S2 S1 vs. S3 S1 vs. S4 S2 vs. S3 S2 vs. S4 S3 vs. S4

Primary visual(1) 0 0 0 0 0 0
Language 0 0 0 0 0 0
LECN 0 0 0 0 0 0
Sensorimotor(2) 0 0 0 1 0 0
RECN 0 0 0 0 0 0
High visual(3) 180 0 0 0 0 0
Precuneus 0 0 0 0 0 0
Visuospatial 0 0 0 2 0 0
DMN(4) 7 0 0 0 0 0
Cerebellum 0 0 0 0 0 44
Auditory 0 0 0 0 0 0
Salience(5) 0 0 0 0 1 0
Basal ganglia 73 0 30 33 70 0
Total 260 0 30 36 71 44

The indicated number of voxels include both increase and decrease contrasts. S1, session 1; S2, session 2; S3, session 3; S4, session 4; LECN, left executive control
network; RECN, right executive control network; DMN, default mode network. NOTE: same as in Table 4.

As shown by Van Dijk et al. (2010), estimates of correlation
strengths started to stabilize with acquisition times as brief
as 5 min. We can therefore assume that in the preceding
analyses the variability introduced due to the differences in
the number of volumes would be minimal. Moreover, for the
noise-corrected analyses, most of the datasets with censored
volumes were excluded and only one dataset (subject 019 in
S1) where the number of censored volumes was greater than
six was included. The findings of these analyses were therefore
minimally affected by this issue. For the motion-corrected
analyses, the number of censored volumes for each participant
did vary from session to session. Thus, the results of these
analyses should be carefully interpreted with this potential
limitation.

T1 Anatomical Image
With ICC values close to 1, our ROI-based analysis of GM images
revealed high reproducibility across gradient coil replacement.
This is further confirmed using a direct voxel-wise comparison
between sessions showing no significant changes observed
in statistical maps using a statistical threshold of p < 0.05

FWE-corrected for multiple comparisons, a standard practice
for voxel-based morphometric analysis. This is consistent with
the observation that the faulty gradient coil had not yet affected
T1-weighted images and had not introduced any artifact into
these images. This finding is also consistent with that of Huang
et al. (2012) showing high reproducibility of the volumes of
selected ROIs as stability metrics for T1 images after gradient coil
replacement.

Detection of Gradient Noise
We also proposed a reliable method to automatically detect the
gradient coil noise from the resting state fMRI data. The method
relied on the noise characteristics observed in our dataset. In
particular, it assumed that the mean intensity of the background
image (outside brain) was constant in the absence of gradient
coil noise. Under this condition, the method worked quite
satisfactorily. It may also work with other types of randomly
occurring image artifacts such as image reconstruction failures
as demonstrated in one of the resting state fMRI data. However,
its general applicability to other types of noise will depend on the
characteristics of the noise being considered.
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FIGURE 6 | Effects of the correction methods in removing the spurious significant connectivity changes, shown in red, between sessions S1 and S2 observed in (A)
primary visual network and (B) high visual network (lateral). RSNs are shown in green (group independent components (ICs) z > 3). P, posterior; A, anterior; L, left;
R, right.

Another important issue to consider for the method’s general
applicability is the proper choice of the threshold value to
use in detecting noisy slices or volumes. Here, we used a
threshold value of 3, which appeared to be optimal for the
current datasets. However, this may not be the case for
other datasets. Choosing the appropriate threshold value is
important especially when using censoring to minimize spurious
findings. Interestingly, the plots showing the number of detected
‘‘noisy’’ volumes as a function of the threshold (Figure 4)
could provide some useful hints in selecting the appropriate
threshold value. As we have mentioned in the results section,
the observed plateau in the plot could indicate the range of
threshold values separating Ibg from Inoise. Given this, the value
where the plot starts to plateau could therefore be used as
the appropriate threshold. This worked for most of our noisy
datasets, although its general applicability still remains to be
validated.

CONCLUSION

In summary, hardware-related noise such as those due to a
faulty gradient coil could significantly affect the reproducibility
of RSNs. In spite of its low intensity, this type of noise
could introduce spurious connectivity changes in several RSNs,
which could be easily mistaken as valid changes. By censoring
corrupted image volumes during the analysis, the number
of spurious connectivity could be significantly minimized if
not completely removed. Applying this correction method
could also make RSNs reproducible even after gradient coil
replacement. These findings suggest that, with an appropriate
correction method, resting state fMRI datasets affected by

hardware problems could still be used to generate consistent and
reproducible RSNs.
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