
METHODS
published: 26 June 2018

doi: 10.3389/fnhum.2018.00253

Frontiers in Human Neuroscience | www.frontiersin.org 1 June 2018 | Volume 12 | Article 253

Edited by:

Felix Blankenburg,

Freie Universität Berlin, Germany

Reviewed by:

Roberto C. Sotero,

University of Calgary, Canada

Gorka Zamora-López,

Universidad Pompeu Fabra, Spain

*Correspondence:

Markus Goldhacker

markus.goldhacker@ur.de

Received: 10 January 2018

Accepted: 01 June 2018

Published: 26 June 2018

Citation:

Goldhacker M, Tomé AM,

Greenlee MW and Lang EW (2018)

Frequency-Resolved Dynamic

Functional Connectivity Reveals

Scale-Stable Features of

Connectivity-States.

Front. Hum. Neurosci. 12:253.

doi: 10.3389/fnhum.2018.00253

Frequency-Resolved Dynamic
Functional Connectivity Reveals
Scale-Stable Features of
Connectivity-States
Markus Goldhacker 1,2*, Ana M. Tomé 1,3, Mark W. Greenlee 2 and Elmar W. Lang 1,3

1CIML Lab, Department of Biophysics, University of Regensburg, Regensburg, Germany, 2Department of Experimental

Psychology, University of Regensburg, Regensburg, Germany, 3Departamento de Eletrónica, Telecomunicações e

Informática (DETI), Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA), Universidade de Aveiro, Aveiro,

Portugal

Investigating temporal variability of functional connectivity is an emerging field in

connectomics. Entering dynamic functional connectivity by applying sliding window

techniques on resting-state fMRI (rs-fMRI) time courses emerged from this topic.

We introduce frequency-resolved dynamic functional connectivity (frdFC) by means

of multivariate empirical mode decomposition (MEMD) followed up by filter-bank

investigations. In general, we find that MEMD is capable of generating time courses

to perform frdFC and we discover that the structure of connectivity-states is robust

over frequency scales and even becomes more evident with decreasing frequency. This

scale-stability varies with the number of extracted clusters when applying k-means. We

find a scale-stability drop-off from k = 4 to k = 5 extracted connectivity-states, which

is corroborated by null-models, simulations, theoretical considerations, filter-banks, and

scale-adjusted windows. Our filter-bank studies show that filter design is more delicate

in the rs-fMRI than in the simulated case. Besides offering a baseline for further frdFC

research, we suggest and demonstrate the use of scale-stability as a possible quality

criterion for connectivity-state and model selection. We present first evidence showing

that connectivity-states are both a multivariate, and a multiscale phenomenon. A data

repository of our frequency-resolved time-series is provided.

Keywords: dynamic functional connectivity, multivariate, empirical mode decomposition, filter-bank, multiscale,

fMRI, resting-state, scale-invariance

1. INTRODUCTION

Functional connectivity is a key aspect in the analysis of rs-fMRI. It is based on calculating
association measures—mostly Pearson correlation—between distinct regions in the brain. First
attempts focused on the static case, for which whole time courses of resting-state-related brain
regions were used for evaluating correlation coefficients representing the strength of their
functional connections (Eguíluz et al., 2005; Lang et al., 2012). This approach resulted in many
insights ranging from a small-world organization of brain graphs that are constructed from this
so-called connectome (Bullmore and Sporns, 2009) over deviations in functional connectivity
between pathological and healthy brains (Stam et al., 2007; Ma et al., 2014) to developmental
changes of functional connectivity (Geerligs et al., 2014). It was also possible to identify similarities
between physical systems like the Ising-model of a ferromagnet and functional connectivity brain
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networks (Fraiman et al., 2009). However, using whole time
courses integrates out all temporal dependences within the
connectome, resulting in static average connectivities. Recently a
paradigm shift occurred toward a so-called dynamic functional
connectivity (dFC), which takes into account the temporal
variability of functional connections in the brain. Investigating
temporal fluctuations of functional connectivity thus has received
considerable attention in the last few years (Chang and Glover,
2010; Deco et al., 2011; Cribben et al., 2012; Allen et al., 2014;
Calhoun et al., 2014; Kopell et al., 2014).

Allen et al. (2014) introduced a sliding-window technique
applied to the time courses of independent components (ICs)
resulting from a group independent component analysis (gICA)
(Calhoun et al., 2001) on a very large set of subjects undergoing
rs-fMRI. This technique is also employed in the present study.
The idea is to track the variability of correlation matrices
formed from segments of the time courses of all ICs. Shifting
the window one time step further, results in a new correlation
matrix for the next time step with slight changes in correlation
coefficients and so on. The vast set of correlation matrices
resulting from such a sliding-window approach can be condensed
into several representative correlation patterns by applying k-
means clustering Allen et al. (2014). These stable patterns,
which robustly showed up as cluster-centroids, can be considered
connectivity-states given the fact that these centroids represent
very robust and almost discrete correlation patterns reflecting
characteristic connectivities that the brain goes through over
time, while simultaneously remaining similar between subjects.

The number of extracted clusters has to be predefined using
the k-means algorithm. Usually it is deduced from an elbow-
criterion which indicates a sudden change in a cluster similarity
index that, e.g., compares the variance within the extracted
clusters to the variance between them. Selecting the data inherent
number of clusters in the mentioned way is usually far from
objective, since a pronounced elbow is lacking most of the
time. In our study, we introduce a novel way of resolving this
issue by exploiting the novel finding of scale invariance of
connectivity-states. Scale invariance or scale-stability has been
shown to be an inherent feature of rs-fMRI data (Eguíluz et al.,
2005; Kitzbichler et al., 2009; Moretti and Muñoz, 2013). Scale-
stability of connectivity-states should be taken into account
when conducting a dFC analysis and we suggest to optimize it
in terms of connectivity-state extraction. Consequently, in this
study we explore the persistence of connectivity-states across
frequency scales and dive into scale invariance investigations of
connectivity-states.

One recent study Yaesoubi et al. (2015) investigated frdFC by
applying a wavelet decomposition to the time courses resulting
from gICA. We address this point by applying multivariate
empirical mode decomposition (MEMD), which is a data-driven
method for extracting so-called IMFs (Huang et al., 1998), which
reveal inherent characteristic time scales of temporal variations
of the quantities under study. Thus MEMD yields time courses
corresponding to clearly separated and narrow-band frequency
scales, which can be investigated individually by means of dFC.
Since the frequency scales of interest are not known beforehand,
starting with data-driven exploratory methods like MEMD is a

natural way. Our post hoc analyses with filter-banks confirm that
this way of approaching this kind of data is promising.

By entering frdFC by means of MEMD, we found that
connectivity-states show remarkable scale invariance features,
and that only the data-inherent number of connectivity-states
show scale invariant features over all extracted frequency scales.
Extracting more connectivity-states than present in the data
results in an abrupt drop in scale invariance. We found this result
both in rs-fMRI data, and in simulated connectivity data. Our
findings deduced in the present manuscript yield a novel method
of selecting the data inherent number of connectivity-states, or
rather number of clusters, by exploiting scale invariance of rs-
fMRI data. Content from one of the author’s thesis (Goldhacker,
2017)1 has been included in this manuscript.

