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The ability to generate probabilistic expectancies regarding when and where sensory
stimuli will occur, is critical to derive timely and accurate inferences about updating
contexts. However, the existence of specialized neural networks for inferring predictive
relationships between events is still debated. Using graph theoretical analysis applied
to structural connectivity data, we tested the extent of brain connectivity properties
associated with spatio-temporal predictive performance across 29 healthy subjects.
Participants detected visual targets appearing at one out of three locations after
one out of three intervals; expectations about stimulus location (spatial condition) or
onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity
matrices and centrality/segregation measures, expressing the relative importance of,
and the local interactions among specific cerebral areas respect to the behavior under
investigation, were calculated from whole-brain tractography and cortico-subcortical
parcellation.

Results: Response preparedness to cued stimuli relied on different structural
connectivity networks for the temporal and spatial domains. Significant covariance was
observed between centrality measures of regions within a subcortical-fronto-parietal-
occipital network -comprising the left putamen, the right caudate nucleus, the left
frontal operculum, the right inferior parietal cortex, the right paracentral lobule and
the right superior occipital cortex-, and the ability to respond after a short cue-target
delay suggesting that the local connectedness of such nodes plays a central role
when the source of temporal expectation is explicit. When the potential for functional
segregation was tested, we found highly clustered structural connectivity across the
right superior, the left middle inferior frontal gyrus and the left caudate nucleus as
related to explicit temporal orienting. Conversely, when the interaction between explicit
and implicit temporal orienting processes was considered at the long interval, we
found that explicit processes were related to centrality measures of the bilateral inferior
parietal lobule. Degree centrality of the same region in the left hemisphere covaried
with behavioral measures indexing the process of attentional re-orienting. These results
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represent a crucial step forward the ordinary predictive processing description, as we
identified the patterns of connectivity characterizing the brain organization associated
with the ability to generate and update temporal expectancies in case of contextual
violations.

Keywords: predictive timing, spatio-temporal predictive performance, structural connectivity, diffusion tensor
imaging, complex network theory, insula, schizophrenia

INTRODUCTION

The brain is capable of allocating attention dynamically on the
basis of expectations concerning events occurrence, and this
ability is critical for goal-directed behavior in a changeable
environment. Indeed, real world information is often dynamic
and imprecise, and the ability to derive timely and accurate
inferences about changing contexts is crucial, given that
prospective action control bears the potential for a successful
interaction with the environment.

Behavioral findings (Coull and Nobre, 1998; Coull et al.,
2000, 2013, 2016; Davranche et al., 2011; Carvalho et al., 2016)
evidenced faster reaction times (RTs) to target stimuli preceded
by informative pre-cues signaling event location and onset,
indicating that attention can be deliberately and strategically
oriented in space and time when overt (explicit) information is
provided. Such behavioral optimization has been described as
an endogenous process based on learned cue-target association
that enhances action preparation (Coull and Nobre, 2008).
Temporal expectations can also be derived more implicitly
from the intrinsic predictive power of the flow of time, which
is vector-like in nature, implying that probability of target
occurrence increases with passing time (i.e., hazard function,
Luce, 1986). Importantly, when prior expectations are violated,
sensory (exogenous) information is integrated into the existing
prediction model, and attention re-allocated to the novel context
(Courville et al., 2006). For example, invalid trials with delayed
target onset are detected faster than premature ones (Coull and
Nobre, 1998), due to the increasing conditional probability over
time that the event will occur given that it has not already
occurred. Thus, both the explicit and the implicit nature of the
source of temporal predictions modulate attentional orienting
in order to optimize our interaction with unfolding sensory
stimulation (Correa et al., 2005; Nobre et al., 2007; Correa,
2012).

Accordingly, computational approaches (Friston, 2005; Clark,
2013) have conceptualized the brain as an inference machine that
integrates acquired experience about the world (prior believes)
and incoming sensory information to generate probabilistic
predictive models (posterior probabilities). Prior believes are
updated in the light of new sensory input, allowing the system
to arrive at posterior estimates. In other words, the posterior
estimate depends on what is already known, and how much
is learnt through the evidence, summarized in the probability
of events occurrence (Hohwy, 2017). Any imbalance between
expected and actual sensory data generates prediction error
signals, computed as the difference between the prediction and
the new evidence (Mathys et al., 2014), that adjust subjective

expectations accordingly (Phillips et al., 2015; Hohwy, 2017).
This theoretical framework is of particular clinical relevance,
given that positive symptoms of schizophrenia (SZ) have been
hypothesized as consequent to failures of predictive coding
(Frith, 2005; Adams et al., 2013; Giersch et al., 2016; Sterzer
et al., 2016; Martin et al., 2017), such that predictions are
determined more by the new evidence and less by prior
belief, while irrelevant stimuli are considered salient (e.g.,
delusion of reference) (Fletcher and Frith, 2009; Adams et al.,
2013).

That’s why defining the neural basis of predictive coding is
a major challenge in psychiatry and neuroscience. Conversely,
functional Magnetic Resonance Imaging (fMRI) investigations
on predictive timing in healthy subjects (Coull and Nobre, 1998;
Coull et al., 2000, 2013, 2016; Davranche et al., 2011; Carvalho
et al., 2016) have implicated complex and distributed networks
-including the cerebellum, frontal cortex and inferior parietal
cortex-, in forming temporal expectations, but the relevance of
these structures in optimizing prospective motor behavior as a
function of informative cues is still debated due to heterogeneity
in experimental methods and the intrinsic complexity of the
studied process (see Correa et al., 2006).

Pharmacological and fMRI evidence suggest that explicit
and implicit processes of temporal expectations are functionally
dissociable. Indeed, ketamine selectively impaired the ability
to use internal estimates of time to make predictions (Coull
et al., 2011), while partially distinct neuronal networks are
preferentially activated both by the fixed temporal predictability
of temporal cues and by the dynamic updating of temporal
probabilities in the neutral cue condition (Coull et al.,
2016).

However, as far as we know, the neural substrates of the
attentional re-orienting in case of invalid trials and of the explicit
forms of temporal expectations have been directly compared in
one investigation only (Coull et al., 2000).

In recent years, advances in network neuroscience and
graph theory proved to be effective tools in mapping neural
connectomics (i.e., the pattern of neural elements and structural
interactions of the neural system, Sporns et al., 2005), providing
a deeper insight of the brain structural connectivity organization
and its relation to behavior and cognition (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). Indeed, such network-based
approach to MRI data analysis permits to quantify key structural
properties and dynamics, which shape the anatomical substrate
for functional specialized processing and information binding
(Sporns et al., 2000, 2005).

Here we aimed at investigating the relationships between
behavioral indices of explicit spatial and explicit-implicit
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temporal orienting effects and the brain structural network
in a spatio-temporal predictive task in healthy subjects. To
our knowledge, this is the first study that examined brain
wiring in the context of explicit (i.e., based on learned cue-
target association established through valid cueing) and implicit
(i.e., derived from the sensory evidence in case of invalid
cueing) predictive timing using centrality and segregation metrics
derived from complex network analysis of diffusion tensor
imaging (DTI) data. Specifically, we aimed at identifying the
connectivity patterns underlying predictive behavior in terms of
local connectedness (i.e., individual elements within the whole
structural network having the highest number of connections)
(Bullmore and Sporns, 2009) and local segregation (i.e., the
number of connections that exist between the nearest neighbors
of an element within the whole structural network) (Sporns et al.,
2000) as to characterize the relative importance of, and the local
interactions among specific cerebral areas respect to the behavior
under investigation.

