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Sleep deprivation (SD) impairs the ability of response inhibition. However, few studies
have explored the quantitative prediction of performance impairment using Magnetic
Resonance Imaging (MRI) data. In this study, structural MRI data were used to predict
the change in response inhibition performance (1SSRT) measured by a stop-signal task
(SST) after 24 h of SD in 52 normal young subjects. For each subject, T1-weighted MRI
data were acquired and the gray matter (GM) volumes were calculated using voxel-
based morphometry (VBM) analysis. First, the regions in which GM volumes correlated
with 1SSRT were explored. Then, features were extracted from these regions and the
prediction process was performed using a linear regression model with four-fold cross-
validation. We found that the GM volumes of the left middle frontal gyrus (L_MFG),
pars opercularis of right inferior frontal gyrus (R_IFG), pars triangularis of left inferior
frontal gyrus, pars opercularis of right rolandic area, left supplementary motor area
(L_SMA), left hippocampus, right lingual gyrus, right postcentral gyrus and left middle
temporal gyrus (L_MTG) could predict the 1SSRT with a low mean square error of
0.0039 ± 0.0011 and a high Pearson’s correlation coefficient between the predicted and
actual values of 0.948 ± 0.0503. In conclusion, our results demonstrated that a linear
combination of structural MRI data could accurately predict the change in response
inhibition performance after SD. Further studies with larger sample sizes and more
comprehensive sample may be necessary to validate these findings.
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INTRODUCTION

Inhibitory control, also known as response inhibition, is the process of being able to rapidly
cancel planned or ongoing behaviors. It is indispensable for self-regulation, and is an important
prerequisite for higher-order executive functions (Diamond, 2013). Poor response inhibition may
profoundly interfere with the requirements of everyday life. Inhibitory control is also an important
function in individual daily activities, such as being able to stop driving upon seeing a pedestrian
unexpectedly cross the road (Lee and Hsieh, 2017). However, sleep deprivation (SD) for one night
can impair the performance of inhibitory control (Chuah et al., 2006; Zhao et al., 2018). Therefore,
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a decrease in response inhibition ability after SD could have
deleterious outcomes, and being able to predict the effect of SD
on inhibitory control could help avoid danger in the future.

Predictive data mining has become a much-discussed area
of research over the last decade. Recent neuroimaging studies
have started to use machine-learning techniques to predict
cognitive or behavioral performance from functional magnetic
resonance imaging (fMRI) data (Eichele et al., 2008; Aharoni
et al., 2013; Finn et al., 2015) and diffusion tensor imaging
data (Ellingson et al., 2015; Park et al., 2015). Furthermore,
Mwangi et al. (2011) used structural T1-weighted MRI data
to predict the severity of major depressive disorder illness.
Supekar et al. (2013) used morphometry and functional
connectivity to predict math-tutoring outcomes in primary-
grade school children. Redlich et al. (2016) used gray matter
(GM) volumes to predict electroconvulsive therapy response.
These studies suggest that certain clinical features and cognitive
performance can be predicted from structural MRI data.
Therefore, we hypothesized that the change in response
inhibition performance after SD could be predicted from
regional GM volumes. However, we are not aware of any other
published studies that have evaluated the prediction of GM
volumes to the response inhibition performance impairment
after SD.

Previous fMRI (Li et al., 2006; Chevrier et al., 2007; Cohen
et al., 2010; Congdon et al., 2010; Kenner et al., 2010; Erika-
Florence et al., 2014), lesion (Aron et al., 2003; Floden and Stuss,
2006; Picton et al., 2007) and transcranial magnetic stimulation
(TMS) studies (Chambers et al., 2006, 2007; Chen et al., 2009;
Zandbelt et al., 2013) have revealed that the right inferior frontal
gyrus (IFG) is a critical region for the successful inhibitory
control (Aron et al., 2004, 2014). Recent evidence suggests that
the IFG and supplementary motor area (SMA) might coordinate
inhibition via direct white-matter tract (Aron et al., 2007).
Furthermore, the SMA are implicated from fMRI studies (Aron
and Poldrack, 2006; Xue et al., 2008; Chambers et al., 2009; Cai
et al., 2014) and brain stimulation studies (transcranial direct
current stimulation and TMS; Yu et al., 2015; Lee et al., 2016).
Additional brain regions, such as middle frontal gyrus (MFG),
occipital cortex and middle temporal gyrus (MTG) have also
been reported to be involved in inhibitory control (Aron and
Poldrack, 2006; Congdon et al., 2010, 2014; Galván et al., 2011;
Swick et al., 2011). These studies suggest that these regions
may be the ‘‘stopping network’’ related with inhibitory control.
Therefore, we hypothesized that the regions in stopping network
would predict the change in response inhibition performance
after SD.

