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Under conditions of profound sensory deprivation, the brain has the propensity to
reorganize. For example, intact sensory modalities often recruit deficient modalities’
cortices for neural processing. This process is known as cross-modal reorganization
and has been shown in congenitally and profoundly deaf patients. However, much less
is known about cross-modal cortical reorganization in persons with less severe cases of
age-related hearing loss (ARHL), even though such cases are far more common. Thus,
we investigated cross-modal reorganization between the auditory and somatosensory
modalities in older adults with normal hearing (NH) and mild-moderate ARHL in
response to vibrotactile stimulation using high density electroencephalography (EEG).
Results showed activation of the somatosensory cortices in adults with NH as well as
those with hearing loss (HL). However, adults with mild-moderate ARHL also showed
robust activation of auditory cortical regions in response to somatosensory stimulation.
Neurophysiologic data exhibited significant correlations with speech perception in
noise outcomes suggesting that the degree of cross-modal reorganization may be
associated with functional performance. Our study presents the first evidence of
somatosensory cross-modal reorganization of the auditory cortex in adults with early-
stage, mild-moderate ARHL. Our findings suggest that even mild levels of ARHL
associated with communication difficulty result in fundamental cortical changes.

Keywords: neuroplasticity, cross-modal plasticity, sensorineural hearing loss, sLORETA, mild-moderate hearing
loss, age-related hearing loss, somatosensory evoked potentials

INTRODUCTION

Age-related hearing loss (ARHL) is estimated to be the third most commonly reported chronic
condition in the United States (Masterson et al., 2016). With the increase in the number of older
adults and overall life expectancy (Christensen et al., 2009; Kochkin, 2009), more individuals
will be at risk for acquiring ARHL than ever before. For instance, the United States National
Institute of Health-National Institute of Deafness and Other Communication Disorders estimates
that approximately 25%–45.6% of adults age 65–74 years have a disabling hearing loss (HL). This
estimate increases to 78%–80% in those who are 75 years and older (Lin et al., 2011c). However,
currently there is a dearth of available information regarding neuroplastic changes in ARHL.

Long-term profound sensory deprivation (i.e., as in deafness or blindness) has the
potential and the tendency to lead to neuroplastic reorganization of the cerebral cortex—both
between and within sensory modalities (Bavelier and Neville, 2002; Doucet et al., 2006;
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Mitchell and Maslin, 2007; Strelnikov et al., 2013; Glick and
Sharma, 2017). For example, intact sensory systems can recruit
and repurpose deprived sensory cortices for processing of their
own input—a process known as cross-modal reorganization.
Evidence of cortical cross-modal reorganization has been
demonstrated in profound sensory insult, such as deafness and
blindness, in both humans and animals (Hyvärinen et al., 1981;
Sadato et al., 1996; Levänen et al., 1998; Armstrong et al., 2002;
Baldwin, 2002; Auer et al., 2007; Sharma et al., 2007; Allman
et al., 2009; Meredith and Lomber, 2011; Karns et al., 2012;
Glick and Sharma, 2017). For instance, deaf adults have exhibited
cross-modal reorganization of the auditory cortices by both the
visual and somatosensory cortices (for a review see Merabet and
Pascual-Leone, 2010). Similar results have been shown in deaf
adults following cochlear implantation (Sandmann et al., 2012;
Chen et al., 2016).

Despite the aforementioned research performed with
individuals with profound sensory insult, very little is known
about the effects of lesser degrees of sensory deficiency on
cortical organization and plasticity. Recent studies have
presented evidence of cross-modal reorganization between the
visual and auditory systems in adults with mild-moderate HL
(Campbell and Sharma, 2014; Stropahl and Debener, 2017).
In addition, several animal studies have reported evidence of
somatosensory cross-modal reorganization in deaf animals
(Allman et al., 2009; Meredith and Lomber, 2011; Meredith
and Allman, 2012, 2015; Meredith et al., 2012; Basura et al.,
2015). For instance, Allman et al. (2009) presented evidence
of somatosensory cross-modal reorganization of the auditory
system in ferrets with adult onset profound deafness. Meredith
et al. (2012) also presented evidence of somatosensory to
auditory cross-modal reorganization in ferrets with adult-onset,
partial HL (see also Schormans et al., 2017). On the other
hand, no attempts have been made to investigate cortical
reorganization between the auditory and somatosensory systems
in humans with mild forms of HL. Finally, evidence from animal
studies, which describe established anatomical connections
between auditory and somatosensory cortices, suggest that the
somatosensory system is a potential candidate for cross-modal
interaction with the auditory system (Schroeder et al., 2001;
Hackett et al., 2007).