MATERIALS AND METHODS

Participants
Twenty-nine healthy volunteers (age: 40.1 ± 12.3, 13F + 16M)
were enrolled in the present study. Participants were recruited
within the local community through advertising, and
consecutively assessed at IRCCS Santa Lucia Foundation in
Rome. All participants were screened for current or past
diagnosis of any DSM-5 Axis I or II disorder using the SCID-5
Research Version edition (First et al., 2014) and SCID-5- PD
(First et al., 2016a). Inclusion criteria were: (1) age between 18
and 65 years, (2) at least 8 years of education and (3) suitability
for MRI scanning. Exclusion criteria included: (1) the presence of
any psychiatric disorders according to DSM-5 criteria, (2) history
of psychoactive substance dependence or abuse as investigated
by the structured interview SCID-5-CV (First et al., 2016b), (3)
history of neurologic illness or traumatic brain injury, (4) major
medical illnesses, such as non-stabilized diabetes, obstructive
pulmonary disease or asthma, hematological/oncological
disorders, B12 or folate deficiency as indicated by blood
concentrations below the lower normal limit, pernicious anemia,
clinically significant and unstable active gastrointestinal, renal,
hepatic, endocrine or cardiovascular system disease, newly
treated hypothyroidism, (5) presence of any brain abnormality
and microvascular lesion apparent on conventional FLAIR-scans
(Iorio et al., 2013), (6) global cognitive dysfunction according
to a Mini-Mental State Examination (MMSE) (Folstein et al.,
1975) score lower than 24, consistent with normative data of the
Italian population (Measso et al., 1993), (7) diagnosis of major
neurocognitive disorder according to DSM-5 criteria and (8)
non-Italian language native speaker.

All participants were right-handed, with normal or corrected-
to-normal vision. They gave written informed consent to
participate after the procedures had been fully explained.
The study was approved and carried out in accordance with
the guidelines of the IRCCS Santa Lucia Foundation Ethics
Committee.

Temporal and Spatial Orienting of
Attention Task
Subjects were seated comfortably in a quiet room facing a Toshiba
computer screen (1600∗1200 resolution 1280∗768 pixels, frame
rate 60 Hz).

Predictive timing was investigated with an adaptation of
the temporal and spatial orienting of attention task (Coull and
Nobre, 1998), which measured RT to a briefly presented target
(100 ms) appearing after one of three foreperiod durations (FP:
540 ms/1080 ms/1620 ms) in one of three boxes (left/up/right)
depicted on the computer screen (7◦ eccentricity). Subjects
were asked to press a response button to detect the target,
as quickly as possible, using information provided by one of
three types of cue. The cue was presented prior to the target
and was either informative (spatial and temporal conditions) or
uninformative (neutral condition). During the neutral condition,
no spatial or temporal information was provided, as the whole
image brightened. Spatial locations and temporal onsets were
balanced across trials for all the three experimental conditions.
In the majority of trials (80%) informative cues validly predicted
where (spatial cue) or when (temporal cue) the target would
appear (“valid” trials). In the remaining 20% of trials, the cue
incorrectly predicted the spatial location or temporal onset of
the target (“invalid” trials). The three experimental conditions
(spatial/temporal/neutral) were presented separately in three
blocks of trials and blocks’ order counterbalanced across subjects.
The inter-trial interval (ITI) varied randomly from 600 to
1000 ms. A practice session (15 trials for the neutral and spatial
condition each, 30 trials for the temporal condition) preceded
the main task, which consisted of 90 trials for each experimental
condition. In the temporal and spatial conditions, a total of 72
valid trials and 18 invalid trials were presented (Figure 1).

Stimuli presentation and collection of behavioral responses
were controlled using e-Prime 2.0 software and a Serial Response
Box Model 200a (Psychology Software Tools, Inc., Schneider
et al., 2002), which allows for millisecond accuracy recording.

MRI Acquisition
MRI data were collected at 3T (Philips Achieva) using a
thirty-two channel receive-only head RF coil. A diffusion-
weighted spin-echo echo-planar imaging sequence was used
to acquire high angular resolution diffusion weighted images
(HARDI) (Jones et al., 1999). One hundred twenty-eight gradient
orientations and six unweighted (b = 0 s/mm2) images were
acquired with the following parameters: TR/TE = 10000/76 ms,
b = 1,000 s/mm2, 60 slices, slice thickness = 2 mm,
FOV = 224 × 224, acquisition matrix = 112 × 112, resulting
in data acquired with a 2 mm3 isotropic resolution. A high-
resolution T1-weighted whole-brain structural scan was also
acquired (1 mm3 isotropic).

MRI Pre-processing
Data were preprocessed and analyzed in ExploreDTI v4.8.6
(Leemans et al., 2009). Data were corrected for motion and
eddy currents. Motion artifacts and eddy current distortions were
corrected with B-matrix rotation using the approach of Leemans
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FIGURE 1 | Spatio-temporal predictive task. Participants detected, as quickly
as possible, visual targets (‘+’ or an ‘×’) appearing at one of three locations
(left/up/right) after one of three intervals (short/medium/long). Expectations
about stimulus location (spatial condition) or onset (temporal condition) were
conveyed by symbolic cues with 80% validity. The cue consisted of a central
image (1◦ eccentricity) composed of a diamond and two rings. Part of the cue
briefly brightened (100 ms) to inform participants on the possible spatial
location or temporal onset of the upcoming target. During the spatial
condition, the left, up or right side of the diamond was highlighted to inform
subjects that the target was likely to appear in the left, up or right peripheral
box. In the temporal condition, brightening of the inner circle, diamond or the
outer circle indicated that the target would occur after a short (540 ms),
medium (1080 ms) or long (1620 ms) delay, respectively. During the neutral
condition, no spatial or temporal information was provided. The inter-trial
interval (ITI) varied randomly from 600 to 1000 ms. The three experimental
conditions (spatial/temporal/neutral) were presented separately in three blocks
of trials (90 each).

and Jones (2009). During this processing procedure, all brain
scans were rigidly normalized to Montreal Neurological Institute
(MNI) space during the motion-distortion correction step.

Tractography
Tensor estimation was performed using a non-linear least square
method (Jones and Basser, 2004). Whole-brain tractography was
performed using the DTI fiber tract-reconstructing algorithm
implemented in ExploreDTI. The following tracking parameters
were applied: step-size of 1 mm, minimum FA thresholds of 0.2
to initiate and continue tracking, an angle threshold of 30◦ and
fiber length range 10–500 mm (Mori and van Zijl, 2002; Langen
et al., 2012).

