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Current studies have got a series of satisfying accuracies in EEG-based emotion

classification, but most of the classifiers used in previous studies are totally time-limited.

To produce generalizable results, the emotion classifier should be stable over days, in

which the day-to-day variations of EEG should be appropriately handled. To improve

the generalization of EEG-based emotion recognition over time by learning multiple-days

information which embraces the day-to-day variations, in this paper, 17 subjects were

recruited to view several video clips to experience different emotion states, and each

subject was required to perform five sessions in 5 days distributed over 1 month. Support

vector machine was built to perform a classification, in which the training samples may

come from 1, 2, 3, or 4 days’ sessions but have a same number, termed learning 1-days

information (L1DI), learning 2-days information (L2DI), learning 3-days information (L3DI),

and learning 4-days information (L4DI) conditions, respectively. The results revealed

that the EEG variability could impair the performance of emotion classifier dramatically,

and learning more days’ information to construct a classifier could significantly improve

the generalization of EEG-based emotion recognition over time. Mean accuracies were

62.78, 67.92, 70.75, and 72.50% at L1DI, L2DI, L3DI, and L4DI conditions, respectively.

Features at L4DI condition were ranked by modified RFE, and features providing better

contribution were applied to obtain the performances of all conditions, results showed

that the performance of SVMs trained and tested with the feature subset were all

improved for L1DI, L2DI (∗p < 0.05), L3DI (∗∗p < 0.01), and L4DI (∗p < 0.05) conditions.

It could be a substantial step forward in the development of emotion recognition from

EEG signals because it may enable a classifier trained on one time to handle another.

Keywords: emotion, electroencephalogram (EEG), generalization, emotion recognition, day-to-day variations

INTRODUCTION

Emotion is a psycho-physiological process triggered by the conscious and/or unconscious
perception of an object or a situation, which is often associated with mood, temperament,
personality disposition, and motivation (Koelstra et al., 2012). It plays a key role in non-verbal
communication, and it is essential to understand human behavior. Emotion recognition has
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recently received an increasing amount of attention in human-
computer interface and affective disorder diagnosis (Acharya
et al., 2015; Atkinson and Campos, 2015; Yin et al., 2017).
Through measuring the human signals, operators could
recognize the current emotion state just by the automatic
emotion recognition system. So it could also be used to many
other applications such as driving safety, entertainment,
e-learning, and telemedicine (Nasoz et al., 2004; Liu et al.,
2010). Though emotion recognition has been traditionally
done from facial expressions, speech or gesture, these signals
have a critical limitation in that these could be deliberately
changed to hide the true emotion (Yoon and Chung, 2013).
Physiological measures, such as electroencephalogram (EEG),
electrocardiogram (ECG), electromyogram signal, respiratory
volume, and skin conductance, have been widely used recently
because of its objective (Khalili and Moradi, 2008; Kim and
André, 2008; Koelstra et al., 2012; Yoon and Chung, 2013).
Among these, non-invasively measured EEG has been a growing
popular tool with the advantages of high time resolution as well
as simple and affordable recording requirement (Xu et al., 2016).

