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Morphological brain network plays a key role in investigating abnormalities in neurological

diseases such asmild cognitive impairment (MCI) and Alzheimer’s disease (AD). However,

most of the morphological brain network construction methods only considered a single

morphological feature. Each type of morphological feature has specific neurological and

genetic underpinnings. A combination of morphological features has been proven to

have better diagnostic performance compared with a single feature, which suggests

that an individual morphological brain network based on multiple morphological features

would be beneficial in disease diagnosis. Here, we proposed a novel method to construct

individual morphological brain networks for two datasets by calculating the exponential

function of multivariate Euclidean distance as the evaluation of similarity between two

regions. The first dataset included 24 healthy subjects who were scanned twice within a

3-month period. The topological properties of these brain networks were analyzed and

compared with previous studies that used different methods and modalities. Small world

property was observed in all of the subjects, and the high reproducibility indicated the

robustness of our method. The second dataset included 170 patients with MCI (86 stable

MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features

extracted from the individual morphological brain networks were used to distinguish MCI

from NC and separate MCI subgroups (progressive vs. stable) through the support vector

machine in order to validate our method. The results showed that our method achieved

an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in

a one-dimension situation. In a multiple-dimension situation, our method improved the

classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable

MCI vs. progressive MCI) compared with the method using a single feature. The results

indicated that our method could effectively construct an individual morphological brain

network based on multiple morphological features and could accurately discriminate MCI

from NC and stable MCI from progressive MCI, and may provide a valuable tool for the

investigation of individual morphological brain networks.

Keywords: individual morphological brain network, multivariate Euclidean distance, mild cognitive impairment,

multiple morphological features, classification
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INTRODUCTION

Morphological brain network refers to the intracortical
similarities in gray matter morphology (He et al., 2007)
which plays a key role in investigating brain abnormalities in
neurological diseases. By analyzing morphological brain network
features, the abnormalities in connectivity parameters can be
found in patients (Yao et al., 2010; Tijms et al., 2013). More
importantly, sensitive biomarkers for clinical diagnosis can be
detected in brain networks from cases of Alzheimer’s disease
(He et al., 2008, 2009), schizophrenia (Bassett et al., 2008; Zhang
et al., 2012) and epilepsy (Bernhardt et al., 2008, 2009).

Although previous morphological brain network studies
achieved significant breakthroughs, they largely depended on
group-level anatomical correlations of cortical morphology (He
et al., 2007; Zhang et al., 2012). For example, He et al.
(2007) constructed a network for each group by quantifying
morphological relations characterized by the Pearson correlation
coefficient between averaged regional morphological measures
among participants. However, this method only works with
a relatively large number of participants (Kong et al., 2014).
In addition, it remains unclear if there are changes in brain
networks at the individual level (Saggar et al., 2015). Therefore,
it is necessary to construct morphological brain networks at the
individual level for the direct analysis of individual differences.

Recently, several methods have been proposed to construct
individual morphological brain networks either using a single
feature or multiple morphological features. By using gray
matter volume as the morphological measure, Tijms et al.
(2012) proposed an individual morphological brain network by
computing the correlation between two 27-voxel sets from two
rigid cubes. There were some studies constructing individual
brain networks by averaging the vertex value (e.g., cortical
thickness) within regions of interest (ROI) (Dai et al., 2013;
Wee et al., 2013; Kim et al., 2016) or by estimating interregional
similarity in the distribution of regional morphological measures
(e.g., cortical thickness or volume) (Kong et al., 2014; Zheng
et al., 2015). Wang et al. (2016) employed graph-based analyses
to support individual morphological network analysis as a
meaningful and reliable method when characterizing brain
structural organization. Some recent studies (Li et al., 2017;
Seidlitz et al., 2017) built individual morphological networks
with multiple morphological features extracted from the cortical
surface. Each type of morphological feature has specific
neurological and genetic underpinnings. Volumetric measures
(i.e., cortical thickness, gray matter volume) reflect the size,
density and arrangement of cells (neurons, neuroglia, and nerve
fibers) (Parent and Carpenter, 1996) and surface area is linked
to the number of mini columns in the cortical layer (Rakic,
1988). Geometric measures (i.e., sulcal depth, curvature, and
metric distortion) mainly reflect the cortical folding pattern (Van
Essen, 1997; Cachia et al., 2003; Lohmann et al., 2008). Li et al.
(2014) found that various morphological features had unique
contributions to the classification of the amnestic MCI (aMCI)
and NC. In the two studies (Li et al., 2017; Seidlitz et al., 2017), a
morphological feature vector was used to represent one region
and pairwise inter-regional Pearson correlations were used to

construct brain network, while not considering the distribution
of the intra-regional morphological features.

