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As the autism spectrum disorder (ASD) is highly heritable, pervasive and prevalent,
the clinical diagnosis of ASD is vital. In the existing literature, a single neural network
(NN) is generally used to classify ASD patients from typical controls (TC) based on
functional MRI data and the accuracy is not very high. Thus, the new method named
as the random NN cluster, which consists of multiple NNs was proposed to classify
ASD patients and TC in this article. Fifty ASD patients and 42 TC were selected from
autism brain imaging data exchange (ABIDE) database. First, five different NNs were
applied to build five types of random NN clusters. Second, the accuracies of the five
types of random NN clusters were compared to select the highest one. The random
Elman NN cluster had the highest accuracy, thus Elman NN was selected as the best
base classifier. Then, we used the significant features between ASD patients and TC
to find out abnormal brain regions which include the supplementary motor area, the
median cingulate and paracingulate gyri, the fusiform gyrus (FG) and the insula (INS). The
proposed method provides a new perspective to improve classification performance
and it is meaningful for the diagnosis of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) characterized by impairments in social deficits and
communication (Knaus et al., 2008) is a typically neurological disease with high heredity
(Baird et al., 2006) and prevalence (Chakrabarti and Fombonne, 2001). It is reported that the
prevalence of ASD has increased from 0.67% in 2000 to 1.47% in 2010 (Xu et al., 2018). Thus, the
early diagnosis of ASD is meaningful. However, the traditional diagnostic methods are mainly
based on clinical interviews and behavior observation, which makes the diagnosis inaccurate.
There are two ways that could be applied to improve the diagnostic accuracy of ASD. One
of the ways is the usage of the neuroimaging technique, such as Electroencephalogram (EEG;
Peters et al., 2013), positron emission tomography (PET; Pagani et al., 2017), structural magnetic
resonance imaging (sMRI; Sato et al., 2013) and functional magnetic resonance imaging (fMRI;
Ren et al., 2014). The specific properties of fMRI make it widely used (Bennett et al., 2017).
Another way is the usage of machine learning which could automatically improve the algorithm
performance based on the previous experiences (Jordan and Mitchell, 2015). The neural network
(NN) belongs to a branch of machine learning, which is inspired by human brain and has
the function of effective pattern recognition. The NN has been successfully employed in the
automated classification related to ASD. For instance, Iidaka (2015) applied probabilistic neural
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network (PNN) to classify ASD patients and typical controls
(TC), and the accuracy is close to 90%. Guo et al. (2017) proposed
a new feature extraction based on the deep neural network
(DNN) to classify the ASD patients and TC, and the accuracy
is 86.36%. Heinsfeld et al. (2018) used the deep learning to
diagnose ASD, and the accuracy is 70%. Heinsfeld et al. (2018)
adopted deep learning to classify the ASD patients and TC, and
the accuracy is 70%. These studies fully show that the accuracy
of a single NN is not high and unstable in the diagnosis of some
diseases.

As the single NN has the advantages of dealing with the
imperfect data and solving the problem of complex nonlinear
systems, the combination of multiple NNs would combine
their differences and also improve classification performance.
Therefore, we combine multiple NNs into a model which is
named as the random NN cluster in this article. The new
method could achieve better feature extraction and classification
performance. Specifically, five different NNs are applied to build
five types of random NN clusters which are able to classify
ASD patients and TC. Then, we compare the accuracies of
the five types of random NN clusters. The random Elman
NN cluster has the highest accuracy which is approximately
close to 100%, thus the Elman NN is selected as the best base
classifier. Next, the random Elman NN cluster is used to find
the significant features which are able to reflect the difference
between ASD patients and TC. Finally, the abnormal brain
regions are found out, including the supplementary motor area,
the median cingulate and paracingulate gyri, the fusiform gyrus
(FG) and the insula (INS). In conclusion, the random NN cluster
is an effective method for classification and it could provide a
new perspective to improve classification performance in the
diagnosis of ASD.