We used high-density electroencephalography (EEG) to
record cortical somatosensory evoked potentials (CSEP) in
response to vibrotactile stimuli in adults with mild-moderate
HL and in age-matched normal hearing (NH) controls. The
aim of our study was to determine whether adults with age-
related, mild-moderate HL showed evidence of somatosensory
cross-modal reorganization and whether such reorganization
was related to functional performance on a clinical test of speech
perception in noise.

MATERIALS AND METHODS

Subjects
The participants for the current study consisted of 19 adults
between the ages of 49 and 77 years. These subjects were

separated into two groups (i.e., NH and HL based on results of
a comprehensive audiological evaluation: (1) NH (n = 9; mean
age = 59.89, S.D. = 6.9); and (2) HL (n = 10; mean age = 66.6,
S.D. = 7.3). The difference in age between these two groups was
not significant (p > 0.05; F = 4.17).

Behavioral auditory thresholds were obtained by performing
standard clinical behavioral audiometry with each individual.
NH was defined as behavioral auditory thresholds less than or
equal to 25 dBHL at 500, 1000, 2000, 4000, and 8000 Hz, while
thresholds at any of these frequencies greater than 25 dBHL
classified participants as having aHL. As a group, the participants
in the HL group had normal behavioral auditory thresholds
from 500–2000 Hz and then exhibited a sloping mild-moderate
sensorineural HL between 2000–8000 Hz. Average audiometric
thresholds are presented for each group in Figure 1 and reflect
the classic profile of early-stage ARHL or ‘‘presbycusis’’. Many of
the individuals in the HL group were not aware that they had a
HL at the time of testing, though some suspected that this was
the case. In all instances of newly identified HL subjects were
counseled by a certified clinical audiologist and were provided
contact information for local audiology clinics in the event
that they wanted to seek intervention. None of the participants
reported having a history of neurologic diagnoses or prior
intervention of their hearing losses.

Speech Perception in Noise
The QuickSIN test, a clinical measure of auditory threshold for
sentences in background noise, was used to determine acuity
of speech perception in background noise (Killion et al., 2004).
Stimuli were presented via a speaker placed at 0◦ azimuth.
Standard clinical testing procedures were used: listeners were
instructed to repeat two sentence lists, consisting of six sentences
each, presented at 65 dB HL. Background noise was increased for
each consecutive sentence in 5 dB increments, so that the signal-
to-noise ratio (SNR) began at 25 dB and ended at 0 dB for the
last sentence. The SNR score from the two lists was averaged for
each listener, providing the level necessary for each individual to
correctly repeat 50% of the key words in each sentence. The lower
the SNR score, the greater the level of background noise that
could be tolerated by the listener, and the better the performance.

EEG Recording and Initial Processing
Procedures
High-density EEG was performed with each participant.
Specifically, subjects were fitted with a 128-electode net
(Electrical Geodesics Inc., Eugene, OR, USA) and were seated
comfortably in an electrically shielded sound-treated both.
Continuous EEG was collected via Netstation 4 software
(Electrical Geodesics Inc.) in response to a vibrotactile stimulus
that was applied to the subjects’ right index finger using
E-Prime 2.0 (Psychology Software Tools, Pittsburg, PA,
USA). Continuous EEG files were divided into CSEP epochs
post-recording (see ‘‘EEG Analysis’’ section below). The
sampling rate of the EEG recordings was 1 kHz and a band-pass
filter set to 0.1–200 Hz was used for initial data filtering.