In this paper, we proposed a novel individual morphological
brain network method by defining multivariate Euclidean
distance to describe the inter-regional similarity based on
multiple morphological features. First, multivariate Euclidean
distance was calculated by using the six morphological features
of all of the vertices within each region. Second, the Min-
Max normalization for Euclidean distance was performed to
minimize possible bias in different ranges of different subjects.
Finally, the normalized Euclidean distance was converted to a
similarity measurement using an exponential function. Then, we
validated the proposed method by computing the topological
properties of individual brain networks, i.e., small-world, hubs
and intraclass correlation coefficient (ICC) in 24 healthy
subjects. In addition, we applied the edges of each individual
morphological network as features to discriminate the MCI and
NC in the AD Neuroimaging Initiative (ADNI) dataset. The
accuracy of classification was used to assess the effectiveness of
our method.

MATERIALS AND METHODS

Participants
The first dataset used in this study consisted of 24 right-handed
healthy subjects (12 men with ages ranging from 25 to 29 years
with mean = 27.17 years, and standard deviation = 1.40; 12
women with ages ranging from 26 to 30 years with mean =

27.83 years, and standard deviation = 1.11). All subjects were
native Chinese speakers who had grown up in China. All subjects
provided written informed consent; in addition, the local ethics
committee approved this study.

The subjects were scanned twice within a 3-month period.
All of the MRI data were obtained using a SIEMENS Trio
Tim 3.0T scanner with a 12-channel phased array head coil
in the Imaging Center for Brain Research, Beijing Normal
University. The brain structural images were acquired using T1-
weighted, sagittal 3Dmagnetization prepared rapid gradient echo
(MPRAGE) sequences. The sequence parameters had a repetition
time (TR) = 2,530ms, echo time (TE) = 3.39ms, inversion time
(TI) = 1,100ms, flip angle = 7◦, FOV = 256 ∗ 256mm, in-
plane resolution= 256 ∗ 256, slice thickness= 1.33mm, and 144
sagittal slices covering the whole brain.

The second dataset used in this study was obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early Alzheimer’s disease (AD). This study was carried out
in accordance with the recommendations of the ADNI database
with written informed consent from all subjects. The protocol
was approved by the ADNI coordinating committee.

The eligibility criteria for inclusion of subjects are described
at http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_
GeneralProceduresManual.pdf. General criteria for MCI were
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as follows: (1) Mini-Mental-State-Examination (MMSE) scores
between 24 and 30 (inclusive), (2) a memory complaint, objective
memory loss measured by education adjusted scores on the
Wechsler Memory Scale Logical Memory II, (3) a Clinical
Dementia Rating (CDR) ≥ 0.5, and (4) absence of significant
levels of impairment in other cognitive domains, essentially
preserved activities of daily living, and an absence of dementia.

Three hundred and thirty-nine subjects, which included 170
MCI patients and 169 NC subjects were analyzed in this study.
Age, gender and education in the MCI group were matched with
the NC group. All subjects received the baseline clinical/cognitive
examinations including 1.5T structural MRI scan and were
reevaluated at specified intervals (6 or 12 months). The baseline
scans were used in our experiments. The 170 MCI subjects
included two subcategories: 86 stable MCI (sMCI) and 84
progressive MCI (pMCI). Subjects who converted to AD within
24 months were classified as pMCI, and those not converting into
AD within the same period were classified as sMCI. The 169 NC
subjects were not converted to MCI or AD within 24 months.
The demographic information and clinical characteristics of the
participants involved in this study are shown in Table 1.

Image Processing
The same pre-processing pipeline was applied in the two
datasets by using the FreeSurfer image analysis suite v4.3 (http://
surfer.nmr.mgh.harvard.edu/). For the second dataset, the pre-
processed images were downloaded from the public ADNI site.
The pipeline for T1-weighted scans contained (1) registration
to the Talairach space, (2) correction for intensity bias, (3) skull
stripped from the intensity normalized image, (4) segmentation
into white matter, gray matter or cerebrospinal fluid, (5) cutting
planes to sphere the hemispheres and remove the cerebellum
and brain stem, (6) generation of a single connected mass
representing the white matter structure of each hemisphere,
and (7) surface tessellation, refinement, and deformation for
each hemisphere (Dale et al., 1999). A variety of morphological
features such as volumetric (cortical thickness, surface area,
and gray matter volume) and geometric (sulcal depth, metric
distortion, and mean curvature) measures at each vertex on the
pial surface were extracted after the preprocessing. Then, the
surface data were resampled to a common subject (usually an
average subject) and smoothed with a Gaussian filter (FWHM =

5mm).

Construction of Individual Morphological
Brain Network
A brain network is typically defined as G = (V, E), where
V denotes the set of nodes (or vertices) and E denotes the
set of edges (or links). In this paper, we parceled the cortical
cortex into 68 cortical ROIs based on the Desikan-Killiany
Atlas (Desikan et al., 2006). Here, we assumed that nodes
represent cortical regions and edges represent the similarity of
two cortical regions. Each individual network shares the same set
of 68 nodes, which facilitates the comparisons using the edges.
Dissimilarity connectivity is measured by the formula below
(Székely and Rizzo, 2004). Let A and B denote the ROIs of the

TABLE 1 | Subject demographic and clinical characteristics.