Network Measures
The automated atlas labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) was registered to the HARDI data. A weighted connectivity
matrix for each subject was generated in ExploreDTI using
the AAL atlas regions as nodes. The atlas used to parcellate
the gray matter consisted of 116 ROIs in total. However, the
26 cerebellar ROI were excluded for two main reasons: firstly,
the cerebellum was not homogeneously covered by MRI across
subjects, giving rise to a large inter-subject variability in the
number of streamlines counted between cerebellar ROIS and
the rest of the atlas; secondly, the streamline count from
each cerebellar region resulted unavoidably altered by magnetic

susceptibility artifacts due to the inhomogeneity of the local
magnetic field induced by the magnetic field gradient used for
diffusion tracking. Thus, a total of 88 nodes, 76 cortical and
12 sub-cortical, were used. The matrices used were weighted
by number of streamlines connecting node i to node j. This
matrix was thresholded to five streamlines and two nodes (i.e.,
left/right Heschl) were excluded from statistical analyses, in
order to avoid singular matrices across subjects. Degree centrality
and clustering coefficient (commonly used complex network
measurements) were used to characterize network topology in
terms of connectedness and segregation at the local level. All
metrics were computed using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Statistical Analysis
Behavioral Data
Reaction times to target stimuli faster than 100 ms were
considered anticipatory and removed from the analysis. The
benefit of temporal and spatial cueing on performance (i.e.,
individual mean RTs) was analyzed in one repeated measures
ANOVA, with cue type (neutral, temporal valid, spatial valid) as
the within-subjects factor. In order to examine the costs of invalid
cueing and the potential interaction with the foreperiod length,
another repeated measures ANOVA with cue type (time, space),
validity (valid, invalid) and foreperiod (540, 1080, 1620 ms) as
within-subjects factors was performed. A Bonferroni correction
for multiple comparisons was applied. The benefits and costs
of spatial cuing were explored by calculating 2 indices: (1)
Validityspatial as the difference between RTs at spatial valid trials
and RTs at neutral trials; (2) Invalidityspatial as the difference
between RTs at spatial invalid trials and RTs at spatial valid trials.
In order to further explore the temporal validity/invalidity effects
unmasked by the foreperiod effect, 4 indices were calculated as
follows: (1) Temporal Validityshort as the difference between RTs at
the short interval for early cue (V540) and RTs at the short interval
when no cue was provided (N540); (2) Temporal Validitylong as
the difference between RTs at the long delay for late cue (V1620)
and RTs at the long delay when no cue was provided (N1620);
(3) Temporal Invalidityshort as the difference in RTs at the short
interval for late cue (I540) and RTs at the short interval for early
cue (V540); (4) Temporal Invaliditylong as the difference between
RTs at the long interval for early cue (I1620) and RTs at the long
interval for late cue (V1620).

Neuroimaging Data
Behavioral indices (Validityspatial, Invalidityspatial, Temporal
Validityshort , Temporal Validitylong , Temporal Invalidityshort ,
Temporal Invaliditylong) and network topology measures from
the eighty-eight selected brain regions were included in the
analyses, by investigating reciprocal dependencies. In order to
look at relationships without inflating the risk of a type I
error (of erroneously concluding that a significant correlation
is present) (Draper and Smith, 1998), and to increase the
number of descriptors in the regression equation as to improve
predictors’ fit, a forward stepwise multiple regression model
(F > 4 to enter) was chosen. Indeed, the forward stepwise
procedure starts with no variables in the model and it tries out
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the variables one by one, including them if they are statistically
significant, thus identifying the best set of predictors that gives
the biggest improvement to the model. Simple linear regressions
were preliminarily performed to include in subsequent multiple
regressions analyses only variables significantly (p < 0.05) related
to the behavioral measures considered.

All statistics were performed on StatView statistical software.

RESULTS

Behavioral Data
A main effect of cue type (neutral, temporal valid, spatial
valid) [F(2,28) = 5.597; p = 0.0061] confirmed that targets
appearing in a predictable location or moment in time are
detected faster than uncued ones. Post hoc analyses with paired
t-test evidenced a stronger effect for the spatial [t(28) = 3.011;
p = 0.0055] as opposed to temporal [t(28) = 1.61; p = 0.1186]
cueing, indicating that the latter did not significantly affect
performance. The second analysis concerning temporal and
spatial invalidity costs showed a significant effect of cue type,
validity, and foreperiod [F(1,28) = 23.71; p < 0.001; F(1,28) = 89.3;
p < 0.001; F(2,56) = 75.83; p < 0.001 respectively], a significant
cue× validity interaction [F(1,28) = 32.23; p < 0.001], a significant
validity × foreperiod interaction [F(2,56) = 10.42; p < 0.001] and
a significant three way interaction between cue type, validity and
foreperiod [F(2,56) = 4.10; p = 0.02]. Post hoc analyses (Bonferroni
test) confirmed that for the temporal domain, RTs at the short
interval after an early cue were not different from RTs for the
medium interval at the medium cue, but significantly slower than
RTs for the long interval at the late cue (due to the interaction
with the foreperiod effect) [p = 0.0002]. Concurrently, RTs at the
short interval for the late cue were slower from RTs at the medium
interval after an invalid cue (either early or late) [p < 0.0001]
and from RTs at the long interval after an early cue [p < 0.0001],
while no difference was observed between the latter two variables.
Behavioral performance at the medium interval was therefore
discharged from the further indices computation and only RTs
at the short and long delay considered (see Table 1).

TABLE 1 | Mean reaction times (RTs) to target stimuli split by (a) cue type;
(b) validity, and (c) the interaction between validity and foreperiod.

Variables Means RTs SD Standard Error

a) Cue type

Neutral cue 324.304 47.787 8.874

Time cue 318.027 51.604 9.583

Space cue 309.957 52.529 9.754

b) Validity

Validityspatial −14.345 25.661 4.765

Invalidityspatial 57.459 38.420 7.134

c) Validity per foreperiod interaction

Temporal ValidityShort −14.932 38.378 7.123

Temporal ValidityLong −0.852 21.401 3.974

Temporal InvalidityShort 57.385 76.352 14.178

Temporal InvalidityLong 0.10 38.533 7.155

Local Connectedness
Temporal Validity and Invalidity Effects
The covariance between the behavioral benefit of knowing
in advance when the target will occur and the centrality of
nodes within the whole structural connectivity network was
investigated. Statistical analyses were separately performed for
both Temporal Validityshort and Temporal Validitylong effects,
considered as measures of explicit temporal orienting processes.
Results from simple linear regressions showed significant
negative correlations between the Temporal Validityshort effect
and degree centrality of a set of cortical regions. Moreover,
a significant covariance between the degree centrality of a
widespread pattern of cortical and subcortical nodes and the
Temporal Validitylong effect was found both as negative and
positive correlations (see Table 2). Results from subsequent
stepwise regressions showed that 51% of total variance observed
in the Temporal Validityshort effect was explained by right inferior
parietal (r = −0.41), right superior occipital (r = −0.31) and left
rolandic operculum (r = 0.48) nodes’ degree centrality variability
[F(3,25) = 10.854; r = 0.75; adjusted R2 = 0.51; p < 0.0001].
Further, for the Temporal Validitylong effect the same analysis
revealed that 67% of total variance was explained by right
supramarginal (r = −0.29), left inferior parietal (r = −0.39), left
fusiform (r = 0.51) and right insula (r = 0.24) nodes’ degree
centrality variability [F(4,24) = 15.455; r = 0.85; adjusted R2 = 0.67;
p < 0.0001].