A variety of EEG features have been employed in emotion
recognition so far. EEG power spectrum distributions has been
repeatedly reported to be a discriminable marker of emotions.
Specifically, frontal asymmetry in the alpha band has been used
as a predictor of valence (Lee et al., 2014). More recently,
nonlinear features have been proposed to recognize emotions,
such as fractal dimensions (Sourina et al., 2009; Liu et al., 2010;
Ahmadlou et al., 2012), Hurst exponent (Wang et al., 2014;
Acharya et al., 2015) and entropy (Duan et al., 2013; Wang
et al., 2014), wavelet-chaos methodology (Ahmadlou et al., 2012).
Furthermore, phase synchronization and coherence (Miskovic
and Schmidt, 2010;Martini et al., 2012) have also been considered
as emotional features.Regarding the classification, there have
been lots of machine learning methods producing excellent
performance, such as the support vector machine (SVM) (Brown
et al., 2011; Nie et al., 2011; Soleymani et al., 2012; Duan et al.,
2013; Hidalgo-Muñoz A. et al., 2013; Hidalgo-Muñoz A. R. et al.,
2013), k-nearest neighbor (Guyon and Elisseeff, 2003) multilayer
perceptron (Yoon and Chung, 2013), linear discriminant analysis
(Murugappan et al., 2010) and Bayesian network (Hidalgo-
Muñoz A. et al., 2013; Hidalgo-Muñoz A. R. et al., 2013), and so
on. Current studies got a series of satisfying accuracies in emotion
classification from EEG signals, but most of the classifiers are
time-limited. It is however impossible that an emotion classifier
trained on the data at specific time can only recognize emotion
state at the same time in practical application.

As we know, a person’ EEG patterns may appear differently
at different time even when he is under the same emotion
due to some external factors such as temperature, humidity, or
a diet, and also some uncontrollable internal factors such as
the hormones or baseline mood that can cause variations in
physiology (Chueh et al., 2012). The reliability of resting EEGs
over time has already been studied for decades. The correlation
coefficients were reported to decrease with the test-retest interval
increasing, and power spectral parameters were proved to be
more stable than others such as entropy and coherence features
(Gasser et al., 1985; Salinsky et al., 1991; Kondacs and Szabó,

1999; Gudmundsson et al., 2007). It seems that the stability of
emotional EEG features has not been substantially addressed
until very recently. Liu et al. (Lan et al., 2014) used the Intra-class
Correlation Coefficient (ICC) to quantified the stability of four
feature parameters regarding emotion recognition, respectively,
but it did not present a way to solve the day-to-day variations of
EEG. An emotion classifier does not generalize over days if the
day-to-day variations is not appropriately handled. If a classifier
is built by the data drawn from just 1 day, the input features
may carry the information unique to that day which the classifier
would learn. Once the testing set was independently from
another day, the performance of the classifier was undermined.
Up to now, researchers have not yet reported the effort to handle
this issue in EEG-based emotion recognition.

This study aims to investigate the influence of EEG’s day-
to-day variations on the performance of an emotion classifier,
and the benefit of the multiple-days information to constructing
a classifier generalizing over time. This paper is organized
as follows. Section Materials and Methods addresses the
methodology including the experiment and data processing.
Section Results shows the results. The discussion and conclusion
are stated in section Discussion and Conclusion.

MATERIALS AND METHODS

Materials
Participants
The experiment was performed with 17 healthy participants (12
female, 5 male, age range 20–28). All participants had normal
or corrected-to-normal vision and normal hearing, and none of
them had a history of severe medical treatment, psychological or
neurological disorders. A signed consent was obtained from each
subject before the experiment was carried out.

Stimuli and Experimental Procedure
A group of emotional movie clips were used to evoke subject’s
neutral, positive, and negative states. To evaluate the effectiveness
of these clips, 30 subjects took part in a questionnaire survey
and the final 45 movie clips with strongest ratings and a small
variation were selected for use in the experiment. The spoken
language of the clips is Chinese or dubbed into Chinese with the
length of from 5 to 20min.

Before the experiment, each subject was informed of the
experimental procedure and the meaning of valence and arousal
used for self-assessment. The subjects were required to perform
five sessions in 5 days distributed over 1 month, with 6–9
video clips in each recording session. Recording sessions for two
representative subjects are depicted in Figure 1. The number
of days between consecutive sessions was in a random order
of four intervals: 1 day apart, 3 days apart, 1 week apart and
2 weeks apart intervals. This randomization was intended to
reduce the effect of strategic changes. The participants were
invited to the listening room between 18:00 p.m. and 20:00 p.m.
and presented 6–9 clips for every recording session, ensuring
there were 2 clips successfully eliciting positive, neutral and
negative emotion states, respectively. After watching a video, the
participants were required to score their feelings on a 9-point
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scale in terms of emotional valence and arousal, and then had a
short break. Subjects were informed to report what they actually
felt during watching movie clips, not what they thought they
should feel.