The structure of the manuscript is as follows. In section 2,
the methodological background and pipeline are introduced.
Section 3 then starts with the quantification of scale invariance
of connectivity-states yielding the result for identifying the data-
inherent number of connectivity-states in rsfMRI (sections 3.1
and 3.2). This approach of detecting the data-inherent number
of connectivity-states and the mentioned result are corroborated
with several validation steps (sections 3.3–3.6). Section 4
discusses our approach, its implications, and limitations.

2. MATERIALS AND METHODS

In this section, we deduce the applied processing pipeline. We
used rs-fMRI data from the Human Connectome Project, on
which gICA has been applied to. This yielded time courses for
a predefined number of brain areas on a single subject level. On
those time courses, MEMD has been applied resulting in IMFs on
distinct and aligned frequency scales. The dFC approach has then
been applied to those IMFs on distinct frequency scales yielding
the proposed frdFC approach.

2.1. Data-Set
We based our analysis on volumetric data from the preselected
bundle of 100 unrelated human subjects from the S500 release
of the Human Connectome Project (Van Essen et al., 2012), in
which each subject went through four rs-fMRI sessions lasting
14min 33s resulting in 1200 volumes per session and n = 400
sessions in total. Data was acquired at customized 3T MRI
scanners at Washington University using multi-band (factor 8)
acquisition techniques (Moeller et al., 2010; Feinberg et al., 2010;
Setsompop et al., 2012; Xu et al., 2012). From the different
versions of the data we chose the most preprocessed data set
with motion-correction, structural preprocessing, and ICA-FIX
denoising (Jenkinson et al., 2002, 2012; Fischl, 2012; Glasser et al.,
2013; Smith et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014). The rs-fMRI data has a TR of 720ms and TE of
33.1ms acquired by a Gradient-echo EPI sequence. Flip angle was
52◦ and the FOV 208× 180mmwith a slice thickness of 2mm, 72
slices, and isotropic 2 mm voxel size. As additional preprocessing
we applied a Gaussian smoothing kernel with a FWHM of 5 mm
using SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm/)

1https://epub.uni-regensburg.de/35072/
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and we discarded the first five scans of each session from our
analysis.

2.2. Group-ICA
To apply gICA (Calhoun et al., 2001) on our data we used
the GIFT toolbox (http://mialab.mrn.org/software/gift/). On the
single-subject level, our data matrices Di,M×K have time as the
row dimension (M = 1195) and voxel-space as the column
dimension (K = 193965). As additional preprocessing, before
entering the analysis pipeline, we used variance normalization
by linearly detrending and z-scoring each voxel time-series. At
the single-subject reduction step, we extracted m = 45 principal
components (PCs) from the data of each session. By solving the
eigenvector decomposition Ci = ViLiV

T
i of the data-covariance

matrix Ci = DT
i Di with Vi representing the matrix of PCs

and Li the eigenvalue matrix, a PCA allowed to substantially
reduce the dimensionality of the problem. By using the m = 45
projections onto the PCs with the highest eigenvalues from Li,

a m × K reduced data matrix R
(s)
i resulted on the single-subject

level. This was followed by a group reduction step, stacking all

R
(s)
i in the row domain resulting, on the group level, in an nm×K

matrix R(g) entering once again a PCA, in analogy to the single-
subject step, and, finally, extracting 30 PCs across all subjects. All
PCAs were, because of limited on-board memory, implemented
with the help of an expectation maximization algorithm (Roweis,
1998). On the resulting group data set, we evaluated gICA R(g) =

TS by applying the Infomax algorithm (Bell and Sejnowski,
1995) to extract spatially independent components (ICs) S and
by applying the ICASSO approach (Himberg et al., 2004) for
component stability while repeating the ICA algorithm 10 times.
Finally, ICs were extracted from our data similar to Smith et al.
(2013), which ensures computability when it comes to applying
the MEMD algorithm (Huang et al., 1998; Mandic et al., 2013).
To come back from the group level to the single-subject level,
the back-reconstruction algorithm GICA3 (Erhardt et al., 2011)
was employed yielding subject specific time coursesTi and spatial
maps Si. Afterwards, the spatial maps were z-scored. The results
of the gICA analysis are illustrated in Figure 1A.

We tested our results extensively concerning stability and
performed our analysis with different numbers of components.
Looking at the dynamic range and low to high frequency ratio
(Allen et al., 2011), which reflects spectral characteristics of the
ICs, we find that the obvious artifact ICs 7, 15, and 17 have
lower values in both measures (Figure S1). Additionally ICs 10,
12, and 13 have lower values in those measures than the best
artifact component (IC 7). Consequently, we tested our approach
by dividing the set of ICs in a more conservative, an intermediate,
and a liberal set of resting-state networks (RSNs), by which
we identify ICs representing functionally important networks.
For the conservative set we removed ICs 10, 12, and 13, in
addition to the three artifactual ICs related to vascular (IC 15),
cerebro-spinal fluid (IC 7), and white matter components (IC
17) resulting in 24 ICs as RSNs. The more liberally selected set
of ICs consisted of a total of 27 RSNs leaving out the artifact
ICs, while the intermediate selection led us to remove IC 13 in
addition to the artifactual ICs, since dFC analysis showed that

this IC is very noisy resulting in a data set with 26 ICs. We
evaluated our method for each data set type and find that results
look very similar over all types with the clearest results for the
conservative run. Following the classification scheme used in the
study of Allen et al. (2011) it is plausible that the conservative
data set gives the best and most valid results, since the ICs added
in the intermediate and the liberal data set have worse spectral
characteristics than the best artifact IC. As ourmethod turned out
to be stable concerning the three types of datasets, we show results
of the conservative data set, since we want to deduce our results
from data with the least amount of noise and RSNs having time
courses with spectral characteristics at least better than artifactual
ICs.

2.3. Multivariate Empirical Mode
Decomposition
After having decomposed our data set into a set of independent
components consistent across a group of subjects, the next step
then applied, for each session i separately, an MEMD on these
time courses Ti. MEMD represents a data-driven approach of
decomposing e.g., non-stationary and non-linear time-series thus
serving as a suitable tool for the analysis of brain data time
courses. Following we present the concept of MEMD based on
the canonical empirical mode decomposition (EMD) method.
The approach was first introduced by Huang et al. (1998) and
later extended to a noise-assisted ensemble EMD (EEMD) byWu
and Huang (2009). The decomposition results in IMFs, which
represent characteristic inherent modes of the univariate time
course under consideration. Let x(t) be a general univariate time-
series, then EMD extracts one dimensional inherent modes uf (t)
such that the original signal can be expanded into these modes
plus a residual non-oscillating trend r(t) (Huang et al., 1998;
Mandic et al., 2013)

x(t) =

F
∑

f=1

uf (t)+ r(t) (1)