MCI sMCI pMCI Control

(n = 170) (n = 86) (n = 84) (n = 169)

Gender (M/F) 104/66 53/33 51/33 88/81

Age 74.8 ± 6.7 74.6 ± 6.4 75.1 ± 7.2 75.7 ± 5.1

Education 15.7 ± 3.0 15.8 ± 3.1 15.7 ± 3.0 16.0 ± 2.7

MMSE 26.9 ± 1.7 27.4 ± 1.8 26.4 ± 1.7 29.1 ± 0.9

CDR 1.6 ± 0.8 1.5 ± 0.7 1.8 ± 1.0 0 ± 0.1

Age, education, MMSE and CDR are expressed as the mean ± SD. There were no

significant differences between the MCI and the control group and between the sMCI

and pMCI group in gender, age and education years. The MCI with control groups, and

sMCI with pMCI group showed significant differences in the MMSE and CDR. MCI, mild

cognitive impairment; sMCI, stable mild cognitive impairment; pMCI, progressive mild

cognitive impairment; M/F, Male/Female; MMSE, Mini-Mental-State-Examination; CDR,

Clinical Dementia Rating.
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Let A = {a1, ..., an1} and B = {b1, ..., bn2}, where a and b

denote vertices inA and B, respectively. These elements represent
morphological features, which could be either one-dimensional
or multi-dimensional. n1 and n2 are the numbers of vertices in
A and B. Euclidean distance is computed by the 2-norm (‖.‖2).
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distances for any pair of vertices within A and B, respectively.
A smaller intra-regional Euclidean distance indicating

uniform morphological feature distribution within ROI results
in a distance e (A,B) is more dependent on the Euclidean
distance between pairs of vertices in A and B. Moreover, the
distance e (A,B) will be influenced if the morphological feature
distribution within the ROI is unequal. When A and B have
the same morphological feature distribution, the combined
Euclidean distance e (A,B) = 0.

After calculation of the combined Euclidean distance matrix
that reflected the dissimilarity between brain regions, Min-
Max normalization was proposed to minimize possible bias in
different ranges of different subjects. We chose the Min-Max
normalization because of its boundness and direct reflection of
the dissimilarity. The Min-Max normalization between regions
A and B of the kth subject is computed as:

ek_n(A,B) =
ek(A,B)− ek_min

ek_max − ek_min
(2)
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where ek_min and ek_max are the minimum and maximal value in
the dissimilarity connectivity of the kth subject, respectively. The
value of ek_n(A,B) can be converted to a similarity measurement
using the following equation:

ck(A,B) = exp(−ek_n(A,B)) (3)

Based on the above calculation, a 68∗68 diagonal symmetry
correlation matrix of each subject was obtained. The ck(A,B)
ranges from 0 to 1, and 1 represents that the two morphological
feature distributions are identical.

Method Validation
We validated the above method by computing the topological
properties of the individual brain network, i.e., small-world, hubs
and intraclass correlation coefficient (ICC) in the first dataset. In
addition, we applied the edges of each individual morphological
network as features to discriminate theMCI and NC in the ADNI
dataset. The accuracy of classification was used to assess the
effectiveness of our method.

Topological Properties of Networks
We constructed the individual morphological brain network
based on the proposed method in a six-dimension situation
in the first dataset. The small-world configurations, hubs and
reproducibility of individual brain network were calculated and
analyzed. The network properties were computed using the
Graph-theoretical Network Analysis (GRETNA) toolkit (Wang
et al., 2015).

For small-world configurations, the clustering coefficient
(Cp), minimum path length (Lp), γ , λ and σ were calculated.
Small-worldness (Watts and Strogatz, 1998; Humphries et al.,
2006) can be demonstrated mathematically as:

γ =
Cp

Cprandom
> 1, λ =

Lp

Lprandom
≈ 1 and σ =

γ

λ
> 1

where random represents a random network that consists of the
same number of nodes and edges.

The betweenness centrality (BC) is defined as the number
of shortest paths between any two nodes running through the
given node (Freeman, 1977) and measures the nodal ability of
information flow throughout the network. The hubs were defined
as the nodes that achieved a higher BC than the sum of the mean
and standard deviation for the entire network.

The intraclass correlation coefficient (ICC) was used to
estimate the reproducibility of the topological properties of the
network (Shrout and Fleiss, 1979). ICC was defined as the
fraction of the variance of the chosen graphic property between
subjects to the total variance, which is the summation variance of
between and within subjects of that property:

ICC =
σ 2
between

σ 2
between

+ σ 2
within

(4)

If the measurements of repeated scans are consistent for each
subject, the ICC would be close to one. An ICC value above
0.75 is considered excellent, and one ranging from 0.59 to 0.75
is considered good (Cicchetti and Sparrow, 1981).