MATERIALS AND METHODS

Demographic Information
In this article, the original imaging data was selected from
autism brain imaging data exchange (ABIDE) database1), which
includes the neuroimaging data of ASD patients and TC. The
ASD patients should meet the criteria of childhood autism and
the TC should meet the criteria of healthy control. The fMRI
data was acquired on 3.0-T Siemens MRI scanner. The sequence
parameters include: TR = 3000 ms, TE = 28 ms, matrix = 64 ∗ 64,
slice thickness = 0.0 mm, pixel spacing X = 3.0 mm, pixel spacing
Y = 3.0 mm, flip angle = 90◦, no slice gap, axial slices = 34,
time points = 120. In the scanning process, all participants are
expected to lie still and stay awake. Finally, 92 participants that

1http://fcon_1000.projects.nitrc.org/indi/abide/

TABLE 1 | Basic information of ASD and TC.

Variables (Mean ± SD) ASD (n = 50) TC (n = 42) P value

Sex (M/F) 5/45 6/36 0.528
Age (years) 13.34 ± 2.41 13.05 ± 1.82 0.520

Abbreviations: ASD, autism spectrum disorder; TC, typical controls.

consist of 50 ASD patients and 42 TC were selected out in this
article.

The differences of sex and age between the ASD group
and TC group were tested by chi-square test and examined by
two-sample t-test respectively. The results are shown in Table 1.
It is referred that there are two groups which have no statistical
significance between the sex and the age.

Data Preprocessing
In order to lower the signal-to-noise ratio of fMRI images,
all fMRI images need to be preprocessed. In this article, we
used the Data Processing Assistant for Resting-State fMRI
(DPARSF2) software (Chao-Gan and Yu-Feng, 2010). The data
preprocessing includes the following eight steps: (a) converting
DICOM format to NIFTI format; (b) removing the first 10 time
points; (c) slicing timing (Kiebel et al., 2007); (d) realigning
with the aim of reducing head motion (Grootoonk et al.,
2000); (e) normalizing (Misaki et al., 2010); (f) smoothing with
the aim of removing the noise caused by breathing, heartbeat
and high frequency signal (Challis et al., 2015); (g) temporal
filtering with the aim of regressing out movement vectors
by high-pass temporal filtering (Kasper et al., 2014); and
(h) removing covariates, such as the whole brain signal, white
matter, cerebrospinal fluid signal regression treatment (Lund and
Hanson, 2001).

Basic Theory of the Neural Network
The operation of the human brain always attracts many
researchers’ attention. The artificial neural network (ANN)
is evolved from the human brain which could achieve an
effective nonlinearmapping function. In addition, it has excellent
classification performance in different fields such as the field of
medicine (Beheshti et al., 2014), economics (Wang et al., 2015)
and business (Tkác and Verner, 2016). The following introduces
five types of NNs.

Backpropagation Neural Network
The Backpropagation (BP) NN is the core of the forward NN and
it is able to realize the non-linear mapping (Ren et al., 2014).
However, there is no effective method to determine parameters
of BP NN, and the network could not be repeated because the
initial weights are random numbers.

Figure 1A shows the structure of the BP NN. x represents the
neuron of the input layer, themth output tmM(n) is defined as x(n)
in the input layer, where n is the number of iteration and M is
the number of total inputs. k represents the neuron of the hidden
layer. y represents the neuron of the output layer. wmi represents
the weight from the mth input layer to the ith hidden layer, and
wij represents the weight from the ith hidden layer to the jth
output layer. c(n) represents the target output. The ith input siI(n)
is denoted as

∑M
m = 1 wmi(n)tmM(n) in the hidden layer, where I is

the number of neurons in the hidden layer. The output tiI(n) is
denoted as f

(
siI(n)

)
in the hidden layer, where f (·) represents the

sigmoid function. The jth output tjJ(n) is denoted as g
((

sjJ(n)
))

in the output layer, where J is the number of the output layer

2http://d.rnet.co/DPABI/DPABI_V2.3_170105.zip
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FIGURE 1 | The structure of the five types of neural networks (NNs).
(A) Backpropagtion neural network. (B) Probabilistic neural network.
(C) Competition neural network. (D) Learning vector quantization neural
network. (E) Elman neural network.

and g(·) represents the linear function. The error Ej(n) is denoted
as cj(n)− tjJ(n) in each layer. The total error E(n) is denoted as∑J

j = 1 E
2
j (n)/2.

Probabilistic Neural Network
The PNN is used to classify based on the Bayesian decision theory
(Khan et al., 2015). PNN has the advantages of short duration,
and the basis function has a little influence on the classification
result.