EEG Recording and Preprocessing
During watching the clips, EEG data were recorded continuously
using 60 sites using a NeuroScan SynAmps2TM, positioned
following the international 10–20 system (Tytell, 1961). Figure 2
shows 60-channels EEG cap layout used in this study. Right
mastoid was used as reference, and the central region was used
as the grounding site. The EEGs were digitized at 1,000Hz and
filtered at 0.1–100Hz.

A preprocessing step was performed for the raw EEG
signals. All channels were re-referenced to bilateral mastoid, and
down-sampled to 500Hz. EOG artifacts were removed using
independent component analysis (ICA) (Li et al., 2006). Data
were segmented according to the subjects’ self-report about
which period of time they felt a strong emotional experience.

FIGURE 1 | Data collection days for two representative subjects.

FIGURE 2 | International 10–20 system for 60 electrodes.

Methods
Feature Extraction
EEG power spectrum distributions in various frequency bands
have been repeatedly reported to be a discriminable marker of
emotions (Balconi and Lucchiari, 2006; Lee et al., 2014; Verma
and Tiwary, 2014). In this paper, all of the 60-channel data were
spectrally analyzed usingWelch’s method with a hamming widow
of 500ms with 50% overlap. Then the spectral powers in delta
band (0.5–4Hz), theta band (4–8Hz), alpha band (8–13Hz), beta
band (13–30Hz), low gamma band (30–44Hz), and high gamma
band (44–100Hz), were computed, resulting in 360 total features
(6 per channel × 60 channels), and 5-s epoch was extracted as
a sample. The number of extracted samples depended on the
feedback data of the subject, but equal numbers of samples were
used to train the classifier, this would be described in detail below.

Different Strategies of Classifier Calibration
This work tried to investigate the influence of EEG’s day-to-day
variations on the performance of an emotion classifier firstly. To
this end, two differentmethods, within-day classification (WDC),
the standard cross-day classification (SCDC) were compared.

(1) WDC: The training and the testing data were all from the
same day. Eighty percent of the data samples from test day
were randomly selected and used for classifier training, while
the remaining 20% were sent to the testing set. To obtain a
robust result, this procedure was repeated 5 times, and the
classification rates were got by averaging all the 5 accuracies.
Each day was treated as the test day once.

(2) SCDC: The training and testing data were from two
independent days. Eighty percent of the data samples from
1 day were randomly selected as the training data, and the
data from remaining 4 days were sent to test the classifier,
respectively. Each day was used to train a classifier once. The
number of training samples in both WDC and SCDC was
equal to ensure fair and valid comparisons.

Learning Multiple-Days Information for Classifier

Calibration
In order to verify the benefit of the multiple-days information
to constructing a classifier generalizing over time, the classifiers
were built by learning N-days information (N = 1, 2, 3, 4) and
compared, termed as L1DI, L2DI, L3DI, and L4DI, respectively.
For LNDI, the classifier learned N-days information, and data
samples from the remaining 5-N days were sent to the testing set.
Figure 3 shows the flow charts of LNDI.

Take L3DI as an example, the procedure was as follows:
The feature vector of the ith day was obtained by Welch’s

method (see section Feature Extraction) and represented by
vector of Y i

Mi
in form,

Y i
Mi

= [y (1) ; y (2) ; . . . ; y (Mi)] (1)

WhereMi denotes the number of samples extracted from the ith
day. The superscript refers the ith day and the subscript is the
number of the vector.

Mmin = floor

(

min (M1,M2,M3,M4,M5)

12

)

∗12 (2)
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FIGURE 3 | The flow charts of LNDI.