The covariance between the behavioral cost of receiving
incoherent information about the target temporal occurrence and
the centrality of nodes within the whole structural connectivity
network was also investigated. Again, in the temporal invalid
condition, two different variables were analyzed as to explore
implicit temporal orienting processes (Temporal Invalidityshort ,
Temporal Invaliditylong). Positive and negative correlations
between the two indices and nodes centrality of a cortical-
subcortical network (see Table 2) were found. Results from
stepwise regressions showed that 40% of total variance observed
in the Temporal Invalidityshort effect was explained by left
putamen (r = 0.44), right paracentral lobule (r = 0.4) and right
caudate nucleus (r = 0.32) nodes’ degree centrality variability
[F(3,25) = 7.434; r = 0.7; adjusted R2 = 0.4; p = 0.001]. Conversely,
in the case of the Temporal Invaliditylong effect, results from the
stepwise regression evidenced a negative relationship between
the ability to re-orient attention to a later time point and degree
centrality of the left inferior parietal lobe [F(1,27) = 6.608; r = 0.44;
adjusted R2 = 0.2; p = 0.02].

Spatial Validity and Invalidity Effects
The analyses applied to subjects’ ability to orient attention in
space evidenced that centrality of two regions was positively
and negatively correlated with RTs to stimuli appearing in
a predictable location. Results from the stepwise regression
evidenced that the observed positive covariance between the
Validityspatial effect and degree centrality of the para-hippocampal
gyrus (r = 0.5) and the negative one with centrality of
the post-central gyrus (r = −0.4) [F(2,26) = 9.947; r = 0.7;
adjusted R2 = 0.4; p = 0.0006] could explain 40% of the total
covariance.

Frontiers in Human Neuroscience | www.frontiersin.org 5 May 2018 | Volume 12 | Article 212

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00212 May 23, 2018 Time: 17:11 # 6

Ciullo et al. Structural Network for Prospective Behavior

TABLE 2 | Observed covariance between degree centrality and spatio-temporal predictive performance.

AAL Node Node label Partial coefficient R Adjusted R2 F p

Degree coefficient

Temporal ValidityShort

– Simple Linear Regressions

17 Rolandic Operculum L −0.56 0.29 12.364 0.0016

24 Frontal Superior Medial R −0.40 0.13 5.093 0.0323

30 Insula R −0.41 0.13 5.363 0.0284

50 Occipital Superior R −0.39 0.12 4.727 0.0386

58 Postcentral R −0.43 0.16 6.21 0.0191

62 Parietal Inferior R −0.43 0.16 6.242 0.0189

89 Temporal Inferior L −0.43 0.15 5.998 0.0211

– Stepwise Regression

17 Rolandic Operculum L −0.48 0.75 0.514 10.854 <0.0001

50 Occipital Superior R −0.31

62 Parietal Inferior R −0.41

Temporal ValidityLong

– Simple Linear Regressions

1 Precentral L 0.37 0.10 4.264 0.0487

2 Precentral R 0.37 0.10 4.225 0.0496

23 Frontal Superior Medial L 0.42 0.14 5.744 0.0237

30 Insula R 0.41 0.14 5.425 0.0276

43 Calcarine L 0.43 0.15 6.068 0.0204

55 Fusiform L 0.66 0.41 20.881 <0.0001

61 Parietal Inferior L −0.41 0.14 5.572 0.0257

64 Supramarginal R −0.43 0.15 5.954 0.0215

68 Precuneus R 0.39 0.12 4.849 0.0364

71 Caudato L 0.48 0.20 8.091 0.0084

77 Thalamus L 0.38 0.11 4.542 0.0423

78 Thalamus R 0.41 0.14 5.578 0.0257

82 Temporal Superior R 0.42 0.14 5.636 0.0250

83 Temporal Pole Superior L −0.41 0.14 5.555 0.0259

– Stepwise Regression

30 Insula R 0.24 0.85 0.67 15.455 <0.0001

55 Fusiform L 0.51

61 Parietal Inferior L −0.39

64 Supramarginal Gyrus R −0.29

Temporal InvalidityShort

– Simple Linear Regressions

38 Hippocampus R 0.43 0.16 6.262 0.0187

70 Paracentral Lobule R 0.39 0.12 4.78 0.0376

72 Caudate R 0.45 0.17 6.743 0.015

73 Putamen L 0.40 0.13 5.245 0.03

– Stepwise Regression

70 Paracentral Lobule R 0.40 0.69 0.41 7.434 0.001

72 Caudate R 0.32

73 Putamen L 0.44

Temporal InvalidityLong

– Simple Linear Regressions

61 Parietal Inferior L −0.44 0.17 6.608 0.016

88 Middle Temporal Pole R 0.40 0.13 5.096 0.0323

– Stepwise Regression

61 Parietal Inferior L −0.44 0.17 6.608 0.016

(Continued)
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TABLE 2 | Continued

AAL Node Node label Partial coefficient R Adjusted R2 F p

Spatial Validity

– Simple Linear Regressions

40 Para-Hippocampal R 0.53 0.26 10.724 0.0029

58 Postcentral R −0.39 0.12 4.926 0.035

– Stepwise Regression

40 Para-Hippocampal R 0.53 0.66 0.39 9.947 0.0006

58 Postcentral R −0.39

Spatial Invalidity

– Simple Linear Regressions

55 Fusiform L 0.49 0.21 8.442 0.0072

The cost of spatial invalidity on performance (Invalidityspatial)
was found to positively covary with degree centrality of one
region. However, the stepwise regression model produced no
significant result (Table 2 and Figure 2).

Local Segregation
Temporal Validity and Invalidity Effects
The covariance between the four temporal indices (Temporal
Validityshort , Temporal Validitylong, Temporal Invalidityshort ,
Temporal Invaliditylong) and the prevalence of clustered
connectivity around individual nodes was investigated. Simple
linear regressions results showed significant negative correlations
between the Temporal Validityshort effect and clustering
coefficient of nodes within a cortical network (see Table 3).
Conversely, significant positive correlations were found between
the Temporal Validitylong effect and clustering coefficient of
nodes within a cortical-subcortical network (see Table 3).

The stepwise regression model showed a specific negative
relationship between the Temporal Validityshort effect and
the clustering coefficient of the right superior frontal cortex,
indicating that its’ connectedness with topological neighbors
nodes explained 18% of the total variance [F(1,27) = 7.001;
r = −0.45; adjusted R2 = 0.18; p = 0.013]. Moreover, significant
results from stepwise regression analyses indicates that 75% of
total variance observed in the Temporal Validitylong effect was
explained by right putamen (r = 0.5), left paracentral lobule
(r = 0.6) and right amygdala nodes’ clustering coefficient (r = 0.6)
[F(3,25) = 28.908; r = 0.9; adjusted R2 = 0.75; p < 0.0001]. The
same analysis applied to the two temporal invalidity indices
showed significant correlations between the latters and the
clustering coefficient of a set of cortical nodes and in a single
subcortical region (see Table 3). In the subsequent stepwise
regressions, we found that the 50% of total covariance between
the whole sub-network’s clustering coefficient and RTs indexing

FIGURE 2 | Degree-based connectivity networks for spatio-temporal predictive performance. Brain areas’ local connectedness associated with subjects’
performance according to: (a) Temporal Validityshor t; (b) Temporal Invalidityshort; (c) Temporal Invaliditylong; (d) Validityspatial indices. Nodes size represents the mean
number of streamlines incident to each area; link size represents the R2 value from the stepwise regression analyses. Blue = Negative correlation between
performance and connectivity; Yellow = Positive correlation between performance and connectivity; Purple edges were drawn to represent links among areas.
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the Temporal Invalidityshort effect [F(2,26) = 12.31; r = 0.7;
adjusted R2 = 0.5; p = 0.0002] was explained by the left middle
frontal gyrus (r = 0.6) and the left caudate nucleus (r = 0.4).
Conversely, when temporal expectations had to be updated to
a later time point (as expressed by the Temporal Invaliditylong
effect), the clustering coefficient of the right posterior cingulate
gyrus (r = −0.4), the right middle temporal pole (r = −0.4) and
the left superior temporal pole (r = 0.4) explained the 40% of the
observed covariance [F(3,25) = 8.339; r = 0.7; adjusted R2 = 0.4;
p = 0.0005].