Figure 1B shows the structure of the PNN. x represents
the neuron of input layer. The neuron φij in the hidden layer
is denoted as exp

[
−(s− sij)(s− sij)T/σ 2] /(2π) 12 σ d, where sij

represents the jth core of ith sample, σ represents the smoothing
factor and d represents the sample dimension. νi represents the
relationship of the input and output sample in the hidden layer
and is denoted as

∑L
j = 1 ϕij/L, where L represents the neuron

number in the summation layer. t is denoted as argmax (νi)
which represents the relationship of the input and output sample
in the output layer.

Competition Neural Network
In the competition NN, the output neurons compete with each
other at the same time and only a winning neuron is finally
selected. The learning rule is developed from the inner star rule.

Figure 1C shows the structure of the inner star model. pi
represents the neuron of input layer.wi represents the connection

weight. The output neuron S is denoted as Xw in the core
layer. The adjustable weight ∆wi is denoted as η(pi − wi) S. η
represents the learning rate.

Learning Vector Quantization Neural Network
The learning vector quantization (LVQ) NN was proposed
by Kohonen (Hung et al., 2011). LVQ originated from the
competition NN and each sample has its corresponding classified
label.

Figure 1D shows the structure of LVQ network. x represents
the neuron of input layer and N is the number of neuron. The
first and second neurons correspond to the output label of Y1
and the third neuron corresponds to the output label of Y2
in the competition layer. pi represents the ith input sample.
w1 represents the weight between the input layer and the
competition layer. The output b is denoted as piw1.

Elman Neural Network
The Elman NN has the function of the local memory and
feedback which helps to deal with the vary time series, thus this
type of NN has high stability. Specifically, thememory function is
reflected in the connection layer remembering the output of the
layer hidden in the previous step (Wang et al., 2014).

Figure 1E shows the structure of Elman NN. ei(f ) represents
the ith input vector of the input layer at time f. The output at
f time qa(f ) in the connection layer is denoted as αq(f − 1),
where α represents the delay at time f − 1. q(f ) represents
the output of hidden layer. S(f ) represents the output of the
output layer. W1 represents the weight between the connection
layer and the hidden layer. W2 represents the weight between
the input layer and the hidden layer. W3 represents the
weight between the hidden layer and the input layer. The
error M is denoted as [Sd(f ) − S(f )]T[Sd(f ) − S(f )]/2,
where Sd and S represents the output and the actual output,
respectively.

The Application of Graph Theory
The human brain could be denoted by a complex network. Graph
theory belonging to a branch ofmathematics is used for analyzing
the complex system. Therefore, the human brain network could
be analyzed by graph theory. Graph theory has two important
elements: nodes and edges.

The brain of each subject is divided into 90 regions (45 in
each hemisphere) using anatomical automatic labeling (AAL)
template (Plitt et al., 2015), which is regarded as the node of the
brain network. The average time series of all voxels in a region are
regarded as the time series of the region. The time series of two
separated brain regions could be transformed into the Pearson
correlation coefficient which forms a features matrix, and then
the 90 diagonal elements are removed. These Pearson correlation
coefficients are taken as the edge of the brain network. Thus there
are 4005 (90 ∗ 89/2) weighted edges. Then we used the absolute
value of the correlation coefficient and set a fit threshold for
the feature matrix to obtain an adjacency matrix. The threshold
equals to 0.25 in this article.

The functional connectivity is usually selected as features
between two brain regions (Plitt et al., 2015). There are also
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FIGURE 2 | The formation of the random NN cluster.

other indicators in graph theory analysis that could be selected as
features such as the degree, clustering coefficient, shortest path
and local efficiency of brain regions.

The degree of node represents the number of the directly
linked edges. Shortest path is used for measuring the shortest
path from a node to another node. The local efficiency reflects
the capability of local information communication between
one node and its neighbor nodes. It is assumed that N i
represents the degree of node i, dij represents the distance
of node i and node j, V i represents a node set in which all
nodes directly connected to the node i. The local efficiency of

node i is measured as E(i) = 1
Ni(Ni−1)

∑
i 6=j∈Vi

1
dij
. Clustering

coefficient reflects the degree of local cohesion between a
node and its neighbor nodes. The clustering coefficient of
node i measures as Ci =

e
C2Ni
=

2e
Ni(Ni−1)

, where e is the

sum of adjacent edges. The number of degree, shortest path,
clustering coefficient and local efficiency in each subject’s
brain is 90, 4005, 90 and 90, respectively. Then the four
indicators are integrated as the sample features of subsequent
experiments.