Where Mmin is the minimum number of data samples among
these 5 days. Then 3 of 5 days to train a classifier and all
possible combinations of training and testing days were taken
into consideration to get a robust result and reduce the impact
of any 1 day being an outlier. For the kth possible combination,
the training set and testing set were constructed as follows:

Yk
= [Y t1

Mmin/3
;Y t2

Mmin/3
;Y

t3
Mmin/3

] (3)

Tk
= [Y t4

Mmin/2
;Y

t5
Mmin/2

] (4)

Where Yk is the training set and Tk is the testing set for the kth
possible combination, t1, t2, and t3 refer to the selected number of
days to train a classifier, and t4, t5 were the number of days to test.
The number of data samples were set to Mmin both in training
and testing set, and the same for L1DI, L2DI, L3DI, and L4DI.

Acc
(

k
)

= SVM(Yk,Tk) (5)

The accuracy of the kth possible combination was obtained by
SVM (Chang and Lin, 2006).

The accuracy of L3DI was obtained by averaging all possible
combinations,

AccL3DI =

∑C3
5

k=1
Acc(k)

C3
5

(6)

To increase the reliability of the accuracy results, ten repetitions
of abovementioned procedure were performed, and these ten
classification rates were averaged to get the accuracy.

The Specifically-Designed Recursive Feature

Elimination (RFE)
To evaluate if learning multiple-days information (LMDI) could
make the classifier easier to pick out the emotion-related features
and discard day-specific ones, a specifically designed RFE was
used for feature selection under L4DI condition. The method
could rank all the features and then obtain the robust subset.
The data samples were provided to the SVMs, split into training,
testing, and validation sets. Fifty percent of the data samples
from each day were randomly selected for feature selection,
and the remaining 50% were held back as a validation set to
control overfitting, as shown in Figure 4. The procedure can be
summarized as follows:

(1) Fifty percent of the data samples from each day were randomly
selected to construct the feature selection set, based on which
4 of 5 days were sent to train a classifier, the remaining 1 day
were testing set. The number of training and testing samples
followed the section Learning Multiple-Days Information for
Classifier Calibration.

(2) To get the contribution ranking of features, firstly, one
feature in N-dimension feature set was removed and then
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FIGURE 4 | The illustration depicts a fold of the feature selection procedure.

FIGURE 5 | Valance ratings of neutral, positive, and negative states in 5-day

experiment.

we computed the performances with remaining N-1 features;
secondly, we removed each other feature once and then
computed the performance with remaining N-1 features;

Thirdly, we ranked the N performances got from the above
two steps, and the feature owns the least contribution in the
case that the corresponding performance has the minimum
loss of accuracy.

(3) The topMof the feature ranking were considered as the robust
features since these M features could achieve a relatively stable
and high accuracy. As there were 5 combinations, so there
were 5 feature lists with M features. Those selected 5, 4, and
3 times were considered features with better contribution and
those with 2, 1, and 0 times were termed features with bad
contribution. Salient feature subset was constructed by these
features providing better contribution.

(4) The validation sets with the feature subset were then taken as
input of the SVM to validate the feature subset under L1DI,
L2DI, L3DI, and L4DI conditions, respectively.

RESULTS

The EEG Inter-Day Variability on Emotion
Classification
All the participants completed the 5-day experiment. All the
rating scores (valence and arousal ratings) were collected, but
we just concerned the valence dimension in subsequent analysis.
Valance ratings of neutral, positive, and negative states were
presented in Figure 5. To check our valence manipulation, 3
emotions by 5 days repeated-measure ANOVAs for valence
ratings were performed. A main effect for three-class emotions
on valence ratings was found, F = 1353.5, p < 0.001. The main
effect for time (5 days) on valence ratings had no significance,
F = 0.524, p = 0.718. This illustrated that the video clips
have evoked the target emotions successfully, and there was no
significant difference in valence ratings of 5 days.