Note that EMD results in a complete decomposition of the
signal, i.e., summing up all IMFs and the residue results in
the original time course. Thus in contrast to exploratory signal
decomposition techniques referred to above, absolute values of
component amplitudes are of relevance giving each time point a
unique partner over all IMF-indices. EMD starts by selecting all
maxima and minima of x(t) and creates an envelope by spline
interpolation for the sets of maxima and minima separately.
Afterwards the mean of the envelopes is subtracted from x(t) and
it is checked, if the resulting time course meets the criteria for
being an IMF—this process is called sifting. The two criteria for a
time course for being an IMF are: having symmetrical upper and
lower envelopes and the number of extrema and zero-crossing
differing at most by one (Mandic et al., 2013; Wang et al., 2010).
If it does not meet the criteria, the process is started again with
this new time course. Having extracted one IMF leads to the
subtraction of the latter from the original time course, and the
sifting process starts again with the remaining time course until
a non-oscillating function is left, which is considered the residue
r(t).
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FIGURE 1 | (A) This panel shows the results from the gICA analysis of all 400 sessions arranged in modules concerning similar correlation behavior. Activity maps

represent the average over all sessions with values being z-transformed. The cut-off is chosen as z > 2 and the highest value of the color-range is individually

determined for each map. The arrangement of the RSNs in the dFC matrices is shown on bottom left of this panel. This correlation matrix shows the average of the

dFC matrices over all time points and sessions. Note the clear segregation into functional modules. Below each RSN characteristic areas are mentioned. STG,

Superior Temporal Gyrus; CG, Central Gyrus; SPL, Superior Parietal Lobule; IPL, Inferior Parietal Lobule; SFG, Superior Frontal Gyrus; MFG, Medial Frontal Gyrus;

MiFG, Middle Frontal Gyrus; IFG, Inferior Frontal Gyrus; IOG, Inferior Occipital Gyrus; MiOG, Middle Occipital Gyrus; MiTG, Middle Temporal Gyrus; LinG, Lingual

Gyrus; SMG, Supramarginal Gyrus; FL, Frontal Lonule; PL, Parietal Lobule; PC, Precuneus; AG, Angular Gyrus; TL, Temporal Lobule; SFG, Superior Frontal Gyrus.

(B) The base of our approach is to decompose the time courses of all RSNs by EMD resulting in ten separate frequency scales. To both on the original time courses

and the time courses of each frequency scale dFC is applied yielding sets of correlation matrices.

Mandic et al. (2013) mention at least two popular
shortcomings of plain EMD. First, it is not ensured that
modes appear in just one IMF, rather they could spread over

several IMFs. This condition is known as mode mixing. Second,
they mention a problem with so-called end effect artifacts,
indicating that creating proper envelopes needs a sufficient
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number of extrema. As time courses, being decomposed, have
finite range, the density of extrema tends to decrease near the
edges of the sampled time interval. Therefore the fit of the
envelopes is more error-prone at the beginning and end of the
time courses.

A further improvement of canonical EMD is provided by its
extension toward a multivariate, noise-assisted ensemble EMD
(MEMD) (Rehman andMandic, 2009, 2011; Mandic et al., 2013).
In short, EMD is extended to interpret input of multiple channels
as a multi-variate signal. Compared to the noise-assisted variant
EEMD, noise-channels are added to the multi-dimensional signal
in the MEMD case instead of adding noise onto the time courses
themselves. Creating an ensemble of IMFs by re-doing MEMD
with newly generated noise as several realizations yields the
noise-assisted ensemble extension of MEMD. Strictly speaking,
the IMFs Uf extracted by MEMD are multivariate with the
same dimensionality as the multivariate signals themselves. After
creating an ensemble, representatives of IMFs are created by
averaging over all realizations thereby reducing the mentioned
shortcomings common to plain EMD (Rehman et al., 2013).
One of the outstanding features of MEMD is its accurate mode-
alignment quality, which renders it most suitable for a frdFC
analysis. This is because for applying a sliding-window approach
on separate frequency scales over many subjects and RSNs,
we assume that the frequencies need to be aligned accurately.
Therefore we use the MEMD approach for the decomposition
of the time courses Ti of our data set resulting from the back-
reconstruction step. MEMD is applied to Ti of each session.
Figure 2A illustrates, as an example, time courses of the first IC
from 10 IMFs of one session. The instantaneous frequencies of
the modes decrease with increasing IMF-index. The box-plots
of the frequency range of the IMF-indices (Figure 2B) and the
corresponding spectral power densities (Figure 2C) show that
mode mixing was avoided by separating frequencies of different
scales. In particular, Figure 2B shows the distinct quality of
MEMD to align modes over sessions and RSNs. This quality
is also confirmed by low correlation values of IMFs between
different indices (see Figure S2).

Before performing frdFC introduced below and applying
MEMD on the time courses of the RSN ICs Ti, a low-pass
filter with a cut-off of 0.15Hz, despiking, and cubic detrending
was applied on the time courses of the RSN ICs. This means
that the time courses had the same level of preprocessing both
before entering dFC, and MEMD. On the preprocessed time
courses, we appliedMEMD by using scripts provided by Rehman
and Mandic (2009) (http://www.commsp.ee.ic.ac.uk/~mandic/
research/emd.htm) after adapting them to the noise-assisted
ensemble approach by adding four white Gaussian noise channels
with a power of 6% (Rehman et al., 2013) of the average power
of the original signal to the 24 time courses Ti of the RSN
ICs in 30 realizations of noise for all 400 sessions. These noise
channels were then discarded from all IMFs. For our further
analysis, we used the first 10 IMFs only and discarded IMFs
with higher indices. In some sessions and certain realizations, the
algorithm stopped after IMF-index 10, which means that IMF
10 represented the residual signal. To assure comparability, we
repeatedly initialized the algorithm with newly generated noise

FIGURE 2 | (A) The original time course and time courses of IMFs 1− 10 of

the first IC of one session (session 322) are shown as an example. (B) This

panel shows box-plots for the instantaneous frequency against IMF indices.

Data points for calculating the box-plots represent the instantaneous

frequency averaged over time points and ICs. Black dots represent outliers

concerning box-plots. MEMD mode alignment yields very small deviations in

frequency between sessions, which enables us to do dFC on different

frequency scales. (C) Depicted here are the power spectrum densities

(normalized) for all IMF indices used. Each curve represents the average power

spectrum densities over all ICs, sessions and subjects.

channels until it extracted at least 11 IMFs (10 IMFs + 1 residue),
since this number was most common across all sessions and
realizations. With this procedure we ensured the same stopping
criterion throughout all sessions and that no residue was taken
into account in calculations with time courses of IMF index 10.
This procedure results in frequency-resolved time courses, or

rather multivariate IMFsU
f
i for each session i on frequency scales

f = 1, . . . , F with F = 10.

2.4. Dynamic Functional Connectivity
For our analysis we needed to evaluate the dFC approach on
the single-subject time courses of our data set Ti and on their

corresponding frequency-resolved time courses U
f
i (Figure 1B).