In the present study, we attempted to use voxel-based
morphometry (VBM) analysis to investigate whether regional
GM volumes could predict 1SSRT (the change in the rate of
response inhibition measured by a stop-signal task (SST) before
and after SD). First, we explored the relationship between GM
volume and1SSRT using voxel-wise analysis. Then, we extracted
the GM volumes of regions that were negative correlated with
1SSRT. Finally, we used a linear regression model to investigate
the performance of these GM volumes in the prediction
of 1SSRT.

MATERIALS AND METHODS

Subjects
Fifty-seven right-handed healthy subjects were recruited from
Xidian University in this study. They were undergraduate
and master students of Xidian University. All subjects had no
history of self-reported medical, psychiatric, neurologic, or
sleep disorders, and were free of any abused alcohol or drugs.
Subjects who presented an extreme morning or extreme
evening type as assessed by a questionnaire (Horne and
Ostberg, 1975), were excluded. They habitually maintained
normal sleep schedules of 7–9 h per night, between
10:00 pm and 8:00 am.

Two subjects opted out of this study after SD. Another
three subjects were excluded because of the abnormality in
brain structure. Therefore, the final analyzed group consisted
of 52 subjects (mean age 19.53 ± 1.62 years, range 17–23;
26 males and 26 females). All participants declared that they
did not smoke or consume any stimulants, medications, alcohol
or caffeine for at least 24 h prior to the formal experiment.
All research procedures were conducted in accordance with
the Declaration of Helsinki and approved by the institutional
research ethics committee of the Xijing Hospital of the Fourth
Military Medical University. All subjects provided written
informed consent prior to participation and were compensated
for their time.

Experimental Procedure
All subjects were scheduled for three visits to the laboratory.
The schematic of this experimental procedure can be seen in
Figure 1A. For the first visit, subjects visited the laboratory,
underwent the screening process, were informed of the
experimental procedures and were given instructions about the
SST. After 1 week, subjects who met the inclusion criteria
administered the SST twice at 8:00 am in the second visit
and third visit respectively, once after rested wakefulness
(RW) and once after 24 h of SD. These two states were
administered in a randomized, cross-over fashion with at least
1 week apart to minimize possible residual effects of SD on
cognition (Van Dongen et al., 2003). Some subjects showed
poor sleep when they slept normally in the laboratory during
the pre-experiment. Furthermore, during the RW night, no
action was performed for subjects, and we didn’t perform any
operation on subjects. Therefore, we arranged with subjects
to sleep normally at home during the RW night. In order
to ensure that subjects slept well during the RW night at
home, they finished the sleep diary after waking up. If one’s
sleep quality was poor, he/she would not perform the SST
on this day. We would arrange the experiment next time
again. Subjects with well sleep reported to the laboratory at
7:30 am and performed the SST while being scanned with fMRI
at 8:00 am. During the SD night, subjects were monitored
in the laboratory from 10:00 pm to 8:00 am to prevent
them from falling asleep. They were allowed to engage in
non-strenuous activities such as reading and watching videos.
Each subject completed the SST in the MRI scanner at 8:00 am.
Directly before each scanning session, each subject performed
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FIGURE 1 | Schematic diagram of the experimental procedure and the stop-signal task (SST). (A) Schematic showing the order of the experimental procedure. For
the first visit, subjects underwent the screening process, were informed of the experimental procedures and were given instructions about the SST. After 1 week,
subjects administered the simultaneous magnetic resonance imaging (MRI) scanning/SST twice at 8:00 am in the second visit and third visit respectively, once after
RW and once after 24 h of SD. The RW and SD sessions were administered in a randomized, cross-over fashion with at least 1 week apart. For the SD session,
subjects were monitored in the laboratory from 10:00 pm to 8:00 am to prevent them from falling asleep. (B) Schematic of the SST including Go trial and Stop trial.
All trials started with 500 ms white cross fixation in the center of the black background screen. Then, a left- or right-pointing arrow stimulus was displayed on a
computer screen. On Go trial, subjects were instructed to press the button as soon as possible within 1000 ms. If subjects responded, the arrow stimulus
disappeared, and the blank screen was shown. The interval between the arrow stimulus and blank screen was the GoRT. On Stop trail, subjects were instructed to
stop pressing the button when a Stop signal (the white arrow was changed to blue) was presented after SSD. If subjects inhibited their response (Successful
inhibition), the Stop signal remained onscreen for the duration of 1000 ms—SSD. If subjects pressed the button (Failed inhibition), the Stop signal disappeared, and
the blank screen was shown. For both trials, the null events, consisting of blank screen, were also shown between every trial with the duration ranging between
500 ms and 4000 ms. RW, rested wakefulness; SD, sleep deprivation; GoRT, reaction time on correct Go trials; SSD, stop-signal delay.

a training session of the SST. After performed the SST during
the second visit, the structure MRI data of each subject was
acquired.