The Random Neural Network Cluster
The Design of the Random Neural Network Cluster
As a single NN has the advantages of dealing with the imperfect
data and solving the problem of complex nonlinear systems,
it is usually used for classification. However, the classification
performance is not high and unstable. In this article, the random
NN cluster is proposed by combining multiple NNs and it is
an effective method to improve classification performance. The
design of the random NN cluster is generated by the following
steps.

Given a full dataset D = (X1, Y1), (X2, Y2), . . ., (XN , YN), it
containsN samples.Y i represents the ith class label.Xi represents
the ith input sample which includes M features and it could be
expressed as Xi = (xi1, xi2, . . ., xiM), where xij represents the jth
feature of the ith sample.

The classification and feature extraction are carried out
by using the random NN cluster. First, the full dataset D is
divided into the training set N1 and the test set N2 and the
proportion is 8:2. Second, n samples are randomly selected
from (N1 (N1 � n)) and m features are randomly selected
from M (M � m) to form a single NN. The process is
repeated for k times. When there is a new sample entering
into the random NN cluster, k NNs would have k classification
results. Third, the majority of class labels are selected as the
classification result of the random NN cluster. Fourth, the
correctly predictive proportion of all the test samples N2 is
regarded as the accuracy of the random NN cluster. Then,
the NNs with the highest accuracy are selected out and the
corresponding frequency of the selected features is counted.
Finally, the features with top-ranked frequency are regarded as
the significant features. The formation of the random NN cluster
is shown in Figure 2.

The Classification of the Random Neural Network
Cluster
In our experiment, there are 50 ASD patients and 42 TC. It is
assumed that the class labels of TC and ASD patients are h1
and h2, respectively. As we use 90◦, 90 clustering coefficients,
4005 shortest paths and 90 local efficiencies as the features, there
are 4275 features for each subject. Thus, the sample feature could
be defined as Xi = (xi1, xi2, . . ., xi4275), where xi represents the
jth feature of the ith subject. The classification method of the
random NN cluster is described as the following.

First, 92 subjects are divided into a training set and a
test set, and the proportion is 8:2. Thus the training set has
73 subjects and the test set has 19 subjects. Second, 70 subjects
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FIGURE 3 | The accuracies of the five types of random NN clusters.

are randomly selected from 73 subjects and 120 features are
randomly selected from 4275 features to establish a single
NN, and this process is repeated for 1000 times to construct
a random NN cluster. We calculate the accuracy of the NN
using the toolbox of NN in the Matlab and the parameters of
each NN are appropriate adjusted to get better classification
results. Third, we apply five types of NNs (BP) NN, Elman
NN, Probabilistic NN, LVQ NN and Competitive NN) to
construct the five types of random NN clusters, which are
the random BP NN cluster, the random Elman NN cluster,
the random Probabilistic NN cluster, the random LVQ NN
cluster and the random Competition NN cluster. In the five
types of random NN clusters, the base classifier of the random
NN cluster with highest accuracy is regarded as the best base
classifier.

Finally, 19 samples enter into the random NN cluster, and
1000 NNs make decisions at the same time to obtain the
classification result of each sample. The majority of class labels
are regarded as the predictive label of each sample. When the
predictive class label is the same as the real class label, the label is
called as consistent label. The accuracy of the randomNN cluster
equals to the number of consistent label divided by 19.

In the 1000 NNs, not every NN contributes to the random
NN cluster. Thus, it is important to find out the significant NNs
which contribute greatly to the randomNN cluster. In this article,
we select the NNs from 1000 NNs whose accuracies are greater
than 0.6 as the significant NNs.

Extracting Features From the Random Neural
Network Cluster
As each NN has different characteristics, the selected features
would make different contributions to NN and the random NN
cluster. Therefore, it is necessary to select the significant features
which could reflect the classification performance between the
ASD patients and TC based on fMRI data. The process of
extracting features is as follows.