For the whole study, the following parameters concerning dFC
with constant window size hold. We use a boxcar window
size of 80 TRs for the sliding-window approach resulting in a
window length of 57.6 s. The time steps between each window are
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chosen to be 1 TR resulting in 1115 time steps for each session.
Correlation matrices for each window were calculated using L1
regularization with 10 repetitions estimating precision matrices
(Varoquaux et al., 2010; Smith et al., 2011) by applying graphical
LASSO (Friedman et al., 2008). We ended up with sets of
correlation matrices XS

i (t) from the standard time courses Ti and

sets of correlation matrices X
If
i (t) from time courses U

f
i of IMF

index f for each session. Every set of correlation matrices from
one session had the dimension C×C×T, with C = 24 being the
number of used RSNs and T = 1115 the number of windows. To
stabilize variance, we applied a Fisher-transformation on every
correlation coefficient before k-means clustering was performed.
The k-means algorithm was applied to the set of correlation
matrices from the original time courses

{

XS
i (t)

}

i=1,...,n
and the

sets of correlation matrices from the time courses resulting from

the MEMD
{

X
If
i (t)

}

i=1,...,n
on each frequency scale separately

with a maximum of 200 iterations and k ∈ [2; 10]. These
sets of correlation matrices that entered the clustering consisted
of correlation matrices from all sessions. From each of the 10
frequency scales, and from the original time courses, 400 ×

1115 correlation matrices resulted by applying dFC. On each of
those sets of correlation matrices, k-means clustering was applied
with k ranging from 2 to 10. Afterwards, Fisher-transformed
correlation coefficients were back-transformed to original values
for our analyses. Since k-means clustering depends on the initial
conditions of the seed centroids, we initialized the algorithm
several times with varying initial conditions. For this purpose, the
k-means++ algorithm (Arthur et al., 2007) was applied before
each k-means clustering run to find initial seeds. For all cases
where rs-fMRI data was used [including null-models (section 3.3)
and frequency dependent window size investigations (section
3.4)], the clustering was initialized 10 times.

We grouped our RSNs with respect to their similarity in
the average correlation matrix (see arrangement in Figure 1A,
left). This yielded an auditory/sensorimotor (AUD/SM),
a visual (VIS), a cognitive control/visuospatial planning
(CC/VSP), and a default mode/attentional module (DM/AT).
So dividing our RSNs resulted in a clear modularization of the
connectome with common functional properties of the members
and distinct connectivity characteristics between different
modules.

3. RESULTS

The introduced pipeline enabled us to extract connectivity-
states on different frequency scales. We investigated the scale
invariance behavior of connectivity-states and found that there
is a considerable drop of scale stability, when more than four
connectivity-states have been extracted from rs-fMRI data by
means of clustering. This finding has been corroborated by
theoretical considerations and null-models. Additionally, we
investigated simulated connectivity data with a known ground
truth of different numbers of data inherent connectivity-states.
By applying our proposed method on this data we found
that exploiting scale invariance of connectivity-states yields
a novel method of selecting the data inherent number of

connectivity-states, or rather clusters. In post hoc filter bank
investigations, we justified our use of MEMD by finding that
using filter banks to enter frdFC depends on a delicate tuning of
the underlying filters.

3.1. Robustness of Connectivity-States
Over a Wide Frequency Range
As introduced above, the dFC-analysis applied to the inherent
time courses offered by theMEMD resulted in corresponding sets
of inherent correlation matrices. We investigated the dynamics
of connectivity-states, identified as centroids of a k-means
clustering procedure, like in a standard dFC analysis. But, due
to an MEMD preprocessing, we could analyze the dynamics
on different inherent time scales as represented by the local
frequencies and as identified through the IMFs extracted from
the signals. To investigate the robustness of the connectivity-
states across different inherent frequency scales as identified by
MEMD, we employed the so-called Hungarian method (Kuhn,
1955;Munkres, 1957) to line up, across different frequency scales,
most similar connectivity-states.

Applying k-means clustering separately to each set of
correlationmatrices of intrinsicmodes with their related inherent
frequency scales, results in an array of plots of dimension
F × k (see e.g., Figure 3) with F extracted IMFs and k states
according to the number k of underlying centroids. With varying
k ∈ [2; 10], this procedure resulted in nine plot arrays.
The Hungarian algorithm sorts connectivity-states across all
frequency scales according to closest similarity (see Figure 4 and
Figures S3–S10 in the Supplementary Material). The Hungarian

algorithm matched the connectivity-states X
If+1

j of scale f + 1

and column j to the average connectivity-state matrix X
I1...f
j

over the preceding 1, ..., f scales in column j. This is done for
all F scales and then the configuration is saved. The averaging
procedure of the first 1, . . . , f scales in each column j introduces
statistical dependencies. Furthermore, the assignment procedure
also depends on the configuration of scales. To account for
these two aspects, the algorithm shuffles frequency scales before
assignment starts using only non-repeating configurations. For
each shuffling run nIter, the configuration after assignment is
saved yielding numIter = 500 ordered configurations of F × k
connectivity-states for further analysis. If F! < 500, then all
possible permutations numIter = F! are used. Shuffling and
averaging are introduced to the ordering procedure to avoid
any sequence effects. The ordering procedure is summarized
in Algorithm 1. For visualization purposes and a qualitative
analysis, we illustrate the results of the realization with ordered
frequency scales. In other words, for visualization purposes we
show one particular k-means realization with no shuffling of
frequency scales.

With k = 2, mainly results on lower frequency scales differ
strongly from results on higher scales. Extracting k = 3 and
k = 4 connectivity-states, respectively, (see Figure S3 and
Figure 3) reveals a very robust alignment across all frequency
scales. Note that with k = 4 connectivity-states, another robustly
aligned column, i.e., state, is added to the three connectivity-
states already obtained from the run with k = 3. For larger
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Algorithm 1 Ordering states over different frequency scales

Input:

{

X
If
j

}

state matrices of scales f = 1, ..., F and columns

j = 1, ..., k
1: for nIter = 1 : numIter do
2: Shuffle scales
3: for f = 1 : F - 1 do

4: Assign the states X
If+1

j from scale f + 1 to the average

of the states X
I1...f
j of the preceding scales by employing the

Hungarian method
5: end for

6: After states of the final scale have been aligned, save
configuration and go to step 1)

7: end for

number k of clusters, this is no longer the case, since newly
added columns become increasingly misaligned reflecting a
larger diversity among connectivity-states.

Visual inspection of the aligned connectivity-states is already
encouraging. In Figure S3, the result of extracting k = 2
connectivity-states from different frequency scales resulting from
MEMD and subsequent ordering by applying Algorithm 1 is
depicted. State S1b is robust at least up to scale f = 8 and S2b
up to scale f = 7, but with more pronounced heterogeneity. For
k = 3 in Figure S3, the first two states resemble the same states
found for k = 2. Additionally, a third connectivity state (S3b)
shows up. In this array, all three states show high robustness
over scales. In the following, I refer to this robustness of states
over scales as scale stability. Also for k = 4 (Figure 3) a new
state (S4b) shows up being robust over scales, with scale stability
of the other three states still being preserved. When extracting
one more connectivity-state from each scale, this pattern of scale
stability breaks down. In Figure S5, a vast loss in scale stability
can be observed. Three connectivity-states still show robust scale
stability, which is lost for the connectivity-state found in the first
column of Figure 3. This loss in scale stability is also preserved
when extracting k > 5 connectivity-states (see Figures S6–S10).
The tendency of increasing correlation coefficients evident in
the histograms shown in each of those figures, can be explained
by the increasing period of the time courses and the constant
window size used for the sliding window approach.

3.2. Variability of Scale-Stability of
Connectivity-States
Looking at connectivity-states across frequency scales more
quantitatively reveals that connectivity-states, deduced from
particular k-means groupings, are highly stable concerning their
similarity. The similarity of states can be looked at more closely
by correlating connectivity-states across adjacent frequency
scales. After aligning connectivity-states for each k-means run,
patterns at frequency scales f and f + 1 are correlated – thus
1f = 1 in the sense of frequency “distance.” Then1f is increased
step by step to look for similarity at more distant frequency scales.