The Stop-Signal Task
The SST was adapted from previous published works (Logan,
1994; Aron and Poldrack, 2006). The schematic of this task can
be seen in Figure 1B. There were two trial types: Go (75% of
trials) and Stop (25% of trials). All trials started with 500 ms
white cross fixation in the center of the black background screen.
Then, a left- or right-pointing arrowwas displayed on a computer
screen. On Go trials, subjects were instructed to press the right
button as soon as possible with their right middle finger within
1000 ms if a right-pointing arrow was presented, and to press
the left button with their right index finger if a left-pointing
arrow was displayed. If subjects responded, the arrow stimulus
disappeared from the center of the computer screen, followed
by the blank screen. The null events, consisting of blank screen,
were also shown between every trial. The duration of null events
ranged between 500 ms and 4000 ms, with a mean of 1000 ms.
On Stop trails, subjects were instructed to stop pressing the

button when a Stop signal (the white arrow was changed to
blue) was presented after a particular delay (stop-signal delay,
SSD) subsequent to the arrow stimulus. If subjects inhibited their
response, the Stop signal remained onscreen for the duration of
1000 ms—SSD. If subjects pressed the button, the Stop signal
disappeared from the center of the computer screen, followed
by the blank screen. Similarly, the null events were also imposed
between every trial, with the duration ranged between 500 ms
and 4000 ms. The SSD changed dynamically throughout the
experiment: if the subject inhibited successfully on a Stop trial,
the inhibition was made more difficult on a subsequent Stop trial
by increasing the SSD by 50 ms; if the subject did not successfully
inhibit, the inhibition was made easier by decreasing the SSD
by 50 ms. This procedure (also named a staircase procedure)
was performed to achieve approximately 50% accuracy of Stop
trials (StopAcc) and control the difficulty level across subjects.
To reduce participants’ anticipation of stimuli, two staircases
were used and respectively started with SSD values of 250 and
350 ms. There were two runs in per state. Each 4.5 min
run included two blocks, giving a total of 36 Go trials and
12 Stop trials in each block. Each Stop trial corresponded to one
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FIGURE 2 | The dynamic changes of SSD and StopAcc across Stop trials of one subject. The green vertical lines represent the successful inhibition (StopInhibit).
The purplish red vertical lines represent the failed inhibition (StopResponde). The brown curve (left ordinate) represents the accuracy of Stop trials (StopAcc). The
baby blue (right ordinate) curve represents the SSD value. To reduce participants’ anticipation of stimuli, two staircases were used and respectively started with SSD
values of 250 and 350 ms (the first two values in the baby blue curve). The dark blue diamond points represent the first staircase with start value of 250 ms. The
remaining baby blue diamond points represent the second staircase with start value of 350 ms. If the subject inhibited successfully on a Stop trial, the inhibition was
made more difficult on a subsequent Stop trial by increasing the SSD by 50 ms; if the subject did not successfully inhibit, the inhibition was made easier by
decreasing the SSD by 50 ms. There were four blocks with 48 Stop trials in total. In each block, six Stop trials corresponded to the first staircase, while the other six
Stop trials corresponded to the second staircase. The order of the two staircases was randomized trial-by-trial. For continuity, the start values of the two staircases in
block 2 were the last values in block 1, and so on. We can see from this figure that the StopAcc tended to be stable and was about 50% via the dynamical changing
the SSD.

staircase. Therefore, six Stop trials corresponded to the staircase
commencing with an SSD of 250 ms, while the other six Stop
trials corresponded to the staircase commencing with 350 ms.
Each staircase moved six times within each block. The order of
the two staircases was randomized trial-by-trial. The dynamic
changes of SSD and StopAcc across 48 Stop trials are described
in Figure 2.

Behavioral Analysis
The stop signal reaction time (SSRT) was the primary measure
of interest in the stop-signal task. It reflects the individual
stop latency, and has been used as an index of an individual’s
inhibitory control, with a shorter SSRT indicating better
inhibitory control. SSRT was calculated using a quantile method,
which corrected for deviations from 50% successful inhibition
(Logan, 1994; Band et al., 2003). First, all reaction times
(GoRT) on correct Go trials were arranged in ascending order.
The RT corresponding to the proportion of failed inhibitions
(1 − StopAcc) was then determined, termed the quantile
RT. For example, if the StopAcc for a particular subject was
40%, the quantile RT would be the RT for which 40% of
trials were faster than the quantile RT and 60% of trials
were slower. SSRT was estimated as the difference between
the quantile RT and the average SSD. Finally, the change in
the rate of SSRT (1SSRT) was calculated according to the
following:

∆SSRT =
SSRTSD − SSRTRW

SSRTRW

MRI Data Acquisition
MRI data were obtained on a 3T GE MR750 scanner at
Department of Radiology, Xijing Hospital, The Fourth Military
Medical University, Xi’an, China. A standard 8-channel
head coil was used together with a restraining foam pad
to minimize head motion and diminish scanner noise.
To perform anatomical morphometric analyses, structural
high-resolution 3D T1-weighted data were acquired in each
subject using magnetization-prepared rapid-acquisition
gradient echo sequence (MPRAGE; repetition time = 8.2 ms;
echo time = 3.18 ms; field of view = 256 × 256 mm2;
matrix = 512 × 512; in-plane resolution = 0.5 × 0.5 mm2;
slice thickness = 1 mm; 196 sagittal slices; flip angle = 9◦).