The stimulus was a 250 Hz tone, which was 90 ms in
duration with 10 ms linear ramps at onset and offset. The
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FIGURE 1 | Average hearing thresholds (dBHL; y-axis) at various frequencies (x-axis) for both the normal hearing (NH; blue) and hearing loss (HL; red) groups for the
right and left ear. The gray band represents the range of NH. Standard errors are shown.

stimuli were presented through a vibrotactile oscillator (Sensory
Systems d.b.a. Radioear Inc., New Eagle, PA, USA; B71 Bone
Transducer) that was temporarily attached to participants’ right
index finger using medical tape. All stimuli were presented at
a level of 55 dBHL, which results in approximately 0.122 g
(1.2 m/s2) of acceleration vibrotactile output by the oscillator.
This level was sufficient for somatosensation, but did not
cause discomfort (Weinstein, 1968). Continuous white noise was
presented simultaneously with the somatosensory stimulation
through a loud speaker oriented at approximately 45◦ azimuths
on the right side of participants. This noise served to mask any
auditory signal produced by the oscillator in addition to the
vibrotactile stimulation (Yamaguchi and Knight, 1991). Since
this noise was ongoing, not time locked to the somatosensory
stimulus, and was random in nature, any auditory response to
it was eliminated from the time-locked CSEP recordings during
evoked potential averaging (Eggermont, 2007). All participants
indicated that while they could clearly feel the vibrotactile
stimuli on their fingertip, they could not hear any tonal
auditory signal coming from the oscillator (i.e., due to the
masking sound of the white noise), consistent with previous
studies (e.g., Bolognini et al., 2010). EEG data corresponding
to approximately 1000 stimuli were collected for each subject
(Hämäläinen et al., 1990).

Following recording, continuous EEG was segmented with
respect to each stimulus. Segments consisted of 100 ms
pre-stimulus and 595 ms post-stimulus. Baseline correction
relative to the pre-stimulus interval was performed. Additionally,
EEG epochs that contained data that were found to be ±100 µV
at selected eye channels (i.e., artifactual eye-blinks) were
removed. Bad channels were flagged, removed and replaced
with interpolated data from remaining electrodes using a
spline interpolation algorithm. The following components
were observed in CSEP waveforms: P50, N70, P100, N140a,

N140b—consistent with previous studies (Johnson et al., 1980;
Hämäläinen et al., 1990; Bolton and Staines, 2014).

Cortical Source Localization Analysis
(Current Density Reconstruction)
Following initial CSEP waveform processing, EEG data were
imported into the EEGLAB toolbox (Delorme andMakeig, 2004)
working in concert with Matlab (MatLab (Version R2014b)
[Software] (2014), Natick, MA, USA) in order to prepare them
for cortical source localization analysis. Within EEGLAB, data
were first baseline corrected relative to the pre-stimulus interval.
Then, all EEG epochs that contained artifact exceeding ±100 µV
were rejected. Additionally, the sampling rate of the EEG
signals was changed to 250 Hz to improve speed and ease of
subsequent processing. Once data had undergone these steps,
they were subjected to independent components analysis (ICA)
within EEGLAB. This analysis provided the consequent ability
to identify and reject (i.e., prune) independent components that
contained artifact and did not account for a significant portion
of the variability in the EEG signal. This pruning process was
repeated for each CSEP component within each subject’s EEG
recording. Previous studies have shown this method to be an
effective means to rid EEG recordings of spurious data prior to
cortical source localization methods (Makeig et al., 1997, 2004;
Hine and Debener, 2007; Debener et al., 2008; Gilley et al., 2008;
Campbell and Sharma, 2014; Sharma et al., 2015).

Once pruning had occurred, data were transferred to
the CURRY Scan 7 Neuroimaging Suite (Compumedics
NeuroscanTM, Charlotte, NC, USA) where current density
reconstruction (CDR) took place. First, grand averaging of
pruned EEG data for each group (i.e., NH and HL) was
performed. Following this step, a second ICA was performed in
order to determine the components that contained data with the
highest SNR, which were to be included in the cortical source
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estimations. Then, a head model was created and standardized
using the boundary element method (BEM; Fuchs et al., 2002;
Hallez et al., 2007). CDRs were then performed via Standardized
Low Resolution Brain Electromagnetic Tomography (sLORETA;
Pascual-Marqui, 2002). This analysis represents the estimation
of the sources of electric neuronal activity distribution (current
density vector field; Pascual-Marqui, 2002, 2007) as a colored
area that is projected onto an averagedmagnetic resonance image
(MRI) of the brain. Gradations in this coloration indicate the
probable current density.