Finally, the global measure of similarity is plotted for each1f (see
Figure 4B1).

Correlation is determined by looking for highest association
between patterns. The latter is estimated by averaging all
correlation coefficients resulting from the comparison of states
across all frequency “distances.” By doing so we achieve a
measure of similarity for each k and each 1f according to

Isim
1f (k) =

1

(F − 1f )k

k
∑

i=1

F−1f
∑

f=1

corr
(

X
f
i ,X

f+1f
i

)

. (2)

Averaging Isim
1f

over 1f results in a global similarity measure

Isim
1f

for a complete k-means run, i.e., for each k. This measure

takes into account both similarity over nearby as well as distant
frequency scales. To avoid sequence artifacts or any weighting
of scales, the ordering algorithm shuffles frequency scales before
ordering. Each shuffling iteration, the scale-stability index of
Equation 2 is calculated and afterwards averaged over the
ensemble. The k-means clustering procedures are initialized ten
times with varying initial seeds. This means, for each of those

realizations 〈Isim
1f

〉(k) is calculated and its evolution with k can

be plotted including error bars representing the consistency over

all those realizations. Plotting this ensemble average 〈Isim
1f

〉(k)

for each k, results in a high similarity across frequency scales
of connectivity-states for k ≤ 4, but similarity decreases for
larger numbers of extracted states corresponding to k ∈ [5; 10]

(Figure 4A1). This drop of 〈Isim
1f

〉(k) from k = 4 to k = 5 can be

seen by looking at Figure S5.
In a recent study, Leonardi et al. (2014) investigated dFC

and connectivity-states by suggesting that dFC matrices should
be demeaned before entering the clustering procedure resulting
in better clustering. By demeaning they understand to subtract
the temporal mean of each correlation function Xij(t) from its
time course, i.e. each entry of the dFC matrices is temporally

demeaned. In Figure 4A2, the scale stability measure 〈Isim
1f

〉(k)

is shown for this type of procedure applied to the data used in
this study. The demeaning procedure is applied after correlation
coefficients have been Fisher transformed. This results in a peak
at k = 3, but with a sharp drop off evident from k = 4 to k = 5.
Looking at the F×k array for k = 4 of the demeaned data (Figure
S11), it can be seen that the state resembling static functional
connectivity is absent, and the other three states are similar to
the remaining states from Figure 3. Also the plots of Isim

1f
(k) are

shown in Figure 4B2 for the demeaned data.
Theoretical considerations show that the pattern depicted in

Figure 4A1 can also be mathematically deduced (see section 1.5
in the Supplementary Material).

3.3. Null-Model Tests
We tested the validity of our results by applying our approach
to two null-models derived from the original Ti. Time courses
from both null-models entered the pipeline at the same level
as the original time courses Ti (example plots of the clustering
can be found in Figures S13, S14 ). The first null-model was
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FIGURE 3 | This figure depicts the result of the ordering Algorithm 1 applied on connectivity-states resulting from frdFC procedure using Uf
i
extracted by MEMD. This

is a realization of the ordering procedure without shuffling the frequency scales f and k = 4 extracted connectivity-states on each frequency scale. In the top row, the

connectivity-states resulting from the standard (St.) dFC procedure are shown. Below, each row shows the connectivity-states from frequency scales f = 1, . . . , 10

with increasing frequency defined by the IMFs resulting from MEMD. Each column S*b represents one connectivity-state, if it could be found robustly over frequency

scales. Color represents the range from minimum (blue) to maximum (red) value of correlation to highlight the common structure over scales. The columns S*a show

histograms of the absolute frequency of the correlation coefficients of the corresponding connectivity-states.

introduced by shuffling the standard time courses Ti for each
session i and each RSN c = 1, . . . ,C, which destroys any
temporal structure present in the data. The second null-model
was derived from phase-randomizing each RSN time course from
Ti. This null-model ensures that a frequency relevant structure
is preserved in the time courses while destroying the covariance
patterns (Prichard and Theiler, 1994; Allen et al., 2014). An
MEMD yielded more IMFs (Figure S13) for the shuffled time
courses, since shuffling introduces high frequencies not present
beforehand. The results of the null-model tests are shown in
Figures 5A1,2,B1,2. It can be seen that both approaches with
surrogate time-series result in an almost vanishing scale-stability
index or even show an opposing trend with slightly increasing
stability with increasing k (Figures 5A1, 2).

3.4. Frequency Dependent Window Size
We also investigated the dependence of the window size used

in the sliding-window approach. The above reported results

are extracted using a constant window size of w(f ) = 57.6 s.

This size is applied both to the frequency-resolved time courses

resulting from MEMD, and the original time courses. To

provide a reference of how many periods are covered by this

window size in the original time courses, we calculated the

fast Fourier transformation of the average spectrum over all
used RSNs and sessions. The weighted-average frequency is

f ≈ 0.055Hz and the number of periods covered by a

window with size w(f ) is nT ≈ 3.16. To adjust the window
size to the average instantaneous frequency f of the IMFs, we
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FIGURE 4 | (A1) Here, the evolution of 〈Isim
1f

〉(k) is depicted for the MEMD procedure. A clear drop off is visible from k = 4 to k = 5 extracted connectivity-states with a

constant 〈Isim
1f

〉(k) beforehand. In (B1), Isim
1f

(k) is depicted for each 1f from which 〈Isim
1f

〉(k) of (A1) is derived. Analogously for (A2,B2), but with the alteration of

demeaning the connectivity-state matrices before applying the clustering procedure. Error bars depict the standard deviation. Lines are guide to the eye.

added

1wα(f ) = w(f )

(

f

f
− 1

)

· α (3)

to w(f ), resulting in an adjusted, frequency dependent window
size wα(f ). We chose to use α ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 1}
resulting in wα(f ) as plotted in Figure 6. For α = 0.5 ∧ f = f9
and α ∈ {0.5, 1} ∧ f = f10 w

α(f ) exceeded T. In those extreme
cases, window size was chosen to be wα(f ) = T − 1. For α = 1,
the frequency dependence resembles the case where the number
of periods in a window is equal across all frequency scales (except
the mentioned cases)

w1(f ) = w(f ) ·
f

f
. (4)

Afterwards, the sliding window approach was conducted with
window size adapted to different frequency scales. For each
α-value and each frequency scale f , k-means clustering was
applied in analogy to our introduced procedure, which would be

represented by α = 0. For each α-value, 〈Isim
1f

〉(k) was calculated

and plotted against k (Figure 7). Also with variable window size
a comparable pattern emerges with larger drop-offs from k = 4
to k = 5.