Classification Between MCI and NC Groups
For the second dataset, we used the support vector machine
(SVM) classifiers with leave-one-out cross validation (LOOCV)
to test the effectiveness of our method. Additionally, feature
selection is employed for each individual morphological
brain network before classification regarding the curse of
dimensionality.

Feature selection
Each network has p = V × (V − 1)/2 = 2278 edges. Due
to the high dimensionality of the network features and a small
number of samples, also namely, the curse of dimensionality, the
classification model often confronts problems such as overfitting
and under generalization. Feature selection is considered to
reduce the irrelevant or redundant features and improve the
performance of classifiers. The least absolute shrinkage and
selection operator (Lasso) (Tibshirani, 1996) was applied for
feature selection.

Specifically, Lasso was put forward by Tibshirani (1996) for
parameter estimation and feature selection in regression analysis.
The Lasso algorithm does not focus on selection of subsets
but rather on defining a continuous shrinking operation that
can produce coefficients of redundant components to zero.
It has been shown in the literature (Yamada et al., 2012;
Kamkar et al., 2015) that the algorithm can effectively select
the relevant features in high dimensional data space. Sparse
linear regression is applied for Lasso features calculation with
L1-norm regularization. In the training set, let matrix X =

[x1, x2, ..., xn]
T ∈ R

n×m represent m features of n subjects, y =

[y1, y2, ...yi, ...yn]
T ∈ R

n×1 be an n dimension corresponding to
sample labels (yi = 1 for MCI and yi = -1 for NC) andm denotes
the number of edges except the duplicated part in the individual
brain network. The linear regression model is defined as follows:

∧
y = Xw (5)

where w = [w1,w2, ...wn]
T ∈ R

n×1 denotes the regression

coefficient vector and
∧
y denotes the predicted label vector. The

objective function is minimized as follows to estimate w:

min
w

1

2

∥

∥Xw− y
∥

∥

2

2
+ λ‖w‖1 (6)

where λ > 0 is a regularization parameter in control of the
sparsity of the model, i.e., many entries of w are zeros. ‖w‖1 is the
L1-norm of w defined as

∑n
i=1 |wi|. The SLEP package (Liu et al.,

2009) was used for solving sparse linear regression. If an edge is
selected as a feature in each iteration of the LOOCV classification,
the edge is considered as discriminative in the brain network.

Classification
According to the selected features described above, a commonly
used classifier SVM was implemented using the LIBSVM library
(Chang and Lin, 2011) in MATLAB, with a radial basis function
(RBF) kernel and an optimal value for the penalized coefficient
C (a constant determining the tradeoff between training error
and model flatness). The RBF kernel was utilized for its good
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performance especially on small sample problems (Hertz et al.,
2006) and defined as follows:

K(x1, x2) = exp(−
‖x1 − x2‖

2

2σ 2
) (7)

where x1 and x2 are two feature vectors and σ is the width of the
Gaussian kernel. To obtain the optimal SVM model, we selected
the optimal hyperparameters (C and σ ) through a grid-search.
Specifically, the classification was performed via a LOOCV in
which one subject was selected as the testing set and the rest
were used as the training set. The parameters were changed after
all samples were classified to estimate the LOOCV accuracy. In
the end, the average accuracy across all subjects was computed
as a performance measurement. The hyperparameter values that
lead to the highest performance are then selected. The pipeline
of our classification framework for MCI and NC is presented
in Figure 1. The pipeline of classification framework for sMCI
and pMCI is same as the classification framework for MCI
and NC.

RESULTS

Small-World Configurations
As shown in Figure 2, γ is larger than one (max = 1.86, min
= 1.25) throughout the whole sparsity range, while λ is close
to one (max = 1.15, min = 1.02) by our method. Hence, the
individual morphological brain networks exhibit a higher Cp
than the random network, while maintaining a similar Lp. As
expected, σ was found to be larger than one (max = 1.62, min =

1.23) throughout the entire sparsity range. The results showed the
existence of small world property in the constructed individual
morphological brain network by using six features. Moreover, as
the sparsity increased, the increase of Cp and decrease of Lp, λ, σ ,
and γ in Figure 2 are in accordance with the variation tendency
of previous reports (Kong et al., 2015; Li et al., 2017).

Furthermore, the sparsity of 23% is highlighted for convenient
comparison with previous studies (Tijms et al., 2012; Kong
et al., 2015). As listed in Table 2, our results are similar to
previous individual-based morphological brain network studies,
whereas the population-basedmorphological brain networks and
functional networks exhibit smaller results than our method in
most small world configurations.

Hubs
Hubs were investigated for all subjects and sparsities. A total of
four hub regions were identified throughout the entire sparsity
range across all subjects, including the left and right frontal pole,
right rostral anterior cingulate and right transverse temporal
cortex.