Voxel-Based Morphometry Analysis
The VBM analysis was performed using the openware FSL
version 5.0.41 (Smith et al., 2004; Woolrich et al., 2009;
Jenkinson et al., 2012). Data processing was divided into
six major steps. (1) All individual T1-weighted images were
brain-extracted using the brain extraction tool (BET; Smith,
2002) and visually inspected by an experienced neurologist
to remove any leftover non-brain tissue. (2) Brain extracted
images were segmented into different tissue types (GM,
White Matter and cerebrospinal fluid) using the FMRIB’s
Automated Segmentation Tool (FAST; Zhang et al., 2001).
(3) The resulting GM images were registered to the GM

1http://www.fmrib.ox.ac.uk/fsl/
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FIGURE 3 | A schematic diagram of the prediction analysis pipeline. First, the T1-weighted data underwent the voxel-based morphometry (VBM) analysis to find the
relationship between gray matter (GM) volume and 1SSRT. Second, we extracted features from the results of the VBM analysis, and determined the voxels which
GM volumes were negative correlated with the 1SSRT at an uncorrected threshold. The GM volumes of voxels were then averaged according to the automated
anatomical labeling (AAL) template. The obtained mean GM volumes of brain regions were regarded as candidate features. Third, we used these candidate features
to predict the 1SSRT with a linear regression model. If the feature dimensions were higher than the sample size, we performed least absolute shrinkage and
selection operator (LASSO) to reduce the feature dimensions before building the linear regression model; otherwise, we directly built the linear regression model. We
then evaluated the applicability of this model according to the following conditions: (1) the regression model was significant; (2) the linear regression model met the
statistical hypotheses (normality, independence of errors, linearity, and homoscedasticity); (3) the regression coefficients (β) of all features were significant; (4) the
features had no multicollinearity. If the model met all of the conditions, we calculated the r(pred, actual) and mean square error (MSE) using the final features;
otherwise, features were removed one by one until the model met all the conditions.

ICBM-152 template using the affine registration tool FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002), followed
by the nonlinear registration tool FNIRT2. The resulting
images were averaged to create a symmetric, study-specific
GM template. (4) The segmented individual GM images
were then non-linearly registered to the study-specific GM
template and modulated using the Jacobian of the warp field.
(5) These modulated registered GM images were smoothed
by a Gaussian kernel of 3 mm (e.g., sigma = 3 mm), with a
full-width half-maximum (FWHM) of ∼7 mm. (6) Finally,

2www.fmrib.ox.ac.uk/analysis/techrep

to explore the relationship between GM volume and 1SSRT,
voxel-wise whole-brain regression analysis was performed
using a general linear model. Nonparametric statistics were
performed using the ‘‘randomize’’ with 5000 permutations
and family wise error (FWE) correction for multiple
comparisons.

Feature Extraction
We extracted features for the prediction analysis from the
results of the VBM analysis. As the nature of a predictive
analysis includes a built-in guard against false positives (Finn
et al., 2015), we used an uncorrected threshold to determine
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the voxels which GM volumes were negative correlated with
1SSRT. To explore the effect of different thresholds on the
prediction, a range of uncorrected thresholds were chosen
(p < 0.05, 0.01, 0.005 and 0.001, with a minimum of 10 voxels).
The GM volumes of brain regions above the threshold were
extracted and averaged according to the Automated Anatomical
Labeling (AAL) template. The mean GM volumes of these
brain regions were then calculated and regarded as candidate
features.

Feature Selection
In traditional linear regression analysis, the number of
independent variable should be less than the sample size.
However, in some cases, the dimensions of the above candidate
features were more than the sample size, which suggest
that there are correlations among some candidate features.
Therefore, it was necessary to reduce the feature dimensions
to impair the collinearity. Least Absolute Shrinkage and
Selection Operator (LASSO), a commonly used method of
dimensional reduction, was performed to make the variable
selection (Tibshirani, 1996). LASSO estimates the regression
coefficients through an `1-norm penalized least-squares criterion
and minimizes the residual sum of squares with an `1 penalty
on the regression coefficients (Waldmann et al., 2013). In this
method, the regularization parameter λ controls the trade-off
between data fitting and sparsity. The optimal value of λ

was determined by a 10-fold cross-validation. The features
with non-zero regression coefficients were then selected as
the most promising candidate features. This procedure was
conducted using the ‘‘glmnet’’ function in the ‘‘glmnet’’ package
of the R project software3 (R Development Core Team,
2011).