First, the samples and features are randomly selected from
the training set to construct the random NN cluster. Second,
the samples of the test set enter into each NN of the random

NN cluster to get the accuracies of 1000 NNs. Third, the
NNs whose accuracies are greater than 0.6 are selected from
1000 NNs, and we call these NNs as the significant NNs.
Fourth, we select the features of significant NNs from the total
4275 features, and these features are sorted in a descending
order according to their frequencies. Next, the features with high
frequency are considered as the significant features which could
be used to distinguish between ASD patients and TC. Then,
we select a part of significant features as the sample features to
construct a random NN cluster and calculate their accuracies.
Finally, the number of significant features corresponding to the
random NN cluster with the highest accuracy is the optimal
number.

After completing the features extraction in the whole brain,
we use the significant features to find out the abnormal brain
regions between ASD patients and TC. In order to estimate the
abnormal degree of a brain region, the number of features which
are related to the brain region is regarded as the criteria. If the
brain region is not related to any significant feature, the weight
of the brain region is 0. The greater the number of features is, the
higher the abnormal degree is.

RESULTS

The Performances of the Random Neural
Network Cluster
In this article, the five different types of NNs (BP NN,
Elman NN, Probabilistic NN, LVQ NN and Competitive
NN) are applied to construct the five types of random NN
clusters. The classification performances of the five types of
random NN clusters are shown in Figure 3. It is referred
that the accuracies of the random Competition NN cluster
and the accuracies of the random LVQ NN cluster are not
high; the accuracies of the random Elman NN cluster fluctuate
around 95%, even nearly reach to 100%; the accuracies of
the random BP NN cluster and the random Probabilistic
NN cluster are higher than the random Competition NN
cluster and the random LVQ NN cluster. Thus, we finally
select the Elman NN as the best base classifier and the
subsequent results are acquired based on the random Elman NN
cluster.

The training errors and the test errors of the five types of
random NN clusters are shown in Table 2. Figure 4 shows the
accuracies of 1000 NNs in four types of random NN clusters.
As the accuracies of 1000 NNs in the random probabilistic NN
cluster are the same values, Figure 4 does not show the accuracies
of probabilistic NNs. From the Table 2 and Figure 4 we could

TABLE 2 | The errors of the five types of random neural network (NN) clusters.

Variables (Mean ± SD) Training errors Test errors

Random BP neural network cluster 0.60 ± 0.09 0.60 ± 0.08
Random probabilistic neural network cluster 0.63 ± 0.00 0.63 ± 0.00
Random Elman neural network cluster 0.93 ± 0.04 0.93 ± 0.05
Random LVQ neural network cluster 0.50 ± 0.06 0.49 ± 0.06
Random competition neural network cluster 0.46 ± 0.07 0.45 ± 0.05
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FIGURE 4 | The accuracies of 1000 NNs in four types of random NN clusters.

learn that the error is higher in a single NN and is lower in a
random NN cluster.

In order to show the performance of the random NN cluster,
we compared the non-NN variant of the classifiers (the support
vector machine (SVM) and the decision-making tree) with the
NN. When the decision-making tree is made as the classifier, the
highest classification accuracy is 87%. When the SVM is made as
the classifier, the highest classification accuracy is 84%. These are
lower than the highest classification accuracy of the random NN
cluster.

In our experimental results, when the number of the classifier
is 270 which could be discussed in the following part, the
accuracy of the random Elman NN cluster is the highest.
Therefore, we fix the number of base classifiers on 270. Then,
we repeat the experiments for 50 times, and obtain the results
of their classifiers’ accuracies. The differences between the base
classifier of Elman NN and the base classifier of the decision-
making tree are tested by the two-sample t-test. P value is close
to 0.015, which refers that these two groups have statistical
significance. The differences between the base classifier of
Elman NN and the base classifier of the SVM are tested by
the two-sample t-test. P value equals to 0.000, which refers
that these two groups have statistical significance. Table 3
shows the result of statistical significance between the three
methods.

The Significant Neural Networks and
Features
When the samples of the test set enter into the random Elman
NN cluster, we could obtain the accuracies of 1000 Elman NNs.
We select the Elman NNwhose accuracy is greater than 0.6 as the
significant Elman NNs, and the result indicates that the number
of significant Elman NNs is 270. These significant Elman NNs

make great contributions to distinguish between ASD and TC in
the random Elman NN cluster.