EEG Waveform Analysis and Correlation
With Behavioral Speech Perception in
Noise
Following initial EEG processing, electrodes were divided into
several regions of interest (ROI). ROIs were chosen based
on previous reports of optimal recording locations of CSEPs
(Hämäläinen et al., 1990) and active cortical areas (i.e., temporal
and parietal cortices which generally correspond to auditory

and somatosensory cortices, respectively) that were identified
during CDR. Analysis was performed on the following ROIs:
(1) Left Temporal (LTemp) ROI (electrodes: TP7, T9, P9, TP9,
T5-P7); (2) Left Parietal (LPar) ROI (electrodes: P3, P5, CP1,
P1, PO7, PO3); (3) Right Parietal (RPar) ROI (electrodes: P4,
P6, CP2, P2, PO8, PO4); (4) Right Temporal (RTemp) ROI
(electrodes: TP8, T10, P10, TP10, T6-P8). Given that the EGI
EEG recording system employs a geodesic electrode organization
pattern, the above listed electrodes represent approximate
10-20 system electrode locations, as reported in Luu and Ferree
(2000).

Grand average CSEPs were calculated for each ROI by
first averaging ROI electrodes’ waveforms for each subject,
from which latencies and amplitudes were computed. Each
participant’s ROI waveform were averaged to create a grand
average. Then, each participant’s ROI waveforms were plotted
and latency, absolute and peak-to-peak amplitude were extracted
and noted. Latency and amplitude values were then used in
between-subjects statistical comparisons in order to assess the
differences between groups from each ROI (using SPSS Statistical

FIGURE 2 | (A) Current density reconstructions (CDRs) of cortical activity in response to vibrotactile stimuli at the time of each of the major cortical somatosensory
evoked potentials (CSEP) peaks (P50, N70, P100, N140a, N140b). Adults with NH are represented in the left column, while results from those with HL are found in
the right column. Current density (i.e., Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) F-distribution) is coded by a color gradient, such
that yellow represents strongest activity, with increasingly darker colors standing for weaker activity. (B) List of activated areas at each of the CSEP peak time points
for both the NH (left) and HL (right) groups. Activations are shown for the left hemisphere.
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Software, version 24; IBM Corp. Released, 2015, Armonk,
NY, USA). Given that EEG data were not normally distributed,
non-parametric Mann-Whitney U Tests were used to compare
latency and amplitude values between groups. CSEP latencies
and amplitudes that were found to be significantly different
between groups were correlated (using Spearman’s Rho) with
participant’s speech perception scores to assess possible links
between neural activity and behavioral speech perception in
noise. Multiple comparisons in both between group comparisons
and correlations were corrected using the False Discovery Rate
correction method introduced by Benjamini and Hochberg
(1995). A false discovery rate of 0.1 was determined prior to
correction and then used in these calculations.

RESULTS

Current Density Reconstruction (CDR)
Results
Analysis of the sources of cortical activity, via sLORETA, yielded
evidence of differences between the group of adults with NH and
those with HL (see Figure 2). EEG signals were recorded from
all scalp electrodes in both hemispheres and sLORETA analysis
(shown in Figure 2) revealed the expected primarily contralateral
source activation (i.e., left hemisphere). Of this activity, the
primary activation was in post-central gyrus (i.e., primary and
secondary somatosensory cortices), in Brodmann Areas (BA) 2,
3, and 5, for both groups. In addition, both groups exhibited
activity in the pre-central gyrus, and inferior and superior
parietal lobules (BA 4, 40, and 7, respectively). However, the

HL group presented with additional activations that were not
observed in the NH group in many regions that are activated
during auditory processing (Figure 2B). These cortical regions
included: Transverse temporal gyrus (BA 41); Superior temporal
gyrus (BA 41, 22); Temporal pole (BA38); Middle temporal gyrus
(BA 21); Inferior temporal gyrus (BA 20); Supramarginal gyrus
(BA 40); Insula (BA 13); Middle frontal gyrus (BA 6); Paracentral
lobule (BA 5, 6); and Cingulate gyrus (BA 24). These findings
point to cross-modal reorganization of the auditory cortices by
the somatosensory system in participants with HL only.