Prediction Analysis
Amachine learning approach was used to examine the predictive
ability of the GM volumes of brain regions. This approach
involved cross-validation (Cohen et al., 2010; Supekar et al.,
2013) combined with linear regression. A schematic diagram of
the analysis pipeline is illustrated in Figure 3. The R project
software was used to perform this analysis. First, the above
most promising candidate features were input into a linear
regression model as independent variables, with the 1SSRT
values as the dependent variable. A relative weight analysis
was also performed to measure the relative importance of the
independent variables (Johnson and Lebreton, 2004; Johnson,
2004; LeBreton and Tonidandel, 2008). The relative importance
refers to the proportionate contribution of each independent
variable to the coefficient of determination (R2), considering
both the unique contribution of each independent variable by
itself, and its incremental contribution when combined with
the other independent variables in the regression equation.
Then, we manually and gradually selected the most predictive
features from the most promising candidate features via
repeatedly examining the applicability of this linear regression
model.

3http://www.r-project.org/

We evaluated the applicability of this model in three aspects.
(1) We tested the significance of the regression equation with an
F-test. If the regression model was not significant, the features
would not explain the 1pSSRT. (2) Regression diagnostics
were performed using the ‘‘gvlma’’ function in the ‘‘gvlma’’
package to determine whether the linear regression model met
the statistical hypotheses: normality, independence of errors,
linearity and homoscedasticity. If the statistical hypotheses were
not acceptable, we used the ‘‘qqPlot,’’ ‘‘durbinWatsonTest,’’
‘‘crPlots,’’ and ‘‘ncvTest’’ functions to test which assumptions
were not satisfied. In most cases, the normality, linearity and/or
homoscedasticity assumptions were not satisfied. It would be
possible to perform power transformations to the dependent
variable and independent variables to adjust themodel. However,
power transformation was a cautious approach, and 1SSRT had
negative values, which would limit this method. Therefore, we
removed the feature for which the component-plus-residual-plot
showed a non-linear curve with maximum deviation from the
linear curve, and built a new linear regression model without this
feature. (3) We tested the significance of regression coefficients
(β) with t-tests for each independent variable and evaluated
the multicollinearity according to the variance inflation factor
(VIF) using the ‘‘vif’’ function (Kabacoff, 2015). If the β of
an independent variable was not significant, it meant that
this independent variable did not have a remarkable effect
on the dependent variable, and could be deleted from the
regression model. If VIF was less than 4, there was no evidence
of a multicollinearity problem (Kabacoff, 2015). In general,
deleting some of the variables is a very important method
for dealing with the multicollinearity problem. Therefore, we
removed certain variables with VIF > 4. If the VIFs of some
independent variables were above 4, the independent variable
with the maximum VIF was removed. If VIF was under 4 but
the β of some independent variables was not significant, the
independent variable with the minimum relative weight was
removed.

After the most predictive features were determined, the
linear regression model was built. Four-fold cross-validation
was performed to assess the prediction performance of this
regression model, as it prevents the overfitting that can occur
when leave-one-out cross-validation is used with small sample
sizes (Cohen et al., 2010; Supekar et al., 2013). In brief, data
were randomly divided into four groups. A linear regression
model was built using three of the groups (i.e., training
set). The left-out group, which served as the test set, was
then predicted using this model, and the predicted value
was obtained. This procedure was repeated four times with
different test sets. Then, the Pearson’s correlation coefficient
between the predicted values of the trained linear regression
model in the test set and the actual values, termed r(pred,
actual), was calculated. The average of the squares of the
difference between the predicted values and the actual values,
named MSE, was also computed. These two measurements
were used as measures of how well the independent variables
predicted the dependent variable, with r(pred, actual) = 1 and
MSE = 0 being the most accurate prediction model. This
procedure was repeated 1000 times to obtain a robust estimate
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FIGURE 4 | Behavioral results. After SD, subjects showed significantly poorer performance on SSRT (p = 0.03, A). The SSRT of RW was significantly negative
correlated with 1SSRT (r = −0.596, p < 0.001, B). The SSRT of RW in vulnerable group was significantly faster than that in resilient group (p = 0.004, C).
∗p < 0.05; ∗∗p < 0.01.