Spatial Validity and Invalidity Effects
In case of predictable targets, the clustering coefficient of a single
area was found to covary with the ability to orient attention in
space (Validspatial effect). However, such correlation was no longer
significant in the stepwise regression model.

Conversely, results evidenced positive correlations between
the Invalidspatial effect and the clustering coefficient of cortical
and subcortical areas (see Table 3). Results from the stepwise
regression evidenced that 30% of the total covariance between the
whole sub-network’s clustering coefficient and the cueing cost for
spatial invalid trials [F(2,26) = 7.124; r = 0.6; adjusted R2 = 0.3;
p = 0.0034] was explained by the left paracentral lobule’s (r = 0.4)
and right putamen’s (r = 0.4) clustering coefficient (Table 3).

DISCUSSION

In the present study, we investigated the covariance between
performance on a spatio-temporal predictive task and topological
measures of complex brain networks. Degree centrality (i.e.,
a measure of local connectedness identifying critical network
elements as those having the highest number of connections
or degree) and clustering coefficient (i.e., a measure of local
segregation indicating the presence of clustered connectivity
around individual nodes) were computed (Barabaìsi, 2016)
and correlated to behavioral indices reflecting temporal and
spatial expectations. Specifically, we aimed at investigating
critical network elements for explicit spatial and temporal
orienting, and to examine potential variations for implicit
temporal expectations. Indeed, given that temporal predictions
can rely on different sources of relevant temporal information
(Correa, 2012), such as explicit predictive cues and probabilistic
information associated with the passage of time (hazard
function and foreperiod effects), we disentangled explicit
processes from more implicit measures reflecting the interaction
between these two different types of temporal orienting
effects.

To date, although relevant behavioral (MacKay and Juola,
2007; Weinbach et al., 2015; Laidlaw and Kingstone, 2017)
and fMRI (Coull and Nobre, 1998; Coull et al., 2015; Peer
et al., 2015) investigations examined the interrelation between
predictive behavior and processing of spatial and temporal
stimuli features, this is the first study that applied complex
network analysis to structural connectivity data for studying the
brain topological organization underlying spatial and temporal
predictive processing.

Here we found that response preparedness to cued stimuli
relies on different structural connectivity networks for the
temporal and spatial domains. Specifically, while the use
of temporal informative cues was found to covary with
centrality and segregation measures within a distributed cortical-
subcortical network, its spatial counterpart was related to
clustered connectivity around few brain regions. Particularly, the
behavioral advantage of being validly cued to a certain spatial
location was found to covary with local connectedness (increased
when RTs were faster after valid as opposed to neutral cues)
of a region in the right parietal lobe (the postcentral gyrus)
more anterior relative to previous fMRI reports (see Chica
et al., 2013 for a review; Coull and Nobre, 1998; Corbetta and
Shulman, 2002). Although this region is traditionally linked
to somatosensory perception (including proprioception), some
functional and lesion studies (Corbetta, 1998; Balslev et al., 2013)
suggested that the postcentral gyrus participates in movement
organization and anticipation processes by contributing to code
the locus of attention. Since spatial attention can be defined as
the selection of locations for perception and/or for action, the
postcentral gyrus may modulate the visual processing stream
toward a motor response by using gaze-direction signals that have
a proprioceptive component (Balslev et al., 2013). Alternatively,
the observed correlation may be related to the postcentral
gyrus participation to one of the three distinct key subsystems
of attention, namely the orienting network (Fan et al., 2005;
Posner, 2008). Indeed, clustered connectivity was found around
the left paracentral lobule when the behavioral cost of being
invalidly cued to a target location was considered. Since both the
postcentral and the paracentral gyri participate to the network
responsible for directing attention to target stimuli, triggered by
specific spatial cues (Petersen and Posner, 2012), the patterns
of relations among these brain areas and their topological
neighbors may sustain cued orienting of attention to spatial
locations. The fact that increased connectivity was found in a
local network community comprising the right putamen when
spatial invalidly cued trials were considered, seems to further
confirm the hypothesis that this region is one of the hubs of
the intrinsic connectivity networks in resting brain involved in
attentional processes (Xiao et al., 2016).

As for temporal orienting, significant covariance was observed
between centrality measures (calculated according to the number
of axonal bundles incident upon a node) of regions within a
subcortical-fronto-parieto-occipital network -comprising the left
putamen, the right caudate nucleus, the left frontal operculum,
the right inferior parietal cortex, the right paracentral lobule
and the right superior occipital cortex-, and the ability to
respond after a short cue-target delay suggesting that the local
connectedness of such nodes plays a central role when the source
of temporal expectation is explicit (Correa, 2012). When local
segregation was taken into account, we found highly clustered
structural connectivity across the right superior frontal gyrus, the
left middle inferior frontal gyrus and the left caudate nucleus as
related to explicit temporal orienting.

Interestingly, different connectivity clusters were observed
when the automatic shifting of attention (related to unexpected
premature targets) was separated from the voluntary top–down
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TABLE 3 | Observed covariance between clustering coefficient and spatio-temporal predictive performance.