Reproducibility
The reproducibility of our method was evaluated by measuring
the ICCs of network properties for scans with acquisitions of
two different time points in the same subjects. The ICC was
investigated throughout the entire sparsity range. TheCp, Lp, and
BC were examined in this study.

The results indicated that Cp is highly reproducible
(minimum ICC = 0.72, average ICC = 0.83), as shown in
Figure 3A. Moreover, the reproducibility of Lp (minimum ICC
= 0.62, average ICC = 0.82) and BC (minimum ICC = 0.82,
average ICC = 0.87) are shown in Figures 3B,C. Most results
of ICC were significant, except for Lp at sparsity of 20, 21, and
22% (p = 0.098, 0.13 and 0.10, separately). The reliability of our
method performed well in accordance with previous studies
(Cicchetti and Sparrow, 1981; Li et al., 2017). For example, the
reproducibility of Cp and Lp are similar to Li’s results (minimum
Cp ICC = 0.71, average Cp ICC = 0.83; minimum Lp ICC =

0.63, average Lp ICC = 0.81) and the reproducibility of BC was
better than Li’s result (minimum BC ICC = 0.629, average BC
ICC= 0.78).

Classification Performance
In this subsection, we made a comparison of classification
accuracies between our method and other methods as reported
in previous studies, which included Kong’s method (Kong et al.,
2014), Kim’s method (Kim et al., 2016), Zheng’s method (Zheng
et al., 2015), Dai’s method (Dai et al., 2013), and Wee’s method
(Wee et al., 2013). The details of these methods are described in
Table 3.

Like other papers, we selected cortical thickness as the single
dimension feature to construct individual brain network. All
methods employed an identical feature selectionmethod after the
constructions of each individual brain network and optimization
of the parameters in SVM. The accuracy, sensitivity, specificity
and area under receiver operating characteristic (ROC) curve
(AUC) values of each method were calculated as evaluation
metrics for the performance. The results are summarized in
Tables 4, 5. It can be clearly observed that our method performed
well compared with previous methods in the classification task.
In particular, our method achieved an accuracy of 79.65% in
distinguishingMCI patients fromNCwith a sensitivity of 78.82%
and achieved an accuracy of 70.59% in distinguishing sMCI from
pMCI with a sensitivity of 75.58%.

Although accuracy is commonly used for an evaluation of
classification, it may provide a biased description due to its
dependency on the decision threshold selection in SVM. The
ROC curve is shown to be a simple but completely empirical
description of this decision threshold effect, indicating all
possible combinations of the relative frequencies of the various
kinds of correct and incorrect decisions. In ROC space, the (0,
1) point represents a perfect classifier (all samples are correctly
predicted). Thus, the nearer a point is to the (0, 1) point (closer to
the upper left corner), the better a classifier is (Prati et al., 2011).
Figures 4, 5 show the ROC graphs of classification using different
methods to construct individual brain networks, from which we
can see that the ROC curve of our method is closer to the upper
left corner than some conventional methods. In addition, a single
measure of classification performance can be derived from the
area under the ROC curve (AUC). A larger AUC indicates a better
classifier. In Tables 4,5 the AUC for all methods are listed and it
can be seen that ourmethod achieved AUC scores of 0.84 forMCI
vs. NC, and 0.73 for sMCI vs. pMCI, while most other methods
slightly underperformed.
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FIGURE 1 | The proposed classification framework. (A) The step of pre-processing was accomplished using FreeSurfer. For each vertex in each region, six

morphological features were extracted. After the pre-processing, we constructed an individual brain network based on the multivariate Euclidean distance. (B) In each

LOOCV classification, we first constructed the combination of the training set, and then applied the lasso features calculation for feature selection. (C) We selected the

same location’s features in the testing set. Then the SVM classifier was implemented for classification. MCI, mild cognitive impairment; NC, normal controls; SVM,

support vector machine; LOOCV, leave-one-out cross validation.

Comparison of Our Method Using One
Dimension and Six Dimensions in
Classification
In this experiment, we compared the performance of the
proposed method by using one dimension and six dimensions.
We used cortical thickness as the single dimension and used
cortical thickness, surface areas, graymatter volume, sulcal depth,
metric distortion and mean curvature as the six dimensions.
Tables 4,5 show that our method of applying six dimensions
outperforms the one only using a single cortical thickness
feature, which achieved 80.53% and 77.06% for accuracy in
distinguishing MCI from NC and distinguishing sMCI from
pMCI, respectively. The ROC graphs in Figures 6,7 illustrate
the classification performance based on brain networks that
were constructed using one dimension and six dimensions.
We also list the AUC score in Tables 4,5. It can be noticed
that compared with the univariate situation, individual brain
network construction based on multivariate performs better
in classification with an AUC score of 0.86 and 0.74,
respectively.