FIGURE 5 | The final selected regions at threshold p < 0.05. Nine regions were selected: L_MFG, left middle frontal gyrus (shown in dark blue); R_IFG_oper, pars
opercularis of right inferior frontal gyrus (blue); L_IFG_tri, pars triangularis of left inferior frontal gyrus (sky blue); R_Rolandic_oper, pars opercularis of right rolandic
area (cyan); L_SMA, left supplementary motor area (mint green); L_hippocampus, left hippocampus (yellow); R_lingual, right lingual gyrus (saffron yellow);
R_postcentral, right postcentral gyrus (orange red); L_MTG, left middle temporal gyrus (red). L, left; R, right. This figure was constructed using the BrainNet Viewer
(http://www.nitrc.org/projects/bnv/; Xia et al., 2013).

of prediction performance. Finally, the mean r(pred, actual)
and mean MSE were calculated, and the Pearson correlation
between r(pred, actual) and MSE across the 1000 repetitions
was computed. In order to explore the overfitting, we also
calculated the predicted values of the trained linear regression
model in the training set, and computed the mean MSE of
training set. If the MSE of training set was much larger than
that of test set, the model was highly likely overfitted. If
the MSE of training set was much less than that of test set,
the model was highly likely underfitted. If there was a little
difference between the two MSEs, the model was appropriate
fitted.

RESULTS

Behavioral Results
After SD, the StopAcc did not significantly differ from RW
session (39.42 ± 5.23% after RW vs. 38.47 ± 8.35% after SD,
p > 0.05, mean ± standard deviation, throughout). However,
the subjects showed significantly poorer performance on the
SSRT when they were sleep-deprived (261.41 ± 30.78 ms after
RW vs. 285.14 ± 33.38 ms after SD, p = 0.03, Figure 4A).
The 1SSRT ranged from −0.144 to 0.687 (0.149 ± 0.241).
Furthermore, we found that the RW SSRT was significantly
negative correlated with 1SSRT (r = −0.596, p < 0.001,
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Figure 4B). These results indicated that subjects with a faster
SSRT after RW might show a greater change in SSRT after
SD. According to this result, we hypothesized that subjects
with better inhibition performance in the RW state would be
more vulnerable to SD. To verify this hypothesis, we divided
the 52 subjects into two groups (resilient and vulnerable
groups) based on a median split of the average 1SSRT. This
dichotomization resulted in a total of 26 resilient subjects
with lower 1SSRT, and 26 vulnerable subjects with higher
1SSRT. The age and gender of the two groups were matched
(p = 0.614, two-sample t-test, for age; p = 0.328, chi-square
test, for gender). We found that the mean RW SSRT of
the vulnerable group was significantly faster than that of the
resilient group (p = 0.004, 276.9 ± 7.89 ms in vulnerable
group vs. 232.7 ± 12.06 ms in resilient group, Figure 4C).
These findings confirmed the hypothesis that subjects with
better inhibition performance in the RW state are more
vulnerable to SD.

Correlations Between 1SSRT and GM
Volumes
No significant correlation was observed between GM
volume and 1SSRT in any brain regions at a value
of p < 0.05 corrected for multiple comparisons using
FWE correction. For uncorrected thresholds of p < 0.05,
p < 0.01, p < 0.005, and p < 0.001 with a minimum of
10 voxels, there were respectively 61, 24, 13 and 4 regions
in which GM volumes were negative correlated with 1SSRT
(Supplementary Tables S1–S4).

Prediction Results
At a significance threshold of p < 0.05, 61 brain regions were
identified from the results of the VBM. LASSO was performed
on these 61 regions and 14 were selected as the input for the
linear regression model: the left precentral gyrus (L_precentral),
left middle frontal gyrus (L_MFG), pars opercularis of right

inferior frontal gyrus (R_IFG_oper), pars triangularis of
left inferior frontal gyrus (L_IFG_tri), pars opercularis of
right rolandic area (R_Rolandic_oper), left supplementary
motor area (L_SMA), left hippocampus (L_hippocampus),
left parahippocampal gyrus (L_parahippocampal), right lingual
gyrus (R_lingual), left superior occipital gyrus (L_SOG),
left inferior occipital gyrus (L_IOG), right postcentral gyrus
(R_postcentral), right angular gyrus (R_angular) and left
middle temporal gyrus (L_MTG). The GM volumes of these
regions were entered as independent variables and 1SSRT was
entered as the dependent variable. This model was significant
(F(14,37) = 2.33, p = 0.02); however, the regression diagnostics
were not acceptable, as the linearity assumption was not satisfied.
The L_parahippocampal region was then removed because the
component-plus-residual-plot showed a non-linear curve with
maximum deviation from the linear curve. Following this,
the L_precentral, L_IOG, L_SOG and R_angular regions were
removed in order. Finally, we obtained the final nine features:
L_MFG, R_IFG_oper, L_IFG_tri, R_Rolandic_oper, L_SMA,
L_hippocampus, R_lingual, R_postcentral and L_MTG (Table 1
and Figure 5). The model that was then built using these nine
features was significant (F(9,42) = 6.80, p < 0.0001). The R2 was
0.994 and the adjusted R2 was 0.986. The regression diagnostics
were acceptable, with all VIFs being under 4. The relative weights
of these features were 13.242%, 12.236%, 12.556%, 10.399%,
9.058%, 9.623%, 11.854%, 9.306% and 11.725%, respectively
(Figure 6A). In the prediction analysis, the mean r(pred, actual)
was 0.948 ± 0.0503 and the mean MSE was 0.0039 ± 0.0011.
The MSE was significantly negative correlated with r(pred,
actual; r = −0.944, p < 0.0001, Figure 6B), suggesting that
model with the higher r(pred, actual) would show the lower
MSE. In order to estimate the overfitting, we calculated the
MSE of training set and found that the mean MSE was
0.0011 ± 0.0003. There was little difference between this
value and the MSE of test set (0.0039 ± 0.0011). This result
suggests that the model built in our study could well fit the