AAL node Node label Partial coefficient R Adjusted R2 F p

Clustering coefficient

Temporal ValidityShort

– Simple Linear Regressions

6 Frontal Superior R −0.45 0.18 7.001 0.0134

7 Middle Frontal L −0.42 0.15 5.907 0.022

14 Frontal Inferior L −0.43 0.16 6.179 0.0194

26 Orbitofrontal Medial R −0.39 0.12 4.862 0.0362

49 Superior Occipital L −0.38 0.11 4.554 0.0421

68 Precuneus R −0.43 0.15 5.979 0.0213

– Stepwise Regression

6 Frontal Superior R −0.45 0.18 7.001 0.0134

Temporal ValidityLong

– Simple Linear Regressions

31 Anterior Cingulate L 0.42 0.14 5.658 0.0247

36 Posterior Cingulate R 0.46 0.18 7.123 0.0127

37 Hippocampus L 0.39 0.12 4.771 0.0378

38 Hippocampus R 0.43 0.15 5.992 0.0212

41 Amygdala L 0.49 0.21 8.449 0.0072

42 Amygdala R 0.46 0.18 7.305 0.0117

69 Paracentral Lobule L 0.65 0.41 20.29 0.0001

74 Putamen R 0.53 0.26 10.638 0.003

82 Superior Temporal Pole R 0.41 0.13 5.326 0.0289

87 Middle Temporal Pole L 0.37 0.11 4.272 0.0485

– Stepwise Regression

42 Amygdala R 0.58 0.88 0.75 28.908 <0.0001

69 Paracentral Lobule L 0.57

74 Putamen R 0.50

Temporal InvalidityShort

– Simple Linear Regressions

7 Middle Frontal Gyrus L 0.43 0.15 5.961 0.0215

51 Middle Occipital L 0.37 0.10 4.247 0.0491

71 Caudate L 0.56 0.29 12.437 0.0015

– Stepwise Regression

7 Middle Frontal Gyrus L 0.55 0.70 0.45 12.31 0.0002

71 Caudate L 0.41

Temporal InvalidityLong

– Simple Linear Regressions

15 Inferior Frontal Orbitalis L 0.37 0.11 4.315 0.0474

36 Posterior Cingulate R −0.41 0.14 5.569 0.0258

83 Superior Temporal Pole L 0.42 0.15 5.779 0.0233

88 Middle Temporal Pole R −0.45 0.17 6.697 0.0154

– Stepwise Regression

36 Posterior Cingulate R −0.43 0.71 0.44 8.339 0.0005

83 Superior Temporal Pole L 0.40

88 Middle Temporal Pole R −0.35

Spatial Validity

– Simple Linear Regressions

4 Frontal Superior R −0.386 0.149 0.12 4.729 0.0386

Spatial Invalidity

– Simple Linear Regressions

19 Supp Motor Area L 0.49 0.18 7.156 0.012

35 Cingulum Post L 0.40 0.12 4.81 0.037

(Continued)
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TABLE 3 | Continued

AAL node Node label Partial coefficient R Adjusted R2 F p

69 Paracentral Lobule L 0.45 0.17 6.694 0.0154

74 Putamen R 0.40 0.13 5.242 0.0301

83 Temporal Pole Superior R 0.39 0.12 4.898 0.0355

– Stepwise Regression

69 Paracentral Lobule L 0.44 0.59 0.30 7.124 0.0034

74 Putamen R 0.39

control of attentional orienting (in case of valid cuing) since
clustering coefficient of the left middle frontal gyrus and caudate
nucleus covaried with the former process, while the latter was
related to the right superior frontal gyrus clustering coefficient.

These findings expand prior results (Coull and Nobre, 1998;
Davranche et al., 2011; Coull et al., 2013, 2016; Carvalho
et al., 2016) by defining, across the entire brain structural
network, the relative importance of specific brain regions in
temporal orienting. They also indicate the presence in the
whole brain structural network, of a group of regions whose
reciprocal connectivity scaled with the increased preparedness in
responding to fast upcoming pre-cued stimuli and was specific
for the process under investigation (automatic attentional shift
vs. voluntary attentional orienting). Indeed, the functionality of a
node is defined by the pattern of its connections with other nodes
in the network (Bullmore and Sporns, 2009), since centrality
increases as the potential for communication from a region
increases, while the segregation measure here used is indicative
of lasting patterns of relations among brain areas for supporting
specific cognitive processes (Rubinov and Sporns, 2010).

Although a large corpus of research has implicated complex
and distributed networks -including prefrontal, premotor,
parietal and insula cortices and comprising also the striatum
(Triviño et al., 2010)-, in temporal orienting of attention, the
relevance of these structures in optimizing prospective motor
behavior as a function of informative cues is still debated. Our
results suggest that the behavioral benefit of being validly cued to
a short interval is subtended by the reciprocal connectivity within
a fronto-parieto-occipital complex. Activation of the inferior
parietal cortex has been widely observed in fMRI studies on
temporal orienting (Coull and Nobre, 1998; Coull et al., 2000,
2013, 2016; Cotti et al., 2011; Davranche et al., 2011). Although
a frontoparietal network has been implicated in temporal as
well as spatial orienting, the inferior parietal cortex seems
specifically related to predictive timing (Wiener et al., 2010),
as it has been found active not only when participants had to
use temporal cues to optimize motor responses, but also for
enhancing perceptual discrimination (Davranche et al., 2011),
irrespectively of the effector and the type of requested action
(button press/ocular saccades) (Cotti et al., 2011), both in the
visual and auditory modalities (Merchant et al., 2013; Bolger
et al., 2014). In terms of the structural network here observed,
results confirm a pivotal role of this area in implementing the
response benefits of temporal prediction, which is consistent with
the thesis that temporal expectations tune action planning by
optimizing prospective motor behavior (Coull and Nobre, 1998).

The fact that densely connected local clusters were structurally
centered around the right superior frontal gyrus in explicit
temporal orienting supports the assumption that the latter is a
voluntary process that requires more evolved structures such as
the frontal cortex, involved in the strategic and voluntary (top–
down) regulation of behavior (Konishi et al., 2008; Triviño et al.,
2010).

In case of premature targets -target appears at the short
interval after a late cue- a bottom–up, automatic grabbing of
attention has been previously described and linked to the activity
of the posterior extrastriate visual cortex (Coull et al., 2000).
Here we found that premature targets are related to the local
connectedness of the left putamen, the right caudate and the
right paracentral lobule. The involvement of the striatum in
timing is well known, being described as a ‘core timer’ of a more
distributed neural network underlying temporal processing in the
subsecond and multisecond range (Meck et al., 2008). Putaminal
activity has been traditionally associated with motor preparation
and execution, and specifically with the internal generation of
precisely timed movements (Rao et al., 1997). Indeed, previous
studies (Filip et al., 2016) suggested that the putamen is engaged
in the evaluation of success and precision of the undergoing
prospective temporal analysis, and our result would underscore
its function as a neural node in a network engaged in cases of
breaches of temporal expectations.

When the interaction between explicit and implicit temporal
orienting processes was considered at the long interval, we
found that explicit processes (indexed by the net advantage of
being validly cued when the foreperiod effect was partialled
out) were related to centrality measures of the bilateral inferior
parietal lobule. Degree centrality of the same region in the
left hemisphere covaried with behavioral measures (RTs at the
long interval for early cue minus RTs at the long interval
for late cue) indexing the process of attentional re-orienting.
These results confirm the key role of the left parietal cortex in
instantiating the behavioral benefits of temporal predictability,
whether temporal information is conveyed by explicit predictive
cues or by the probabilistic information associated with the
passage of time (Coull et al., 2016). Densely connected local
clusters were structurally centered on the right middle temporal
pole and the right posterior cingulum when the re-orienting
effect was specifically considered. The supramodal involvement
of the temporal lobe in time processing has been already
demonstrated (Kanai et al., 2011; Filip et al., 2016), while the
posterior cingulate cortex seems necessary for organizing flexible
behavior in response to an ever-changing environment. Indeed,
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this region contributes to signaling environmental changes and,
when necessary, to recombining variables into strategy-specific
measures of Bayesian evidence that the environment has changed
(Pearson et al., 2011). The fact that lasting patterns of relations
among the posterior cingulate and its topological neighbors were
observable when the process of attentional re-orienting to a later
point in time occurred, suggests that this area is specifically
involved in the dynamic updating of current expectancies as a
function of the foreperiod.