Most Discriminative Features of Individual
Brain Networks
The most discriminative features demonstrate the edges

selected in each time of cross-validation for classification
based on multivariate connectivity. Here, we selected the most
discriminative features under the best condition. In Figure 8, the
blocks of the circle represent ROIs. As shown in Figures 8A,B the
most discriminative edges connected most ROIs in the brain.

Based on the selected edges, pairs of regions that contribute
to classification are not only within the same hemisphere and the
same lobe but also across different hemispheres and lobes, which
indicates the abnormalities caused by MCI involve the entire
brain rather than certain areas. The number of discriminative
edges that connect the two hemispheres was 115. Conversely, the
number of discriminative edges that are the connections within
a single hemisphere was relatively low, with quantities of 64 and
43 for the left and right hemisphere, respectively. We correlated
the most discriminative edges with MMSE and CDR scores. In
Figures 8C,D, the selected edges that were significant correlated
(p < 0.05) with MMSE and CDR are shown. As seen, these edges
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FIGURE 2 | Small-world configurations of the individual morphological brain network. (A–D) The average Cp, Lp, γ , λ, and σ of the subjects for each sparsity (from

20 to 40% with a step size of 1%). The error bar indicates the standard deviation caused by different subjects.

TABLE 2 | Comparison of small world configurations between the present study and previous studies.

Method N Cp Lp γ λ σ S (%)

INDIVIDUAL-BASED MORPHOLOGICAL BRAIN NETWORK

Our method 68 0.69 1.92 1.71 1.10 1.54 23

Li’s method (Li et al., 2017) 68 0.62 2.23 1.81 1.22 1.52 23

Kong’s method (Kong et al., 2015) 90 0.66 1.92 1.74 1.15 1.50 23

Tijms’s method (Tijms et al., 2012) 6,982 0.53 1.86 1.35 1.05 1.28 23

POPULATION-BASED MORPHOLOGICAL BRAIN NETWORK

He’s method (He et al., 2007) 54 ≈0.3 ≈1.6 ≈1.35 ≈1 ≈1.35 23

Yao’s method (Yao et al., 2010) 90 ≈0.49 ≈1.89 ≈1.62 ≈1.1 ≈1.47 23

Zhu’s method (Zhu et al., 2012) 90 ≈0.26 NR ≈1.20 ≈1.03 ≈1.17 23

FUNCTIONAL BRAIN NETWORK

Van’s method (Van Essen, 1997) 10,000 ≈0.52 ≈1.75 ≈1.9 ≈1.03 ≈1.85 20

Zhang’s method (Zhang et al., 2011) 90 ≈0.33 ≈1.65 ≈1.3 ≈1 ≈1.4 23

N, Cp, and Lp denote the number of nodes in the networks, the average clustering coefficient and the average shortest path length, respectively. γ represents the ratio of the clustering

coefficient of the network over that of the random network. λ represents the ratio of the average shortest path length of the network over that of the random network. σ indicates the

small-worldness. The small world attributes of previous studies are inferred (with ≈). NR, not reported.

are predominately in the frontal, temporal, parietal, and insula
parts.

DISCUSSION

In the present study, we introduced a new method to construct
individual morphological brain network. The combination of
inter-regional Euclidean distance and intra-regional Euclidean

distance was used to quantify the inter-regional relations.
Through the small-world configurations analysis, our method
confirmed the existence of small world property. In addition,
as listed in Table 2, the population-based morphological brain
networks and functional networks exhibit smaller results than
our results in most small world configurations, which may
suggest that the individual morphological brain networks
demonstrate a stronger integration and segregation because
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FIGURE 3 | Reproducibility of the method. (A–C) Represent the ICC of Cp, Lp, and BC as a function of sparsity, respectively. The hollow dots indicate the significant

results.

TABLE 3 | The methods of constructing individual morphological brain networks in previous studies.

Author Methods Explanation

Kong (Kong et al., 2014) KL(i, j) =
∫

x (i(x) log(
i(x)
j(x)

) + j(x) log( j(x)
i(x)

)), c(i, j) = e−KL(i,j) i(x) and j(x) denote the probability density functions (PDF) of i

and j respectively.

Kim (Kim et al., 2016) Z(i, j) = T (i)−T (j)
σj

, c(i, j) = (Z(i,j) + Z(j,i))
2 T(i) and T(j) denote the mean value of cortical thickness in i

and j respectively, σi and σj denote the standard deviation of

regional cortical thickness of regions i and j. η is an input

parameter.

Wee (Wee et al., 2013) d(i, j) = [T (i)− T (j)]2, σ =
√

σi + σj , c(i, j) = exp(− d(i,j)
2σ2 )

Dai (Dai et al., 2013) d(i, j) = [T (i)− T (j)]2, c(i, j) = exp(− d(i,j)
η )

Zheng (Zheng et al.,

2015)

cprecision(i, j) =
1
m

m
∑

p= 1

∣

∣

∣
t
p
i
− T (i)

∣

∣

∣

1
n

n
∑

q=1

∣

∣

∣
t
q
j
− T (j)

∣

∣

∣
, crough (i, j) =

∣

∣T (i)− T (j)
∣

∣

2
t denotes the vertex’s cortical thickness, m and n are the

number of points in i and j, respectively.