TABLE 1 | Prediction performance using linear regression model.

Threshold Features R2 Adjusted R2 Weights (%) MSE r(pred, actual)

L_MFG 13.242
R_IFG_oper 12.236
L_IFG_tri 12.556
R_Rolandic_oper 10.399

P < 0.05 L_SMA 0.994 0.986 9.058 0.0039 ± 0.0011 0.948 ± 0.0503
L_ hippocampus 9.623
R_ lingual 11.854
R_ postcentral 9.306
L_MTG 11.725
L_MFG 15.558
R_Rolandic_oper 18.738

P < 0.01 L_postcentral 0.966 0.950 25.337 0.0056 ± 0.0017 0.916 ± 0.0236
R_postcentral 19.650
L_supramarginal 20.716

R2, the coefficient of determination; adjusted R2, the adjusted coefficient of determination; MSE, mean square error; r(pred, actual), the Pearson’s correlation coefficient
between the predicted values and the actual values; weights, the relative importance of independent variables; L_MFG, left middle frontal gyrus; R_IFG_oper, pars
opercularis of right inferior frontal gyrus; L_IFG_tri, pars triangularis of left inferior frontal gyrus; R_Rolandic_oper, pars opercularis of right rolandic area; L_SMA, left
supplementary motor area; L_hippocampus, left hippocampus; R_lingual, right lingual gyrus; R_postcentral, right postcentral gyrus; L_MTG, left middle temporal gyrus;
L_postcentral, left postcentral gyrus; L_supramarginal, left supramarginal gyrus.
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FIGURE 6 | Prediction performance of the linear regression model with the nine regions. The relative weights of the nine regions (A). The correlation between the
r(pred, actual) and MSE (B). L_MFG, left middle frontal gyrus; L_IFG_tri, pars triangularis of left inferior frontal gyrus; R_IFG_oper, pars opercularis of right inferior
frontal gyrus; R_lingual, right lingual gyrus; L_MTG, left middle temporal gyrus; R_Rolandic_oper, pars opercularis of right rolandic area; L_hippocampus, left
hippocampus; R_postcentral, right postcentral gyrus; L_SMA, left supplementary motor area.

training data, but also could be generalized to test data without
overfitting.

For p < 0.01, we built the linear regression model with
24 regions without LASSO. Using the similar prediction
process, five regions were finally selected (Table 1): L_MFG,
R_Rolandic_oper, left postcentral gyrus (L_postcentral),
R_postcentral and left supramarginal gyrus (L_supramarginal).
The model built with these five features was significant
(F(5,46) = 10.306, p < 0.0001). The R2 was 0.966 and the adjusted
R2 was 0.950. The relative weights of these features were
15.558%, 18.738%, 25.337%, 19.650%, and 20.716% respectively.
The mean r(pred, actual) was 0.916 ± 0.0236 and the mean
MSE 0.0056 ± 0.0017. The MSE was significantly negative
correlated with r(pred, actual; r =−0.961, p < 0.0001). However,
for p < 0.005, the model with 13 regions was not significant
(F(13,38) = 1.608, p = 0.126). The regression diagnostics of
the model for p < 0.001 showed that it was not acceptable,
with the homoscedasticity assumption not being satisfied.
These results suggest that the best prediction performance
was at the uncorrected threshold of p < 0.05 with higher
r(pred, actual) and lower MSE than that using strict regions
thresholds.

DISCUSSION

In the present study, we used a linear regression model to
examine the predictive ability of regional GM volumes for
determining the difference in the rate of response inhibition
before and after SD. First, we investigated the correlation
between 1SSRT and GM volumes of brain regions. We then
selected the optimal regions for predicting 1SSRT using a
linear regression model. We found that the GM volumes of
the L_MFG, R_IFG_oper, L_IFG_tri, R_Rolandic_oper, L_SMA,
L_hippocampus, R_lingual, R_postcentral, and L_MTG could
accurately predict 1SSRT with low MSE and high r(pred,
actual). Our results suggest that it is possible to predict the

impairment of response inhibition after SD using only structural
MRI data.