3.5. Simulated Dynamic Functional
Connectivity
In order to validate our approach and strengthen our results, we
applied our method to simulated data from the toolbox SimTB
(Erhardt et al., 2012), which enables us to simulate dFC traversing
a predefined number of connectivity-states ksim. To do that we
modified the script offered in the course of the study of Allen
et al. (2014) (http://mialab.mrn.org/software/simtb/docs/create_
toysimulation.m). We simulated 24 RSN time courses with a
length of M = 1, 200 time points and a TR = 0.7 s. The number
of simulated subjects and sessions was chosen so that in each
simulation runwith a particular number of artificial connectivity-
states the number of occurrences of each state was nocc. = 96.
The sequence of connectivity-states was randomized, but with
the constraint that consecutive intervals always traverse different
connectivity-states. Thus, the transition between states was
randomized. The duration of each connectivity-state was chosen
to be 1T = 150 TRs. We chose the numbers of connectivity-
states to be simulated as ksim ∈ {2, 4, 6, 8, 10}, the prototypes
of which can be found in Figure 8B. There are three main
parameters that can be adjusted—the probability of a unique
event pu and its amplitude au in relation to the amplitude of the
coherent, or rather, state event with the occurence probability
pu. We probed this three dimensional parameter space, but an
exhaustive parameter sweep was not possible due to the high
computational demand. We simulated all possible combinations
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FIGURE 5 | (A1) Depicts 〈Isim
1f

〉(k) from the shuffled and (A2) from the phase-randomized time courses. (B1,2) Show Isim
1f

, from which 〈Isim
1f

〉(k) is derived, for the

corresponding time courses. Error bars depict the standard deviation. The lines are guides to the eye.

FIGURE 6 | This figure shows the adjustment of window size wα on frequency

scales f used for the sliding-window approach. The α-values range from the

one extreme case with constant window size (α = 0) to the case with a

constant average number of periods in each window (α = 1).

of the values {0.6, 0.8, 1}. We show parameter sets with lower
values in the noise terms than in the signal term (Figure 8A1:
pu = 0.8, au = 0.8, ps = 1; Figure 8A2: pu = 0.8, au = 0.6,
ps = 0.8; Figure 8A3: pu = 0.6, au = 0.8, ps = 0.1; Figure 8A4:

pu = 0.8, au = 0.8, ps = 1; Figure 8A5: pu = 0.8, au =

0.6, ps = 0.8) as a proof-of-principle, since most of the parameter

combinations show comparable results. 〈Isim
1f

〉(k) shows distinct

patterns for each ksim ∈ {2, 4, 6, 8, 10} (Figures 8A1–5) with the
tendency to peak at k = ksim.

3.6. Filter-Banks
In a post hoc analysis we apply Butterworth filter-banks both on
the rs-fMRI and simulated time courses. We find that a filter-
bank emulating bands with similar bandwidths like the frequency
scales resulting from MEMD cannot be realized in a sensible
manner. The frequency scales represented by IMF indices f7
to f10 have a very narrow bandwidth, lie close together, and
are represented by frequencies very close to zero (Figure 2B).
Therefore, we switch to filter-banks with equidistant bands. All
orders of the used filters are chosen to result in stable pole
behavior.We followed amore canonical and amore adjusted way
of constructing the filter-banks. In the canonical way, the order of
the filters was chosen to be constant for filter-banks of a certain
number of bands. Hence, we chose order 10 for nbands = {5, 8}
bands, order 8 for nbands = {10, 12} bands, and order 6 for
nbands = 15 bands. In the adjusted way, we design the filters
with the maximum possible order barely resulting in stable filter
behavior adjusted for each band in each filter-bank. This results
in varying filter orders over different bands. The two filter-bank
designs can also be considered as a conservative and a liberal
design, respectively. For both approaches, the lowest bands are
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FIGURE 7 | In this figure, the results from the frequency dependent window

size procedure are shown. Each panel represents the evolution of the scale

stability measure 〈Isim
1f

〉(k) for each value of α ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 1}. (A1)

α = 0.05, (A2) α = 0.1, (A3) α = 0.2, (A4) α = 0.3, (A5) α = 0.5, (A6) α = 1.

Error bars represent the standard deviation of 〈Isim
1f

〉(k). The lines are guides to

the eye.

realized as low-pass filters. Since the preprocessing of the rs-fMRI
time courses includes a low-pass filter with a cut-off frequency of
0.15Hz, we partition the interval [0Hz; 0.15Hz] in bands each

with bandwidth 1ν = 0.15 Hz
nbands

. We evaluate our approach on

the resulting time-series on nbands different frequency scales.
Figure 9 shows the results of this approach applied on rs-fMRI

data. With increasing number of extracted frequency bands,
the drop from k = 4 to k = 5 found by the MEMD
approach (Figure 4) becomes more evident. For F = 5 and
F = 8 there is almost no drop-off. Furthermore, differences
between the constant and adjusted filter order approach are very
subtle. Comparing Figures 9A3–5 with Figures 9A8–10 shows
a greater uncertainty in terms of larger standard deviations
adjacent to the drop off for the adjusted order approach.
This means, when taking the results found in Figure 4 as the
desired outcome, Figure 9A5 shows the clearest result with
least uncertainty. Figure S15 shows the results of this approach
applied on simulated data with kinh = 4 states. With increasing

number of frequency scales the pattern identifying data inherent
connectivity-states becomes clearer. Additionally, when using
frequency scales extracted by filter banks, the scale stability

measure 〈Isim
1f

〉(k) shows values ≈ 1, which represents almost

perfect stability of connectivity-state structure over scales.

3.7. Data Repository
We provide a data repository of our frequency-resolved time-
series.2 In this repository we include the time-series resulting
from the MEMD procedure and filter-bank procedures both for
constant and adjusted filter order and the MEMD decomposed
time-series from the simulation runs plus the not shown
simulations (all main effects and interactions). In addition to the
decompositions we also offer the original, non-decomposed time
courses with the full preprocessing level where applicable (not for
simulations). The dFC matrices are stored on local servers and
can be retrieved on demand.

4. DISCUSSION

4.1. General Statement
We applied MEMD to complete time courses of RSNs resulting
from a gICA analysis, i.e., before the sliding-window procedure
was employed to perform a dFC analysis. We showed that
MEMD offers the possibility of comparing IMFs over sessions
and RSNs, since it aligns the modes accurately. This results
in time courses that can be compared within each IMF-level
across all sessions and RSNs, opening up a way to perform
a dFC analysis on different frequency scales. This suggested
a frdFC analysis. After the application of a sliding window
procedure on frequency-resolved time courses, clustering of
the sets of correlation matrices has revealed scale stability as
an inherent feature of connectivity-states, or rather cluster
centroids. The dependence of scale-stability of connectivity-
states on the number of extracted clusters is a novel finding
and could be related to existing literature describing scale-
invariance as a characteristic feature of rs-fMRI. Our approach
introduces a novel method of inferring the number of data
inherent connectivity-states. In post hoc analyses, null-model and
filter bank investigations, as well as simulated data, our main
findings have been corroborated.