CSEP Waveform Analysis
Group grand average CSEP waveforms for the Left Temporal
(LTemp), Right Parietal (RPar), and Right Temporal (RTemp)
ROIs can be seen in Figure 3. Statistical comparison of CSEP
peak latencies revealed significant differences in three of four
regions of interest (ROI; see Table 1). In the LTemp ROI, the
P50 CSEP waveform component latency was significantly earlier
in the HL group (p = 0.01; U = 75.5). From the RPar ROI,
the HL group’s P50 (p = 0.001; U = 82.0), N70 (p = 0.004;
U = 78.5), and N140a (p = 0.008; U = 76.5) CSEP peak
latencies were significantly earlier compared to those of the
NH group. CSEP latencies from the RTemp ROI were also
earlier in the HL group for the P50 (p = 0.00; U = 86.0), N70
(p = 0.00; U = 88.0) and P100 (p = 0.00; U = 89.0) waveform
components, relative to the NH group. No difference in mean
CSEP absolute or peak-to-peak amplitude was observed in any
ROIs. In general, shorter peak latencies have been taken to
suggest more efficient stimulus processing (and shorter latencies
in the HL group are considered markers of cross-modal plasticity

FIGURE 3 | Comparison of grand averaged CSEP waveforms of the HL (solid) and NH (dashed) groups from the Left Temporal (LTemp), Left Parietal (LPar), Right
Parietal (RPar) and Right Temporal (RTemp) ROIs. Significantly different CSEP peak latencies are denoted by asterisks—single asterisks indicate significance at the
p = 0.05 level, while double asterisks highlight differences at the p ≤ 0.001 level. Y-axis scale (µV; bottom middle) corresponds to all waveforms.
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TABLE 1 | Mean cortical somatosensory evoked potential (CSEP) peak latencies and standard deviations for CSEP waveform components that were found to be
statistically different between the hearing loss (HL) and normal hearing (NH) groups.

ROI and waveform Group Mean latency Std. deviation 95% confidence interval Statistic
component (ms) (ms) (upper—lower bound)

LTemp P50 HL 57.2 18.4 43.9–70.4 0.01; 75.5
NH 72 4.9 54.6–79.1

RPar P50 HL 43.2 8.3 37.2–49.2 0.001; 82.0
NH 64.4 10.8 57.1–71.7

RPar N70 HL 66.4 10.1 59.1–73.7 0.004; 78.5
NH 89.7 17.9 77.5–101.7

RPar N140a HL 139.6 26.9 120.3–158.9 0.01; 76.5
NH 181.3 27.5 162.6–199.8

RTemp P50 HL 45.2 8.2 39.3–51.1 0.00; 86.0
NH 68 11.3 59.9–75.3

RTemp N70 HL 60 10.5 52.5–67.5 0.00; 88.0
NH 89.7 11.6 82.4–98.4

RTemp P100 HL 96.8 11.7 88.4–105.2 0.00; 89.0
NH 129.3 13.8 188.2–137.8

Latencies and standard deviations reported in milliseconds (ms).

FIGURE 4 | (A) Significant negative correlation between QuickSIN score and
the N140 CSEP peak latency from the Right Parietal (RPar) ROI (r = −0.508;
p = 0.027). (B) Significant negative correlation between QuickSIN score and
the P100 CSEP peak latency from the Right Temporal (RTemp) ROI
(r = −0.506; p = 0.027).

Buckley and Tobey, 2011; Sandmann et al., 2012; Campbell and
Sharma, 2014).

Relationship of Cross-Modal
Reorganization and Functional Outcome
The HL and NH groups did not differ significantly in their
mean QuickSIN scores (p = 0.079; U = 23.0). However, a
trend was observed in these scores between groups, such that
the NH group tended to score lower suggestive of better
speech perception in noise (mean = 1.0; S.D. = 1.9), while
the HL group tended to present with higher (worse) scores
(mean = 2.75; S.D. = 2.06) consistent with previous studies
(Gifford et al., 2011). In order to examine possible relationships
between neural activity and behavioral performance, CSEP
waveform peak latencies from the LTemp, RPar and RTemp
ROIs that were significantly different between groups were
correlated against QuickSIN scores. These analyses revealed
two significant findings following correction for multiple
comparisons (Benjamini and Hochberg, 1995). First, the peak
latency of the N140a CSEP waveform component from the
RPar ROI was significantly negatively correlated with QuickSIN
scores (r = −0.508; p = 0.027; see Figure 4A) such that
adults who showed greater difficulty perceiving speech in
noise also showed earlier latencies (indicative of cross-modal
reorganization). Similarly, earlier RTemp P100 CSEP peak
latencies were correlated with worse speech perception in noise
scores on the QuickSIN test (r = −0.506; p = 0.027; see
Figure 4B). These results are consistent with previous studies
of cross-modal reorganization by vision in deaf adults where
earlier cortical response latencies have been associated with
worse speech perception (Buckley and Tobey, 2011; Sandmann
et al., 2012; Campbell and Sharma, 2014).