The EEG Inter-Day Variability on Emotion
Classification
We computed three-class (positive, neutral, and negative)
accuracies of WDC and SCDC, shown in Figure 6. WDC is
labeled when trained and tested on the same day, while SCDC
is labeled when trained and tested on the different days, which is
detailed in section Different Strategies of Classifier Calibration.
As shown in Figure 6A, WDC returned the averaged accuracy of
above 98%, which was impressive. Figure 6B shows the SCDC
results using SVM, collapsed to about 60%, which presumably
suffered from day-to-day variability. All classifiers are also well
above chance performance.

We calculated accuracies with different window width to
further dissect the effect of EEG’s day-to-day variations on the
performance of emotion classification, shown in Figure 7. The
data was split into several parts with a certain particular window
width in each day, one part was sent to the training set, and
the next part was to testing set in sequence, as depicted in
Figure 7A. Window width were set to 5 s, 1min, 5min, and
more than 5min. More than 5min was the condition that data
at a certain emotional state in each day was split into two
halves, one half was to the training set and the other half
was to the testing set. Window width was from 5 to 20min
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FIGURE 6 | Averaged accuracies of within- and standard cross-day emotion classification. (A) Within-day classification and (B) the standard cross-day scenario that

accounted for inter-day EEG variability. The spot indicates the mean value and the line is the standard deviation. In (A), Day# presented the day that training samples

and testing samples were both from. In (B), Day# indicated the training day, and remaining 4 days were hold as the testing days.

in this condition. As depicted in Figure 7B, the performance
tends to decrease with larger window width. Paired T-test was
performed on the accuracies between each two window width,
we verified that all accuracies differ significantly (p< 0.05). These
results underpinned that the EEG variability can deteriorate the
performance of emotion classifier dramatically.

Classification Accuracies With Different
Number of Days in the Training Set
So we computed the accuracies of 4 conditions: L1DI, L2DI,
L3DI, and L4DI conditions. Figure 8 shows the performance
in 17 subjects, and the bottom right panel shows the mean
accuracies across all subjects. As can be seen from Figure 8, the
accuracies tended to increase with more days in the training
set for all the subjects, the mean accuracies were 62.78, 67.92,
70.75, and 72.50% at L1DI, L2DI, L3DI, and L4DI conditions,
respectively. Paired T- test revealed that the accuracy at L1DI
condition was significantly lower than that of L2DI (p < 0.01),
L3DI (p< 0.01), and L4DI conditions (p < 0.01). This confirmed
the prediction that learning multiple-days information would
improve the cross-day accuracies was correct.

Performance With the Feature Subset
Applied to Other Conditions
Using data from more days to retrain a classifier could improve
the accuracies over days, partly because it embraces the day-
to-day changes incrementally. Thus the classifier trained by
more days might weight emotion-related features heavily and
inversely weaken the day-dependent features. The feature rank
was obtained by modified RFE which detailed in the above.

To check whether these feature subsets picked out by RFE
at L4DI condition are emotion-related, and thus could benefit
the performances of all conditions (L1DI, L2DI, L3DI, and L4DI
conditions), the performances were computed on validation sets

with all 360 features and the feature subset (mean number of
the features was 174 across 17 subjects), respectively. As shown
in Figure 9, compared with the performance of cross-day SVMs
trained and tested with all the 360 features, the performance
of SVMs trained and tested with the feature subset were all
improved for L1DI, L2DI (∗p < 0.05), L3DI (∗∗p < 0.01), and
L4DI (∗p < 0.05) conditions, confirming the benefit of adding
more days in training set for a classifier to weight emotional
features heavily.

Another issue that should be discussed is about the most
emotion-relevant EEG frequency ranges. Figure 10 presents the
distribution of the salient features averaged over 17 subjects.
Contribution rate (CR) was computed for 64 channels in delta,
theta, alpha, beta, low gamma, and high gamma bands, and
depicted in Figure 10. It is obvious that the gamma band
dominates a great proportion of the salient features, indicating
gamma ranges might be importantly discriminable ranges for
recognize the emotions.