In these formulas, i and j denote two brain regions; c(i,j) denotes the correlation between i and j.

the inter-individual variability is highly reserved (Kanai and
Rees, 2011). Hubs such as left and right frontal pole and right
rostral anterior cingulate have been reported in previous studies
(Hagmann et al., 2008; Van den Heuvel and Sporns, 2013). The
ICC was used to estimate the reproducibility of graph theoretical
measures. The results indicated that the reliability of our method
performed well in accordance with previous studies. In addition,
compared with other conventional methods, which average the
vertices within ROIs, our method improves the classification
performance in univariate situation. Here, we explained the
rationality of our method from two aspects. (1) In previous

studies, the individual morphological brain networks were
mostly constructed based on the average value of morphological
features within the ROI. However, the abnormal region for
pathology might be only a fraction of the defined ROI and the
abnormal change of brain region may be ignored by taking
the average, which potentially reduces the discriminative power.
In our proposed method, we directly used the morphological
features of vertices to retain more detailed information. The
results of Kong’s method (Kong et al., 2014) and Zheng’s
method (Zheng et al., 2015) in Table 4 also demonstrated the
importance of detailed information. (2) In previous studies, the
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TABLE 4 | Classification performance of different methods to distinguish MCI

and NC.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

Our method using

six dimensions

80.53 79.41 81.66 0.86

Our method using

one dimension

79.65 78.82 80.47 0.84

Kong’s Method 77.88 74.12 81.66 0.84

Kim’s Method 75.81 71.18 80.47 0.79

Dai’s Method 76.70 73.53 79.88 0.82

Zheng’s Method 79.94 76.47 83.43 0.84

Wee’s Method 77.29 73.53 81.07 0.83

One dimension denotes cortical thickness; six dimensions include cortical thickness,

surface areas, gray matter volume, sulcal depth, metric distortion, and mean curvature.

The lower bold values mean the best performance (accuracy, sensitivity, specificity and

AUC) among different methods in one dimension situation. The upper bold values mean

the best performance of our method in one and six dimension. AUC, area under the curve.

TABLE 5 | Classification performance of different methods to distinguish sMCI

and pMCI.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

Our method using

six dimensions

77.06 77.91 76.19 0.74

Our method using

one dimension

70.59 75.58 65.48 0.73

Kong’s Method 65.89 67.44 64.29 0.67

Kim’s Method 67.06 63.95 70.24 0.65

Dai’s Method 63.53 70.93 55.95 0.64

Zheng’s Method 67.65 63.95 71.43 0.68

Wee’s Method 65.89 67.44 64.29 0.69

One dimension denotes cortical thickness; six dimensions include cortical thickness,

surface areas, gray matter volume, sulcal depth, metric distortion, and mean curvature.

The lower bold values mean the best performance (accuracy, sensitivity, specificity and

AUC) among different methods in one dimension situation. The upper bold values mean

the best performance of our method in one and six dimension. AUC, area under curve.

morphological distribution within an ROI was not considered,
which may influence the strength of edges between ROIs. In our
method, the dissimilarity connectivity was the combination of
inter-regional Euclidean distance and intra-regional Euclidean
distance, while previous methods only considered the relation
between two ROIs.

An inherent advantage of our method is that it can be applied
to multi-dimensional situations. In previous studies, researchers
have found the small-world properties were disrupted for brain
networks that were constructed based on cortical thickness in
MCI patients (Zhou and Lui, 2013), and the brain network
based on the surface area can reveal topological properties of
the networks resulting from the concurrent changes between
different anatomical regions (Sanabriadiaz et al., 2010). The sulcal
depth, curvature, and metric distortion related to cortical folding
vary and could be more suitable descriptors for finding the
anatomical-axonal and morphological connectivity correlation