After determining the significant Elman NNs, we could
select significant features with higher accuracy from these NNs.
In order to determine the optimal number of the significant
features, we make the accuracy of the random Elman NN cluster
as the criteria. Figure 3 shows the accuracies of the random
Elman NN cluster with different numbers of significant features.
It is referred that when the number of significant features is
170, 260, 270 and 280, the accuracies of the random Elman
NN cluster fluctuate around 95%, even nearly reach to 100%.
But when the number of features is 170, the accuracies of
the random Elman NN cluster are not stable. We choose the
270 as the optimal number of significant features because the
accuracies of the random Elman NN cluster are highest and
stable.

The Abnormal Brain Regions
In this article, we focus on the brain regions of which the weights
are higher than 11. They are the Supp_Motor_Area (SMA),
the Cingulum_Mid (DCG), the Fusiform (FFG), the Insula
(INS), the Frontal_Inf_Oper (IFGoperc), the Cingulum_Post
(PCG), the Calcarine (CAL), the Occipital_Sup (SOG).

Table 4 shows the regions whose weights are higher
than 11 and their corresponding volumes. Figure 5 shows
the distribution of 90 brain regions using Brain-NetViewer3.
The red nodes indicate the brain regions, and the size
of the nodes indicates the abnormal degree of the brain
regions. The greater the node is, the higher the abnormal
degree is.

DISCUSSION

Classification Performance
In recent years, there are some researchers trying to classify
and diagnose ASD patients from TC. Wang et al. (2012)
used fMRI data to classify ASD patients and TC with the
classification sensitivity of 82.8% and the specificity of 82.8%.
Ecker et al. (2010) applied SVM to classify ASD patients
and TC and the sensitivity and specificity of classification
was 90% and 80% respectively. Uddin et al. (2013) employed
functional connectivity to classify ASD patients and TC, and the
classification accuracy was 78%. As the classification accuracy
is not high in most existing studies, the random NN cluster
is proposed to improve the classification performance in the
diagnosis of ASD. In this article, five different NNs were
applied to construct the five types of random NN clusters. The
highest accuracy of the random BP NN cluster and the random

3http://www.nitrc.org/projects/bnv/

TABLE 3 | The result of statistical significance between the three methods.

Base classifier (Mean ± SD) SVM Elman NN Decision tree P value

Accuracy (%) 0.773 ± 0.034 0.847 ± 0.032 0.834 ± 0.016 0.000a/0.015b

athe p value of the two-sample t-test between SVM and NN. bthe p value of the two-sample t-test between decision tree and NN.
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TABLE 4 | The regions with higher weight.

Regions The volume of region Weight

SMA.R [9 062] 18

DCG.R [8 −9 40] 15
FFG.L [−31 40 −20]

INS.L [−3 5 73] 14

IFGoperc.R [5015 21] 13
INS.R [3962]

DCG.L [−5 −15 42] 12
PCG.R [7 −42 22]
CAL.L [−7 −79 6]
SOG.L [−17 84 28]

PreCG.L [−39–651] 11
SFGdor.R [22 31 44]
MFG.L [−33 33 35]
ROL.L [−47 −8 14]
SFGmed.R [9 51 30]
PCG.L [−5 43 25]
PCL.L [−8 25 70]

Probabilistic NN cluster are 68.4% and 63.2% respectively. The
highest accuracy of the random LVQ NN cluster and the
accuracy of random Competitive NN cluster are only 57.8%
and 52.6%. We ultimately selected the Elman NN as the best
base classifier and the high accuracy of the random Elman
NN cluster nearly reaches to 100%. The experimental results
show that the performance of the random NN cluster is very
good.

The Elman NN is able to deal with the dynamic data, thus it
is suitable for the fMRI data which changes in a period of time.
In general, the random Elman NN cluster could be applied to
the rapid and accurate detection of the abnormal brain regions in
ASD patients.

Additional Discussion of the Random
Neural Network Cluster
In this part, we discuss the additional issues including the
parameters, complexity, errors, weight and the overfitting of the
random NN cluster.

In the random NN cluster, the parameters are decided by the
accuracy of the random NN cluster. Besides, the importance of
parameters in bad classifier could be reduced by the randomness
of the random NN cluster. In a single NN, the parameters
are adaptive and they are under the control of NN toolbox.
Generally, after a series of strict process of parameters selection,
the performance of the random NN cluster improves.

The random NN cluster is complicated which is reflected
in the following two points. On the one hand, the process
of constructing a random NN cluster is complex because the
number of base classifiers is 1000. On the other hand, the process
of finding the optimal number of base classifiers is complex
because we need to select the optimal number of base classifiers
based on the accuracy of the random NN cluster constructed by
different number of base classifiers.