The Sensitivity of the Positive, Negative
and Neutral Valence
The confusion matrices in Table 1 provided a closer look at
the sensitivity of the positive, negative and neutral valence. The
row is the predicted label and the column is the real label. It
could be found that positive, neutral and negative emotions
were accurately recognized as 71.5, 76.9, and 59%, respectively.
Moreover, there were a relatively higher proportion for negative
valence that falsely classified as the neutral valence.

DISCUSSION AND CONCLUSION

Results of this study demonstrated that classifiers that are trained
and tested on EEG data from the same day can very accurately
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FIGURE 7 | Classification rates with different window width. For example, 1min represents the first 12 samples were sent to the training set, and the next 12 samples

to the testing set in sequence, then the third 12 samples were to the training set. (A) Illustrates the sample partitioning method with a certain particular window width,

(B) depicts the performance with different window width.

FIGURE 8 | Classification accuracy with different number of days in the training set for all the subjects.

determine which emotion state produced the data. However
the performance would be undermined by the day-dependent
features when the testing samples were completely from an
independent day, which was ignored by the existing studies.

Prior work handling the day-dependent effect mainly focused
on the feature selection. They often tried to find some robust
feature which obtained better classification rates from a mass of
features, but it did not solve the issue of the day-dependent effect
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FIGURE 9 | The performances of SVMs trained and tested with all 360 features and the feature subset (mean feature numbers was 174 across 17 subjects),

respectively. *P < 0.05; **P < 0.01.

FIGURE 10 | Topographic mapping of the quantified feature contributions averaged across 17 subjects for delta, theta, alpha, beta, low gamma, and high gamma

bands.

TABLE 1 | Confusion Matrices under L4DI condition.

Real label

Predicted

label
Positive Neutral Negative

Positive 0.715 0.144 0.1141

Neutral 0.077 0.769 0.154

Negative 0.128 0.282 0.590

thoroughly because the testing data took part in the procedure
of feature selection. This study worked on emotion classification
improvement by adding the day-to-day variability information
into the emotion classifier. A novel classifier strategy, LMDI,
was developed to include emotional EEG patterns from different
days, which could improve the generalization of a classifier over
time.

To avoid overfitting, the data were divided into two equal
parts, one part for feature selection and the other for validation.

Feature ranking was obtained under L4DI by RFE, and the top
100 features were considered to construct the robust feature
subset. It has fortunately been found that accuracies could be
significantly improved for all conditions (L1DI, L2DI, L3DI,
and L4DI) with the relative low-dimension robust feature
subset. These results showed that LMDI indeed improved the
generalization of a classifier over time. It could be a substantial
step forward in the development of emotion recognition from
EEG signals because it may enable a classifier trained on one time
to handle another.

All possible combinations of training and testing days were
taken into consideration to avoid the impact of any 1 day being
an outlier. An issue that should be discussed is whether the day-
to-day variation of 1 day apart is smaller than more days apart.
Take Day3 as the testing set for example, we obtained average
accuracies of 60.8, 67.8, 61.4, and 68.5%, respectively for Day1,
Day2, Day4, and Day5 as the training set. This implied the day-
to-day variation is not gradually varied with the time, because the
variation was caused by the change of EEG baseline, as well as the
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external condition such as electrode placements. The influence
of day combinations on the recognition accuracies was also
discussed here. Take Day 3 as the testing set for example as before,
the results showed that there was no significant difference among
the classification rates of different combinations respectively for
L2DI (p > 0.1) and L3DI (p > 0.1).

In addition to their importance in emotion studies, day-
dependent effect studies may also be indispensable in other fields
such as mental workload, and other BCI systems. Therefore,
more attention must be paid to day-dependence studies at both
basic and applied levels. There are still challenges for future
studies. A more generalized study protocol capable of handling
different tasks, subjects and days should be a must.
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