DISCUSSION

We investigated whether adults with ARHL showed evidence
of somatosensory cross-modal reorganization and if this
reorganization was related to behavioral speech perception in
noise. CDRs showed patterns of activation in cortical regions
typically associated with somatosensory processing in both
HL and NH adults, but only HL adults showed additional
activation of auditory processing areas, such as the STG, and
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association and multisensory areas (Figure 2). Additionally,
CSEP waveform analysis revealed earlier peak latencies for the
P50 CSEPwaveform component in the LTempROI, the P50, N70
and N140a components in the RPar ROI, and the P50, N70 and
P100 CSEP components in the RTemp ROI for the HL group,
compared with the NH group (Figure 3). Finally, the latencies of
the RPar, N140a and the RTemp P100 CSEP components were
negatively correlated with functional performance on a clinical
test of speech perception in noise (i.e., QuickSIN), suggesting
that those listeners who exhibited more difficulty in speech
perception showedmore evidence of cross-modal somatosensory
plasticity (Figure 4). Overall, our results suggest that adults
with age-related, mild-moderate HL exhibit cross-modal cortical
reorganization from the somatosensory modality and that such
reorganization is associated with decreased speech perception in
noise performance.

Somatosensory Cross-Modal
Reorganization in Mild-Moderate ARHL
Given that a basic tenet of neuroplasticity is that the brain will
reorganize following sensory deprivation (Merabet and Pascual-
Leone, 2010), it is not surprising that a long period of profound
sensory deprivation in deafness results in somatosensory cross-
modal plasticity. Indeed, several studies have shown evidence of
somatosensory cross-modal reorganization in both deaf animals
and humans (Sadato et al., 1996; Levänen et al., 1998; Baldwin,
2002; Auer et al., 2007; Sharma et al., 2007; Allman et al.,
2009; Meredith and Lomber, 2011; Karns et al., 2012; Wong
et al., 2015). However, the current study demonstrates for
the first time that cross-modal reorganization of the auditory
cortex by the somatosensory system occurs in humans when
sensory deprivation is relatively modest, that is, in age-related
mild-moderate HL.

Possible Mechanisms of Somatosensory
Cross-Modal Plasticity in Hearing Loss
The majority of studies on cross-modal reorganization in HL
have been investigated in the visual modality (for a review,
see Glick and Sharma, 2017). This relationship may seem
more intuitive than that of the auditory and somatosensory
systems with respect to HL, because as hearing ability decreases,
individuals often rely heavily on visual input to enhance
functions such as speech understanding. This enhanced
dependence on vision has been localized to areas of the auditory
cortex in animal and human studies (Lomber et al., 2010;
Stropahl et al., 2015; Stropahl and Debener, 2017). Similarly,
it is possible that deficiencies in auditory input could lead to
increased reliance on somatosensory information to improve
behavioral performance (e.g., Shore et al., 2016). The close
proximity and anatomical and physiological connections
between the auditory and somatosensory systems also support
the possibility of their cross-modal interaction. For instance,
anatomical proximity and convergence of auditory and
somatosensory neuronal pathways occurring at subcortical,
thalamo-cortical and cortico-cortical levels, and somatosensory
processing occurring in primary and higher-order auditory

cortices, has been demonstrated in animal studies (Lindsley
et al., 1999; Schroeder and Foxe, 2002; Fu et al., 2003; Brosch
et al., 2005; Lakatos et al., 2005, 2007; Hackett et al., 2007;
Zeng et al., 2012; Kok and Lomber, 2017) and human brain
imaging investigations (Foxe et al., 2000, 2002; Gobbelé et al.,
2003; Caetano and Jousmäki, 2006; Lütkenhöner and Klein,
2007). In addition, behavioral studies in humans have revealed
interactions between the auditory and somatosensory systems
(Jousmäki and Hari, 1998; Spence et al., 1998; Merat et al., 1999;
Schürmann et al., 2004). Since these connections are already in
place, weakening of the function of the auditory system, due to
diminished or degraded input, could lead to unmasking of latent
multisensory connections (Soto-Faraco and Deco, 2009). Such a
process may underlie appropriation of cortical regions typically
dominated by auditory processing by other sensory modalities,
such as somatosensation.