When it comes to applyMEMD, time courses are decomposed
into a locally orthogonal set of IMFs that – when summed
up – result in the original time-series. Investigating frdFC by
means of MEMD yields two conflicting considerations to be
taken into account. On the one hand, since time courses are
analyzed at different time scales and the related local frequencies
are decreasing with increasing IMF index, adjusting window size
by Equation 4 is an obvious adaptation of the approach. On the
other hand, the representation of the original time course by the
superposition of all IMFs prefers the case with constant window
size where α = 0 in equation 3. This assures that, within any
given time window, time samples of different modes correspond
accurately to each other across all modes, i.e., each time point has
its exact partner for each IMF index. As a consequence, choosing

2http://doi.org/10.5283/epub.32642
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FIGURE 8 | (A1–5) In these panels, selected results of 〈Isim
1f

〉(k) are shown for ksim = 2 (A1), ksim = 4 (A2), ksim = 6 (A3), ksim = 8 (A4), and ksim = 10 (A5)

simulated connectivity-states. Error bars depict the standard deviation. (B) depicts the artificial states (S1–10) the simulated rs-fMRI time-series traverse. Each

correlation matrix has the dimension 24× 24. Blue color represents anti-correlation, red correlation, and green no correlation.

an adaptive window size yields correlation matrices which are
less comparable across different frequency scales, since for modes
with higher IMF-indices, the time window encompasses time
samples which do not belong to corresponding time windows
in modes with lower IMF-indices. However, choosing α = 0
neglects the increasing period of intrinsic local oscillations with
increasing IMF index. Those two lines of thought have to be
kept in mind when performing frdFC analysis by means of
MEMD. Yet another consideration favors the approach with
constant window size when it comes to apply k-means clustering.
Adapting window size to the period of local oscillations in
different modes also leads to varying numbers of data points in
the clusters if k-means is applied at different frequency scales. In
the extreme case with α = 1, k-means runs with nf1 = 461, 600
and nf10 = 400 data points are compared. Statistically, this
severe imbalance offers the algorithm the possibility to extract a
larger number of centroids for IMF index f1 and a vastly reduced
space of possible centroids for f10. With these considerations
in mind, the approach with constant window size seems to be
preferable over the one with time scale adapted window sizes.
Furthermore, the striking similarity of connectivity-states across
frequency scales for k = 4 in the constant window case lends
credit to prefer this approach over the adaptive one. Also the
findings of the frequency adjusted window size investigations
show much clearer results in terms of detectability of data
inherent connectivity-states. But nevertheless, when considering
both approaches equivalently, our results still consistently show a

high 〈Isim
1f

〉(k) for k ≤ 4 and above this value 〈Isim
1f

〉(k) drops. The

simulated dFC traversing artificial connectivity-states (Figure 8)

strengthen the result of k = 4 inherent scale-invariant states in

the data. The peak of 〈Isim
1f

〉(k) is more pronounced for ksim = 4 in

the simulated case (Figure 8A2), which can be expected in such
an idealization.

4.2. Scale-Stability and Its Possible
Benefits for Connectivity-State Extraction
In the course of this study we also looked at elbow-criteria
after k-means runs as a selection criterion for the proper
number of extracted connectivity-states. Unfortunately, no clear
elbow-criterion could ever be established. Using within-cluster
similarity as a measure of choice, clear elbows are rarely
evident. Therefore selection of a certain number of extracted
clusters would have been always subjective. Moreover, employing
Silhouette scores also resulted in an insufficiently pronounced
clustering structure for the original time course case.

Regarding this fact, and our results concerning varying
scale-stability of connectivity-states across frequency scales and
model order k, we rather suggest to consider scale-stability

〈Isim
1f

〉(k) as a proper measure to infer model order. The latter

could be identified as the number of clusters/connectivity-states
which show highest scale stability across the relevant frequency
scales. Our study shows that k = 4 connectivity-states deem
most appropriate for the data that has been analyzed. This
optimization for scale-stability is in line with literature reports
which suggest scale-invariance as an inherent feature of rs-
fMRI. In Kitzbichler et al. (2009), the authors argue that phase-
synchrony is an important feature for network formation at
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FIGURE 9 | This figure summarizes the results of the scale-stability analysis for

the filter-bank procedures with constant (A1–5) and adjusted filter order

(A6–10) applied on rs-fMRI data. It can be seen that increasing the number of

extracted frequency bands results in a clearer drop-off in scale stability of

connectivity-states. Therefore, applying MEMD has the advantage of avoiding

to delicately tuning the number of extracted frequency bands.

all frequencies in resting-state conditions. Since the extraction
of connectivity-states from dynamically changing correlation
matrices implies mutual coherence, a similar argument holds
here. Thus this argument is also in favor of identifying model
order with the number k of connectivity-states with highest
scale-stability across all inherent frequency scales.

The main finding of a high level of stability for k ≤ 4 and the
drop-off from k = 4 to k = 5 is robust over several modifications.

Intriguingly the recently suggested component-wise temporal
demeaning of dFC matrices (Leonardi et al., 2014) yields similar
results in terms of stability for k ≤ 4. Leonardi et al. (2014)
used a considerably smaller sample of sessions compared to our
dataset. We suggest that component-wise temporal demeaning
seems to be more crucial for studies with smaller cohorts than
large population studies and that its effects average out with
increased number of used sessions. We suppose that for smaller
cohort studies demeaning seems to be a crucial aspect (Leonardi
et al., 2014), but for large population studies the effect of
demeaning seems to diminish in terms of feature extraction by
means of k-means. Also the simulations conducted (Figure 8)
point to a benefit in scale-stability considerations when it comes
to inferring the underlying number of connectivity-states in a

dataset. For each ksim a distinct pattern in 〈Isim
1f

〉(k) with the

tendency of peaking at k = ksim emerged. When considering
the scale-stability findings of MEMD, filter-banks, simulated
and rs-fMRI data together, then we have accumulated evidence
that data-inherent connectivity-states emerge in a stable manner
over several scales and that our approach is appropriate for
determining the data inherent clustering structure.

4.3. Filter-Banks, MEMD, and
Self-Similarity
Analyzing expectably self-similar time-series by means of EMD
is a natural way of approaching such data (Flandrin et al.,
2004). Exploring the frequency structure in more detail via
filter-banks revealed striking robustness of the scale-invariance
feature concerning connectivity-states. Especially, in the case
of simulated time courses cycling through ksim = 4 artificial
connectivity-states, where the scale-invariance of those states
holds for different numbers of bands, i.e., different frequency
resolutions. For rs-fMRI time-series the variation in the number
of bands and with it the variation in bandwidth yields less
robust results, especially in the fourth connectivity-state. For
real data it seems that the design of the filter-bank is more
crucial than for simulated data. Nevertheless, we conclude that
real and even simulated rs-fMRI time-series cycling through
connectivity-states imprint their coherence not only on very
distinct frequencies, but rather on a much broader spectrum.
MEMD in turn seems to be capable of finding bands in a data-
driven manner that consist enough information to reveal the
scale-invariance of connectivity-states. Nevertheless, also filter-
banks posses this capability, but may be more sensitive to fine
tuning parameters.

We want to stress the fact that the pattern in the simulated
(Figure 8A2) and rs-fMRI data (Figure 4A1) are quite similar.
This pattern can also be found in most of the parameter
combinations of the simulated data. Comparing the filter-bank
findings from the simulated data (Figure S15) with those two
MEMD findings, the main pattern always holds and can be
carved out when neatly designing the filter-bank. Considering
the rs-fMRI data it seems that the design of the filter-bank has
to be more precisely chosen than for artificial data, since the
patterns shown in Figure 9 vary slightly depending on the chosen
filter-bank. This finding is not surprising, since in real data more
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noise-types should be present in the time courses than can be
simulated by the unique events introduced to the artificial time-
series. Since, the finding of a scale-stability drop-off from k = 4
to k = 5 is this common in our studies, we consider it as a
benchmark pattern concerning our used approaches and scale-
definitions. Assuming this pattern being the desired outcome of
the stability analysis, we find that the results from the filter-banks
are susceptible to parameter tuning of the filter. Nevertheless,
MEMD seems to be capable of finding the bands, which result
in similar patterns in simulated and real data.