In terms of the weight, there are two kinds of weights in
our method. When the accuracy of the random NN cluster is
calculated, the percentage of voting for each base classifier (NN)

FIGURE 5 | The distribution of 90 brain regions.

is the same. In the interior structure of a single NN, the weight is
set by the NN toolbox.

The subjects have been divided into a training set and a test
set. The training set is used for building the random NN cluster,
and the test set is used for testing the performance of the random
NN cluster. Our experimental results show that the random NN
cluster works well on the test set, thereby there is no overfitting.
In addition, a random NN cluster was composed of many NNs
and each NN is unique due to the random samples and random
features, which also ensures that there is no overfitting.

Analysis of the Significant Neural
Networks and Features
To classify ASD patients from TC correctly, we selected the
significant NNs and features. In this article, we used five different
types of NNs to construct five types of random NN clusters and
the process of establishing a single NN repeated for 1000 times to
construct a randomNN cluster. The accuracies of the five types of
randomNN clusters were compared, and then the corresponding
NN in the random NN cluster with the highest accuracy was
selected as the best base classifier. When the number of NNs is
large, it is more difficult to calculate. But the classification result
is more consistent with the actual result in this situation. Thus,
it is important to select an appropriate number of NNs. In this
article, we used 1000 NNs to construct the random NN cluster.
As each NN has its own characteristics, the NNs make different
contributions to the randomNN cluster. The greater the accuracy
of NN is, the higher the contribution is. If the accuracy is more
than 0.5, the classification is good in machine learning (Krishnan
and Westhead, 2003). The accuracy of threshold is generally
artificially set, and we selected the Elman NNs whose accuracies
were greater than 0.6 as the significant Elman NNs. To select
these significant features, we firstly made a preliminary filtration
from the 4275 sample features to select a part of features.
These features were sorted in a descending order according to
their frequencies and the features with higher frequency are
considered as the significant features. It is the above process of
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feature extraction that makes our method different from other
methods. Our method is able to make full use of all features and
select out appropriate significant features at higher speed.

Analysis of the Brain Regions With the
Greater Weight
In this article, the randomNN cluster has been applied to classify
ASD patients from TC and find out the abnormal brain regions.
Some abnormal brain regions were found out corresponding
to AAL template in ASD patients such as the supplementary
motor area (SMA.R), the median cingulate and paracingulate
gyri (DCG), the fusiform gyrus (FFG.L), the insula (INS), the
inferior frontal gyrus (IFGoperc.R), the posterior cingulate gyrus
(PCG), the calcarine fissure and surrounding cortex (CAL.L),
the superior occipital gyrus (SOG.L), the precentral gyrus
(PreCG.L), the superior frontal gyrus (SFGdor.R), the middle
frontal gyrus (MFG.L), the rolandic operculum (ROL.L), the
medial of superior frontal gyrus (SFGmed.R) and the paracentral
lobule (PCG.L). In many studies, some abnormal regions were
found out in ASD patients. For instance, Murdaugh et al. (2012)
concluded that ASD patients had less deactivation in DMN
regions including medial prefrontal cortex, anterior cingulate
cortex and posterior cingulate gyrus. Itahashi et al. (2015)
discovered local functional disruptions in the right superior
frontal gyrus andmiddle frontal gyrus in ASD patients. Choi et al.
(2015) found out abnormal regions of ASD patients in the right
dorsolateral prefrontal cortex, the right parietal lobe, the right
orbitofrontal cortex and the superior temporal gyrus. Subbaraju
et al. (2017) concluded that the prefrontal cortex, the posterior
and medial portions were abnormal in ASD patients.

Our experimental results are consistent with these findings.
In this article, we focused on some abnormal regions which
had larger frequency such as the supplementary motor area, the
cingulate gyrus, the FG and the INS.

The Supplementary Motor Area (SMA.R)
The SMA.R had the greatest frequency in the abnormal brain
regions in ASD patients. It is referred that the SMA.R makes a
great contribution to classify ASD and TC in the random Elman
NN cluster. The SMA is linked to the function of movement
observation, preparation and execution (Enticott et al., 2009). It
is responsible for planning and executing motor tasks (Hupfeld
et al., 2017).