In addition to anatomical features that set up the possibility
of somatosensory to auditory interactions, sound and
vibration fundamentally consist of the same physical process
(i.e., oscillation), although they are typically propagated through
different media—sound through air and vibration through solids
(von Bèkèsy, 1959; Levänen et al., 1998; Soto-Faraco and Deco,
2009). Unlike the visual and auditory systems, somatosensory-
auditory interaction may be driven by the physical similarity
of the stimuli processed by these sensory systems and because
neurons in these systems respond to inputs with an overlapping
range of frequencies (i.e., ∼5–300 Hz; Levänen et al., 1998;
Harrington and Hunter Downs, 2001). Given that the temporal
patterns and neural response frequencies of the auditory and
somatosensory systems show significant overlap, it is likely that
the auditory subcortical and cortical neurons could accurately
encode somatosensory input (Levänen et al., 1998). Thus,
given a reduction of the incoming auditory signal, it may be
possible for the somatosensory system to utilize auditory cortical
space for vibrotactile, and other, somatosensory processing.
In fact, it has been shown that a reduction in auditory activity
leads to increases in somatosensory activity in subcortical
structures (Dehmel et al., 2008; Shore et al., 2008; Shore, 2011;
Zeng et al., 2011), which could possibly continue into cortical
regions. In all, because of the high degree of interconnectivity
between the various cortical and subcortical levels of these
two sensory systems, and because of the similarity of auditory
and vibrotactile stimuli, decreased activity in either modality
might lead to increased activity in the other (Soto-Faraco and
Deco, 2009; Zeng et al., 2012). Additionally, this type of process
could lead to more efficient processing of somatosensory input
resulting in the decreased latencies described in the current study
and consistent with previous studies which describe a greater
ease of processing of somatosensory information in auditory
cortex (Levänen et al., 1998; Foxe et al., 2000; Levänen and
Hamdorf, 2001; Schroeder et al., 2001).

Functional Implications of Cross-Modal
Plasticity in Adults With Hearing Loss
Cross-modal plastic cortical changes may underlie changes in
functional behavior in adults who develop HL. Previous studies
in deaf adults and children fitted with cochlear implants have

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2018 | Volume 12 | Article 172

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Cardon and Sharma Somatosensory Cross-Modal Reorganization in Adults

shown that visual cross-modal plasticity is negatively correlated
with speech perception (Doucet et al., 2006; Sandmann et al.,
2012; Campbell and Sharma, 2016). In the present study,
CSEP latencies were also significantly negatively correlated with
speech perception in noise ability in the RTemp and RPar
ROIs (Figure 4). That is, adults who had more difficulty
with behavioral speech perception showed greater cross-modal
reorganization by the somatosensory modality. While the
participants in the current study exhibited the early-stages of
ARHL according to its clinical definition (i.e., hearing thresholds
≥25 dBHL), in actuality HL is a continuous variable. As such,
a mild case of HL may not lead to behavioral scores that were
statistically different from the norm, as exhibited by the lack of
difference in scores between the NH and HL groups. However,
the correlational analysis presented in the current results suggest
that greater degrees of cross-modal reorganization are associated
with poorer speech perception in noise scores. Interestingly,
consistent with the present study, there is some evidence to
support the notion that the right temporal cortices are more
susceptible to functional reorganization, although the reason
for this effect remains to be determined (Finney et al., 2001;
Sandmann et al., 2012; Campbell and Sharma, 2013, 2014, 2016;
Cardin et al., 2013; Lin et al., 2014; Kim et al., 2016; Peelle and
Wingfield, 2016; Sharma et al., 2016; Shiell et al., 2016).