The selectivity of our results, indicating segregated structural
connectivity networks for temporal and non-temporal stimuli
dimensions, but also for explicit and implicit temporal orienting
provides empirical support to the notion that complex networks
theory enhances behavioral driven neuroimaging data analysis
of predictive timing. Indeed, actual evidence on the neural
underpinnings of temporal orienting is currently restricted
to task-based fMRI experiments in which the core of the
process circuitry is blurred by the recruitment of additional
areas related to ancillary cognitive/sensory processes. Conversely,
a task-independent structural neuroimaging approach within
a network-based modular framework provides quantitative
information on anatomical brain connectivity, at both global
and regional levels, thus unraveling the lasting patterns of
relations among brain areas for supporting the process under
investigation (Sporns, 2013; Mišić and Sporns, 2016). We
also think that our findings have a translational impact
since alterations in predictive timing have been evidenced in
psychiatric disorders such as schizophrenia. As such, we believe
that our results have the potential to better define the neural
circuits involved in the pathophysiology of the illness, and to
provide an explanatory framework for symptoms and clinical
manifestations. Given that graph theory allows a quantitative
analysis of the pattern of interconnections each area has with
other areas belonging to the same or different systems (Mišić
and Sporns, 2016), its application may provide new insight
on the dysfunctional interplay between timing deficits, clinical
symptoms and connectopathy in SZ. Indeed, neuroimaging
investigations evidenced connectivity deficits in patients with
SZ, with positron emission tomography (Andreasen et al., 1996;
Mallet et al., 1998), fMRI (Fornito and Bullmore, 2015; Crossley
et al., 2016; Nelson et al., 2017) and diffusion-tensor imaging
techniques (see Kelly et al., 2017 for a meta-analysis), suggesting
that SZ pathophysiology may be explained in terms of abnormal
or disrupted integration of spatially distributed brain regions
(disconnection hypothesis, Friston and Frith, 1995; Friston
et al., 2016). Here we observed that centrality and segregation
properties of the parietal and frontal cortices modulate explicit
and implicit temporal orienting in healthy subjects. Intriguingly,
these areas have been identified as putative hubs across the whole
brain network (Iturria-Medina et al., 2008; Gong et al., 2009) [i.e.,
highly connected nodes that allow segregated functional systems
to share information by means of neural interaction (Collin
et al., 2016)]. Such pivotal nodes infrastructure has been found
disproportional in SZ patients, with abnormal high clustering,
anomalous modularity structure (Zalesky et al., 2011; van den
Heuvel et al., 2013), and reductions of global efficiency in the
overall network structure (Zhang et al., 2012). Moreover, this

altered connectivity profile was observed in specific areas (Bassett
et al., 2008; van den Heuvel et al., 2010; Wang et al., 2012; Kaplan
et al., 2016) that partially overlap with the predictive timing
network here described, and are responsible for the computation
of prediction error signals to guide learning and updating of
expectancies (Kaplan et al., 2016).

Before concluding, few limitations have to be acknowledged.
First, the relatively small sample size might reduce the impact of
our findings and rescale the assertions here discussed. However,
we intended to provide preliminary evidence of the neural
architecture subtending the ability to optimize prospective motor
behavior as a function of informative cues. In fact, complex
and distributed networks have been thus far implicated in
predictive timing, while aberrant connectivity has been suggested
to underlie failures in predictive coding (Kraepelin, 1904; Friston
et al., 2016). In addition, it might be argued that the network
measures chosen are restricted to a small-sized pool, however,
we intended to exploit the straightforward characterization given
by the used ones, in order to elicit the cerebral interconnectivity
correlates of such a complex process as predictive timing.
Moreover, although the small number of temporal invalid trials
here used could be a potential limitation, we nevertheless
observed the traditional behavioral costs of being invalidly cued
in time, further confirming the strength of the temporal orienting
effects here investigated, even with a relatively reduced data pool.
Lastly, recent studies on attentional orienting suggested that cues
in the temporal and spatial conditions from the seminal study
by Coull and Nobre (1998) are hardly comparable as spatial
arrow cues elicit both voluntary and involuntary attention shifts
(Hommel et al., 2001; Olk, 2014), being over-learned symbols of
direction (Ristic and Kingstone, 2012) as opposed to temporal
ones. Future behavioral and neuroimaging studies should employ
cues that differ strictly in terms of temporal and non-temporal
properties, in order to minimize potential confounds on the type
of attentional orienting engaged.
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Filip, P., Lošák, J., Kašpárek, T., Vaníček, J., and Bareš, M. (2016). Neural network
of predictive motor timing in the context of gender differences. Neural Plast.
2016:2073454. doi: 10.1155/2016/2073454

First, M. B., Williams, J. B., Benjamin, L. S., and Spitzer, R. L. (2016a). Structured
Clinical Interview for DSM-5 Personality Disorders: SCID-5-PD. Washington,
DC: American Psychiatric Association Publishing.

First, M. B., Williams, J. B., Karg, R. S., and Spitzer, R. L. (2016b). Structured Clinical
Interview for DSM-5 Disorders: SCID-5-CV Clinician Version. Washington, DC:
American Psychiatric Association Publishing.

First, M. B., Williams, J. B. W., Karg, R. S., and Spitzer, R. L. (2014).
Structured Clinical Interview for DSM-5 Disorders–Research Version (SCID-5-
RV). Arlington, TX: American Psychiatric Association.

Fletcher, P. C., and Frith, C. D. (2009). Perceiving is believing: a Bayesian approach
to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10,
48–58. doi: 10.1038/nrn2536

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental
state”. A practical method for grading the cognitive state of patients for
the clinician. J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0022-3956(75)90
026-6

Fornito, A., and Bullmore, E. T. (2015). Reconciling abnormalities of brain network
structure and function in schizophrenia. Curr. Opin. Neurobiol. 30, 44–50.
doi: 10.1016/j.conb.2014.08.006

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci.
360, 815–836. doi: 10.1098/rstb.2005.1622

Friston, K., Brown, H. R., Siemerkus, J., and Stephan, K. E. (2016). The
dysconnection hypothesis (2016). Schizophr. Res. 176, 83–94. doi: 10.1016/j.
schres.2016.07.014

Friston, K. J., and Frith, C. D. (1995). Schizophrenia: a disconnection syndrome?
Clin. Neurosci. 3, 89–97. doi: 10.1007/s00117-004-1160-3

Frith, C. (2005). The neural basis of hallucinations and delusions. C. R. Biol. 328,
169–175. doi: 10.1016/j.crvi.2004.10.012

Giersch, A., Lalanne, L., and Isope, P. (2016). Implicit timing as the missing
link between neurobiological and self disorders in schizophrenia? Front. Hum.
Neurosci. 10:303. doi: 10.3389/fnhum.2016.00303

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009).
Mapping anatomical connectivity patterns of human cerebral cortex using
in vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536.
doi: 10.1093/cercor/bhn102