(Van Essen, 1997). Previous studies have reported that brain
networks based on both the volumetric measures and geometric
measures showed significant differences in graphical properties
between aMCI and NC (Li et al., 2016). These results may
suggest that brain network construction based on multiple
features is beneficial to the diagnosis and analysis of neurological
diseases. However, most previous approaches (Dai et al., 2013;
Wee et al., 2013; Kong et al., 2014; Zheng et al., 2015; Kim
et al., 2016) that constructed individual brain networks only
considered one morphological feature (e.g., cortical thickness
or gray matter volume) between two brain regions. The first
paper involved in building morphological brain networks based
on multiple morphological features demonstrated that multiple
morphometric features can be applied to form a rational
reproducible individual-based morphological brain network
(Li et al., 2017), but it averaged the morphological features
within each ROI, such as the mean cortical thickness, which
may neglect some detailed information. In our method, every
vertex’s different kinds of cortical features within each ROI
were considered and the relations between brain regions were
determined based on these features. In this paper, the multiple
morphological features including cortical thickness, surface
areas, gray matter volume, sulcal depth, metric distortion and
mean curvature as well as the cortical thickness as a single
feature were used for individual brain network construction.
The results show (Tables 4,5) that the brain network constructed
from the combination of morphological features outperforms
the one only considering cortical thickness. The resulting
high AUC value proves the excellent classification power
and generalizability of our proposed method on an unseen
data set, as well as the ability to construct an accurate and
credible individual morphological brain network. Moreover,
the classification performance of our method in a multivariate
situation revealed the existence of useful information within
these morphological features. The abnormal connectivity across
various regions can be located within different morphological
features, which greatly benefits the detection of neurological
diseases.

An interesting finding shown in Figures 8A,B is that the
majority of the selected correlative features in the MCI and
NC classification task are the edges connecting the left and
right hemisphere. This might suggest that the most significant
differences betweenMCI subjects and health subjects are changes
in the connections between the left and the right hemisphere.
The connection alterations caused by MCI pathological attacks
are not restricted to certain brain areas but are widely spread
over the whole brain. What’s more, the most discriminative
edges connecting the regions in our study are consistent with
previous publications, such as the lingual gyrus, postcentral
gyrus, middle temporal gyrus, pars opercularis, and superior
frontal sulcus (Li et al., 2014; Wei et al., 2016). Previous
studies have found that subjects with MCI have abnormal
network patterns in the lingual gyrus and middle temporal
gyrus (Yao et al., 2010). He et al. (2008) demonstrated an
abnormal correlation between the bilateral postcentral gyrus
in AD. From Figures 8C,D we can see the selected edges are
predominately connected to the regions of the frontal, temporal,
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FIGURE 4 | ROC curves of different methods using one dimension to

distinguish MCI and NC. The different line colors represent different methods

to construct individual morphological brain networks based on cortical

thickness. ROC, receiver operating characteristic.

FIGURE 5 | ROC curves of different methods using one dimension to

distinguish sMCI and pMCI. The different line colors represent different

methods to construct individual morphological brain networks based on

cortical thickness. ROC, receiver operating characteristic.

parietal, and insula parts. These regions have been reported that
retain more hubs which are considered to be the substrates
of human cognition and consciousness (Yao et al., 2010). In

FIGURE 6 | ROC curves of our method using different dimensions of original

features to distinguish MCI and NC. The different line colors represent ROC

curves of our methods of constructing individual morphological brain networks

based on different dimensional features. ROC, receiver operating

characteristic.

FIGURE 7 | ROC curves of our method using different dimensions of original

features to distinguish sMCI and pMCI. The different line colors represent ROC

curves of our method of constructing individual morphological brain networks

based on different dimensional features. ROC, receiver operating

characteristic.

addition, some regions are associated with changes in different
morphological features in MCI subjects, such as the middle
frontal gyrus with cortical thickness, the postcentral gyrus with
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FIGURE 8 | The most discriminative edges of individual morphological brain networks in classification (A,B) and the significant correlation of the most discriminative

edges with MMSE (C) and CDR (D) scores. L, left hemisphere; R, right hemisphere; the different colors of the blocks represent ROIs in different areas of the cortical

surface. The blue lines represent the discriminative edges in the left hemisphere; the red lines represent the discriminative edges in the right hemisphere. The gray lines

represent the discriminative edges between the left and right hemisphere.
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metric distortion, the pars opercularis with mean curvature, the
lingual gyrus with surface area, and the superior frontal sulcus
with sulcal depth (Li et al., 2014). In conclusion, our results
suggest that changes in the cortical regions may be associated
with mechanisms underlying the conversion of MCI to AD, and
the changes were displayed in multiple morphological features.
These findings illustrate the potential application of our proposed
method.

There are still some limitations in this study. First, the
selection of the brain atlas could affect the organization of
the individual brain network (Wang et al., 2016). In the
future, it is important to validate our proposed method in
different atlases. Second, in the current study, we combined
multiple morphological features to construct the individual
network, and we validated the effectiveness of our method.
However, it is noticeable that the physiological explanation
of this network is difficult. Third, a recent study (Seidlitz
et al., 2017) proposed an individual brain network method
by estimating the inter-regional correlation based on multiple
macro- and micro-structural multimodal MR variables. And
this network could capture cellular, molecular and functional
features of the brain and even predict inter-individual differences
in cognition. In future, it would be interesting to employ
multiple morphometric parameters measured using multimodal
MRI. Last, each feature type had its distinct contribution when
discriminating between two groups. In the future, we may
first select the most discriminant features and then construct
the individual network, which could improve its classification
performance.
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