Speech perception is a multisensory process, requiring input
from audition, vision and somatosensation (e.g., Bernstein
and Benoît, 1996). Therefore, as suggested by the current
results, deficiencies in one sensory modality may lead to
increased reliance on other modalities’ contributions to speech
perception. For instance, several studies have linked aspects
of speech perception to somatosensory processing. In one
study, Huang et al. (2017) recently showed that the speech
perception in noise abilities of cochlear implant users were
enhanced by presenting low frequency vibrotactile stimuli to
participants’ fingers simultaneously with auditory stimuli, vs.
auditory stimulation alone. Gick and Derrick (2009) showed that
untrained participants with NH integrated tactile information
into their perception of auditory speech. In that study,
participants were more likely to perceive a phoneme as aspirated
(e.g., ‘‘p’’ vs. ‘‘b’’) when an inaudible air puff was presented to
their skin as they listened to these phonemes. This propensity was
taken as evidence of speech-related auditory-tactile integration.
Recent investigations have indicated that deaf individuals can use
vibrotactile information to differentiate same-sex talkers based
on the frequency content of their distinct voices, as well as
various musical instruments due to their unique timbre (Russo
et al., 2012; Ammirante et al., 2013). Thus, it appears that the
somatosensory system is able to utilize vibrotactile information
alone to accurately decode complex speech and speech-like
information. Furthermore, Ito et al. (2009) demonstrated that
systematically deforming the facial skin in a speech-like manner
altered the perception of simultaneously presented auditory
phonemes. Also, studies performed in deaf cats indicate that
vocalizations may be influenced by somatosensory input—i.e., an
auditory feedback loop that is primed by somatosensory
perception (Hubka et al., 2015). Finally, studies have also shown
evidence of activation of motor cortices associated with speech

production during speech listening (Fadiga et al., 2002; Watkins
et al., 2003; Meister et al., 2007) supporting the view that
one’s own speech production, a process heavily mediated by the
somatosensory system, can inform speech perception (Liberman
et al., 1967; Liberman and Mattingly, 1985; Callan et al., 2010).
Taken together with the present results, the above studies suggest
that the somatosensory system plays an important role in speech
perception. It follows, then, that a diminished or degraded
auditory signal, as in HL, could lead to increased dependence
on somatosensory input during difficult listening situations. This
reliance could, in turn, be a driving factor in somatosensory
cross-modal reorganization of the auditory cortex in individuals
with HL, even in its earliest stages.

In response to findings similar to those reported above, a
recent study from our laboratory suggests that intervention
may have the potential to reverse functional consequences of
cortical plastic changes. Sharma et al. (2016) documented visual
and somatosensory cross-modal reorganization in a patient
with single-sided deafness. Following cochlear implantation
of the deaf ear, this patient showed a complete reversal of
somatosensory cross-modal plasticity and significantly improved
auditory processing (as evidenced by localization and better
speech perception). Thus, it appears that appropriate treatment
of auditory deficiency may lead to reversal of cortical
reorganization. This notion is in line with recent evidence in
deaf cats that suggests that auditory cortices are not completely
recruited by other sensory modalities and that re-introduction of
auditory input stimulates the preserved auditory neural function
(Land et al., 2016). Future studies should address whether cross-
modal reorganization of the auditory cortices like those shown in
the current study can be reversed following intervention.

In addition to declines in performance on behavioral tasks,
such as speech perception in noise, recent studies have linked
ARHL to cognitive decline including all cause dementia and
Alzheimer’s disease (Lin et al., 2011a,b, 2013; Lin, 2011,
2012). It has been speculated that the increased cognitive load
resulting from the recruitment of additional neural networks to
supplement listening in adults with ARHL results in effortful
listening and may accelerate cognitive decline (Cardin, 2016;
Peelle andWingfield, 2016). Given that cross-modal recruitment
reflects a fundamental change in cortical resource allocation
(Campbell and Sharma, 2013), future investigations should also
endeavor to determine the relationship between the altered
neural circuitry underlying cross-modal plastic changes and
cognitive load.

In conclusion, adults with early-stage mild-moderate
ARHL showed evidence of cross-modal plasticity between the
somatosensory and auditory systems. Furthermore, adults with
ARHL who showed greater difficulty processing speech in
difficult listening situations (i.e., noise) showed greater evidence
of somatosensory crossmodal reorganization, suggesting that
functional dependence on intact modalities may serve as an aid
to communication in real-world situations. Thus, even mild
sensory deficit has fundamental impacts on the organization
and functioning of the auditory cortex. Our findings may have
implications for understanding neuroplastic changes in ARHL
and its future treatment.
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