Frontiers in Human Neuroscience | www.frontiersin.org 12 May 2018 | Volume 12 | Article 212

https://doi.org/10.3389/fpsyt.2013.00047
https://doi.org/10.3389/fpsyt.2013.00047
https://doi.org/10.1073/pnas.93.18.9985
https://doi.org/10.1523/JNEUROSCI.1112-13.2013
https://doi.org/10.1523/JNEUROSCI.1112-13.2013
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1162/jocn_a_00511
https://doi.org/10.1038/nrn2575
https://doi.org/10.3389/fnhum.2016.00268
https://doi.org/10.3389/fnhum.2016.00268
https://doi.org/10.1016/j.bbr.2012.09.027
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1016/j.bpsc.2016.01.002
https://doi.org/10.1016/j.bpsc.2016.01.002
https://doi.org/10.1073/pnas.95.3.831
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1007/s00221-005-0131-x
https://doi.org/10.1007/s00221-005-0131-x
https://doi.org/10.3758/BF03196380
https://doi.org/10.1093/acprof:oso/9780199563456.003.0026
https://doi.org/10.1016/j.neuroimage.2010.09.038
https://doi.org/10.1016/j.neuroimage.2010.09.038
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1016/j.conb.2008.07.011
https://doi.org/10.1162/jocn_a_00854
https://doi.org/10.1016/j.neuroimage.2016.07.036
https://doi.org/10.1016/j.neuropsychologia.2012.08.017
https://doi.org/10.1016/j.neuropsychologia.2012.08.017
https://doi.org/10.1016/S0028-3932(99)00132-3
https://doi.org/10.1016/S0028-3932(99)00132-3
https://doi.org/10.1007/s00213-011-2346-9
https://doi.org/10.1007/s00213-011-2346-9
https://doi.org/10.1523/JNEUROSCI.18-18-07426.1998
https://doi.org/10.1523/JNEUROSCI.18-18-07426.1998
https://doi.org/10.1016/j.tics.2006.05.004
https://doi.org/10.1016/j.tics.2006.05.004
https://doi.org/10.1093/schbul/sbv146
https://doi.org/10.1093/schbul/sbv146
https://doi.org/10.1162/jocn_a_00030
https://doi.org/10.1007/b98890
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1155/2016/2073454
https://doi.org/10.1038/nrn2536
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/j.conb.2014.08.006
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1016/j.schres.2016.07.014
https://doi.org/10.1016/j.schres.2016.07.014
https://doi.org/10.1007/s00117-004-1160-3
https://doi.org/10.1016/j.crvi.2004.10.012
https://doi.org/10.3389/fnhum.2016.00303
https://doi.org/10.1093/cercor/bhn102
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00212 May 23, 2018 Time: 17:11 # 13

Ciullo et al. Structural Network for Prospective Behavior

Hohwy, J. (2017). Priors in perception: top-down modulation, Bayesian perceptual
learning rate, and prediction error minimization. Conscious. Cogn. 47, 75–85.
doi: 10.1016/j.concog.2016.09.004

Hommel, B., Pratt, J., Colzato, L., and Godijn, R. (2001). Symbolic control of visual
attention. Psychol. Sci. 12, 360–365. doi: 10.1111/1467-9280.00367

Iorio, M., Spalletta, G., Chiapponi, C., Luccichenti, G., Cacciari, C., Orfei,
M. D., et al. (2013). White matter hyperintensities segmentation: a new semi-
automated method. Front. Aging Neurosci. 5:76. doi: 10.3389/fnagi.2013.00076

Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y.,
and Melie-García, L. (2008). Studying the human brain anatomical network
via diffusion-weighted MRI and Graph Theory. Neuroimage 40, 1064–1076.
doi: 10.1016/j.neuroimage.2007.10.060

Jones, D. K., and Basser, P. J. (2004). “Squashing peanuts and smashing pumpkins”:
how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993.
doi: 10.1002/mrm.20283

Jones, D. K., Simmons, A., Williams, S. C., and Horsfield, M. A. (1999). Non-
invasive assessment of axonal fiber connectivity in the human brain via
diffusion tensor MRI. Magn. Reson. Med. 42, 37–41. doi: 10.1002/(SICI)1522-
2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O

Kanai, R., Lloyd, H., Bueti, D., and Walsh, V. (2011). Modality-independent role of
the primary auditory cortex in time estimation. Exp. Brain Res. 209, 465–471.
doi: 10.1007/s00221-011-2577-3

Kaplan, C. M., Saha, D., Molina, J. L., Hockeimer, W. D., Postell, E. M., Apud,
J. A., et al. (2016). Estimating changing contexts in schizophrenia. Brain 139,
2082–2095. doi: 10.1093/brain/aww095

Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., et al.
(2017). Widespread white matter microstructural differences in schizophrenia
across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working
Group. Mol. Psychiatry 23, 1261–1269. doi: 10.1038/mp.2017.170

Konishi, S., Morimoto, H., Jimura, K., Asari, T., Chikazoe, J., Yamashita, K., et al.
(2008). Differential superior prefrontal activity on initial versus subsequent
shifts in naive subjects. Neuroimage 41, 575–580. doi: 10.1016/j.neuroimage.
2008.02.037

Kraepelin, E. (1904). Clinical Psychiatry: A Text Book for Students and Physicians.
Marietta, GA: McMillian.

Laidlaw, K., and Kingstone, A. (2017). If not when, then where? Ignoring temporal
information eliminates reflexive but not volitional spatial orienting. Vision 1:12.
doi: 10.3390/vision1020012

Langen, M., Leemans, A., Johnston, P., Ecker, C., Daly, E., Murphy, C. M., et al.
(2012). Fronto-striatal circuitry and inhibitory control in autism: findings from
diffusion tensor imaging tractography. Cortex 48, 183–193. doi: 10.1016/j.
cortex.2011.05.018

Leemans, A., Jeurissen, B., Sijbers, J., and Jones, D. (2009). “ExploreDTI: a
graphical toolbox for processing, analyzing, and visualizing diffusion MR data,”
in Proceedings of the 17th Scientific Meeting International Society for Magnetic
Resonance in Medicine, Vol. 17, Honolulu, HI, 3537.

Leemans, A., and Jones, D. K. (2009). The B-matrix must be rotated when
correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349.
doi: 10.1002/mrm.21890

Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental
Organization (No. 8). Oxford: Oxford University Press.

MacKay, A., and Juola, J. F. (2007). Are spatial and temporal attention
independent? Percept. Psychophys. 69, 972–979. doi: 10.3758/BF03193935

Mallet, L., Mazoyer, B., and Martinot, J. L. (1998). Functional connectivity in
depressive, obsessive-compulsive, and schizophrenic disorders: an explorative
correlational analysis of regional cerebral metabolism. Psychiatry Res. 82, 83–93.
doi: 10.1016/S0925-4927(98)00011-0

Martin, B., Franck, N., Cermolacce, M., Falco, A., Benair, A., Etienne, E.,
et al. (2017). Fragile temporal prediction in patients with schizophrenia is
related to minimal self disorders. Sci. Rep. 7:8278. doi: 10.1038/s41598-017-07
987-y

Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston,
K. J., et al. (2014). Uncertainty in perception and the Hierarchical Gaussian
Filter. Front. Hum. Neurosci. 8:825. doi: 10.3389/fnhum.2014.00825

Measso, G., Cavarzeran, F., Zappalà, G., Lebowitz, B. D., Crook, T. H., Pirozzolo,
F. J., et al. (1993). The mini-mental state examination: normative study
of an Italian random sample. Dev. Neuropsychol. 9, 77–85. doi: 10.1080/
87565649109540545

Meck, W. H., Penney, T. B., and Pouthas, V. (2008). Cortico-striatal representation
of time in animals and humans. Curr. Opin. Neurobiol. 18, 145–152. doi: 10.
1016/j.conb.2008.08.002

Merchant, H., Perez, O., Zarco, W., and Gamez, J. (2013). Interval tuning in the
primate medial premotor cortex as a general timing mechanism. J. Neurosci. 33,
9082–9096. doi: 10.1523/JNEUROSCI.5513-12.2013
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