4.4. Limitations and Future Directions
The time scales of extracted IMFs have also to be discussed.
Recent research showed that fluctuations in cortical activity
have physiological foundations even in the infra-slow frequency
range (Pan et al., 2013; Hiltunen et al., 2014). This means that
intrinsic modes with indices up to f7 can still be of physiological
origin. For even slower IMFs, corresponding to large periods
or, equivalently, low instantaneous frequencies, a physiological
interpretation is not immediately obvious and needs further
investigations. In this respect it is worth mentioning that even
on long (low) time (frequency) scales, the structure of the
four connectivity-states, which we were able to identify, is still
preserved. Hence, we are not dealing with artifacts on these time
scales. Thus the question arises: why is it possible to literally
define connectivity-states exploring the slowest fluctuations,
which result from the decomposition of cortical activity and
exploiting the limited information available from them? We
claim that our findings corroborate self-similarity and scale-
freeness, which indeed has been found in rs-fMRI (Eguíluz et al.,
2005; Kitzbichler et al., 2009; Fraiman et al., 2009; Tagliazucchi
et al., 2012), which demonstrates the emergence of similar
structures over a wide frequency range.

Because the multivariate extension of EMD applied in
this study is computationally very costly, we had to restrict
our decomposition to 30 ICs. As mentioned in the methods
section, extracting this number of ICs is still valid according
available literature results. However, with higher-dimensional
decompositions we would expect that cerebellar and subcortical
ICs would have a much larger signal-to-noise ratio. But as our
simulations with conservative, intermediate, and liberal sets of
RSNs showed very robust and similar results, we are confident
that using higher dimensional decompositions would merely
strengthen our results.

Besides those limitations our method is not only able to
extend the standard dFC to an frdFC approach, rather it
also shows that merely looking at the separation of frequency
scales by MEMD already reveals benefits in investigating
brain networks. While brain graphs are traditionally based
on thresholding correlation matrices, our approach offers a
new way of simultaneously investigating the dynamics of such
brain connectivity networks on different frequency scales. This
is achieved by thresholding the static or dynamic correlation
matrices calculated from time courses separated into different
intrinsic modes. Thus, for each subject or session not only
one static brain graph or one set of dynamic brain graphs can
be constructed, rather brain connectomes can be resolved at

various inherent frequency scales. This offers the possibility to
adapt brain graphs to inherent and problem-specific time scales,
and investigate graph theoretical properties like small-worldness,
corresponding to different inherent dynamics simultaneously.
This means that the emerging diagnostic values of functional
connectivity in diseases like Alzheimer’s disease and related
dementias, schizophrenia or Parkinson’s disease could benefit
from a higher diagnostic sensitivity by looking at functional
connectivity—and with it brain graphs—on different time scales.
Also methods investigating cognitive states by relying on brain
graphs Cribben et al. (2012) can adapt additional degrees of
freedom by applying certain aspects of our approach.

In general we conducted our study on a very large dataset
consisting of 400 sessions with 1115 windows each. Running
clustering algorithms on such a huge dataset can only account
for general features inherent to the data of all subjects—
even if demeaning of the single correlation functions has been
conducted. Such a dataset is suitable for a baseline study like
ours, but it has to be replicated for smaller studies with a
specific psychological hypothesis, if connectivity-states can also
be extracted in a robust manner over scales, if the stability over
scales also peaks at k = 4 or if scale-stability breaks down. If
the latter turns out to be true, complexity-loss theory for systems
under stress (represented by the stimulated brain) (Goldberger
et al., 2002; Ahmed and Mandic, 2011) would be a plausible
explanation.

Further studies could investigate modifications of our
approach to apply MEMD on higher dimensional data. Since
MEMD is computationally very costly with increasing number of
channels, it would be desirable to develop a method for applying
it onto finer parcellated cortices. Further studies could apply PCA
on the dataset reducing dimensionality in the spatial domain.
Then, on those reduced datasets, MEMD can be evaluated and
the resulting PCs can be backreconstructed into the original
dimension, but now frequency-resolved. Furthermore, future
studies can delve into designing filter-banks and explore e.g., the
feasible frequency resolution. Our provided repository of frdFC
time courses is a suitable baseline for this purpose.

Another intriguing finding is that even in simulated time
courses traversing artificial connectivity-states scale-stability is
an inherent feature. Since the generating algorithms of those
simulations are known, it could be possible to look for a deeper
mathematical understanding of the scale-stability emerging from
those operations. Thus, further studies could investigate the
theoretical framework of scale-stability in the context of dFC and
connectivity-states.

4.5. Conclusion
We introduced frdFC by means of MEMD and Butterworth filter
bank investigations. Intriguingly, our frequency resolution of
dFC revealed robust scale-stability of connectivity-states over a
wide range of inherent frequency scales. This could be achieved
by applying MEMD, which thus seems to be a suitable tool
for a frequency-resolved level of dFC analysis. Furthermore,
by decomposing time courses of ICs at an early stage of the
analysis protocol, we were able to gain deeper insight into
the behavior of connectivity-states, which otherwise could not

Frontiers in Human Neuroscience | www.frontiersin.org 14 June 2018 | Volume 12 | Article 253

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Goldhacker et al. frdFC and Scale-Stable Features of Connectivity-States

be revealed. Thus our results suggest connectivity-state as a
useful concept for cognitive studies and confirm that they are
a stable construct, well adapted to a wide range of inherent
and problem-specific time scales. Scale-stability was shown to
offer a proper means to estimate the underlying model order,
thus revealing the proper number of inherent connectivity-
states extracted by clustering approaches and structurally stable
across inherent dynamical processes on different time scales.
Post hoc filter-bank studies show that scale-invariance of
connectivity-states is a robust feature over more frequency-
scales than offered by MEMD. But choosing an ill-shaped filter-
bank can result in a mis-detection of the number of data-
inherent states. Since MEMD is a data-driven approach, no
fine-tuning is necessary for this purpose. Our novel approach
to spectrally resolved dFC offers plenty of new degrees of
freedom, in which pathological and healthy cognition may be
distinguished.

To sum up more specifically (i) our simulated results
point to scale-invariance of connectivity-states as being a
valid quality criterion for model order selection and (ii)
this finding encourages to look for a mathematically deeper
understanding of the concept connectivity-state, since in
simulated data the generating procedure is known. (iii) Finding
similar scale-invariance structure in simulated and rs-fMRI
connectivity-states for k = 4 is a strong hint toward
this number of connectivity-states representing data inherent
states. (iv) Our analyses show that scale-stability in both the
simulated and rs-fMRI time courses is a robust and strong
feature. (v) Choosing the natural way of detecting self-similar
structures by using a data-driven approach like MEMD led
to further frequency-resolution analyses via filter-banks, which

confirmed self-similarity as a data-inherent feature detectable by
frequency decompositions. Comprehending all findings yields
the conclusion that connectivity-states as a concept are not just
a multivariate, but also a multiscale entity, and that our novel
approach represents a highly sensitive way of detecting data-
inherent connectivity-states- or rather clustering structure.
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