Our experimental results are consistent with many previous
studies. Chen et al. (2015) found that intrinsic functional
connectivity was related to the somatosensory default mode and
visual regions in ASD patients. Kestemont et al. (2016) explored
that there weremore activation differences between ASD patients
and TC concentrating in the SMA, the left precentral gyrus and
so on. Fournier et al. (2010) observed that the motor dysfunction
in SMA could be a feature of diagnosing ASD. Ewen et al. (2016)
detected the abnormal regions of ASD patients locating in the
motor network which includes the SMA.

The abnormal SMA may lead to the physical movement
deficits in ASD patients. The above results reveal that SMA may
be a clinical and pervasive feature to diagnose ASD in the future.

The Cingulate Gyrus
The cingulate gyrus had the higher frequency in the abnormal
brain regions. It is referred that the cingulate gyrus makes a great
contribution to classify ASD and TC in the random Elman NN
cluster. The cingulate gyrus is associated with the neurocognitive
function (Calabrese et al., 2008), the somatosensory function
(Nair et al., 2015) and the behaviors and cognitive processes
(Apps et al., 2016).

Our experimental results are consistent with many previous
studies. Cascio et al. (2014) discovered that the INS and the
anterior cingulate cortex were abnormal regions in ASD patients.
Thakkar et al. (2008) concluded that the abnormalities of the
anterior cingulate cortex in ASD could make contributions to
repetitive behavior. Apps et al. (2016) found out the abnormal
regions such as the left orbitofrontal cortex and left posterior
cingulate gyrus in ASD patients.

The abnormal cingulate gyrus may lead to the cognitive
processes deficits in ASD patients. The above results reveal that
the cingulate gyrus may be a clinical and pervasive feature to
diagnose ASD in the future.

The Fusiform Gyrus (FG)
The FG had the higher frequency in the abnormal brain regions
in ASD patients. It is referred that the FG makes a great
contribution to classify ASD patients and TC in the random
ElmanNN cluster. The FG is associated with the social-emotional
and face recognition (Oblak et al., 2010; Hernandez et al., 2015).

Our experimental results are consistent with many previous
studies. Yucel et al. (2014) found the difference between ASD
patients and TC involved in the amygdala and the FG. Apps et al.
(2016) discovered that the amygdala and the FG were abnormal
in ASD patients. Kaiser et al. (2016) found out some abnormal
regions such as the FG.R, the right amygdala and the bilateral
ventrolateral prefrontal cortex in ASD patients.

The abnormal FG may lead to the face recognition deficits in
ASD patients. This founding reveal that the FG may be regarded
as a new biomarker to further test the disease of ASD and provide
convenience for clinical diagnosis of ASD.

The Insula (INS)
The INS had a relatively higher frequency in the abnormal
regions, thus it is referred that the INSmakes a great contribution
to classify ASD and TC in the random Elman NN cluster. The
INS are relevant to the cognitionmechanism (Uddin andMenon,
2009).

Our experimental results are consistent with many previous
studies.Murdaugh et al. (2012) found out some abnormal regions
of ASD patients including the posterior cingulate gyrus, the
INS and the SMA. Plitt et al. (2015) explored that the inferior
frontal gyrus and the INS were abnormal in ASD patients. Keehn
et al. (2016) detected that the occipital cortex, the dorsolateral
prefrontal cortex and the INS were abnormal in ASD patients.

The abnormal INS may lead to the simulation mechanism
deficits in ASD patients. These results reveal that the INS may
be regarded as a new biomarker to further test the disease of ASD
and provide convenience for clinical diagnosis of ASD.
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In this article, the random NN cluster was proposed to
classify ASD patients from TC and found out the abnormal
brain regions in ASD patients based on the fMRI data. The new
method has some advantages. On the one hand, we selected
the random Elman NN cluster from five types of random NN
clusters and its highest accuracy even could nearly reach to
100%. On the other hand, we used the random Elman NN
cluster could find the significant features which are the most
differences betweenASD patients and TC. Therefore, the random
NN cluster might be an appropriate approach for diagnosing
ASD. There are some limitations. First, our experimental sample
size is not large. In this article, 92 participants were selected
from ABIDE which was the maximum number of samples
that we could obtain. In the future studies, the new method
can be applied to the larger sample size. Second, this article
integrated the four indicators as the features of subjects. In
the future studies, we could also integrate other indicators as
features.
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