Behaviorally, we found that SD impaired the performance
of response inhibition, and that subjects with faster SSRT
after RW showed a greater change in SSRT after SD. These
results suggest that the impairment of response inhibition
could be qualitatively predicted by the performance after RW.
In this study, we investigated the quantitatively prediction
performance of structural MRI data in 1SSRT. First, we
investigated the correlation between 1SSRT and GM volumes
of brain regions. No significant correlation was observed
between 1SSRT and GM volume of any brain region when
the statistics were corrected for multiple comparisons using
FWE correction. However, we found that regional GM volumes
could predict the 1SSRT. This contradictory result may arise
from the strict threshold in the voxel based analysis. The
former performed the Pearson correlation analysis for each
voxel, which increased the false positive. In order to avoid
this effect, multiple comparisons using FWE correction was
performed which was a strict correction method. In the
present study, we selected the nine regions via machine-
learning and cross-validation. This procedure includes a built-in
guard against false positives (Finn et al., 2015). If the
proportion of false positives in the feature-extraction step is
high, the regression model is unlikely to generalize well to
independent data. Therefore, it is not necessary to correct for
multiple comparisons in the VBM analysis when extracting
features.

Then, we extracted those regions in which GM volumes were
negative correlated with 1SSRT at uncorrected threshold, to
act as input features for a linear regression model. To explore
the effect of different thresholds on the prediction, we chose
uncorrected thresholds of p < 0.001, p < 0.005, p < 0.01,
and p < 0.05 (all with a minimum of 10 voxels) to determine
the voxels which GM volumes were negative correlated with
1SSRT. We found that the best prediction performance was
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obtained at the uncorrected threshold of p < 0.05, with
higher r(pred, actual) and lower MSE than that with other
thresholds. It seems to be taken for granted that the predictive
power using regions threshold at p < 0.05 outperformed
that using less regions threshold at p < 0.01 to p < 0.001.
As more candidate features were involved at p < 0.05, and
importantly it included all the regions at other strict thresholds,
thus the method could of course be more predictive when
using regions threshold at p < 0.05. However, although the
candidate features at p < 0.05 included all the regions at
other strict thresholds in the feature extraction step, the
LASSO was performed to reduce the feature dimensions in
the feature selection step. We also manually and gradually
excluded the remaining candidate features in the prediction
analysis step. The finally selected regions at p < 0.05 were
not always more than those at other strict thresholds. The
number of selected regions was dependent on the data itself.
Therefore, the better prediction performance at p< 0.05 resulted
from the more final selected regions, not the candidate
features.

We found that the R_IFG_oper was selected to predict
the 1SSRT. Recent studies have found that the R_IFG_oper
was specially engaged in the successful inhibition, and the
activation and GM intensity of this region were both negative
correlated with SSRT (Congdon et al., 2010; Tabibnia et al.,
2011; Aron et al., 2014), consistent with the critical role of
R_IFG_oper in inhibition control. Therefore, it is reasonable
that this region was involved in the prediction model. However,
we didn’t select the right MFG, SMA or MTG as the
final features. This finding does not conflict with reports of
neural activation during inhibitory control, as greater GM
intensity in a region is not necessarily coupled with greater or
lower activation in that region. Although the right-hemisphere
dominance in activation is well-known, some studies have also
reported bilateral activation in IFG, MFG, SMA and MTG
(Li et al., 2006; Cohen et al., 2010; Congdon et al., 2014).
Furthermore, Lee and Hsieh (2017) have found that the regional
homogeneity/fractional amplitude of low-frequency fluctuation
and SSRT were significantly negative correlated in the left
IFG. The L_MFG and L_IFG_tri contributed the most to the
coefficient of determination of the linear regression model
in our present study. These findings suggest that left IFG
and left MFG may also play an important role in response
inhibition. We also selected the R_lingual as a predictor of
1SSRT. During the SST part of the study, participants were
required to cancel a button press when the white arrow
changed to blue after a visual stimulus. This part of the
task means that the lingual gyrus is likely to be involved
in response inhibition, as this region plays a role in visual
memories (Jeneson et al., 2012) and color vision processing
(Bogousslavsky et al., 1987). Although previous studies do not
find the engagement of lingual gyrus, the occipital cortex was
implicated. These results suggest that the vision-related region
may predict the 1SSRT. These findings indicate that these
regions consisting of the ‘‘stopping network’’ could predict
the 1SSRT, consistent with our hypothesis. An interesting
finding is that the R_Rolandic_oper, L_hippocampus and

R_postcentral were also involved in the prediction model.
This result suggests that the combination of the stopping
network, somatosensory cortex and hippocampus could predict
the 1SSRT accurately.

In our study, a traditional linear regression model was
built to predict the 1SSRT. However, the dimension of the
independent variables should be less than the sample size
in such a linear regression model. LASSO was therefore
performed to reduce the feature dimensions and select the
independent variables with the strongest explanatory power
for the dependent variable. To investigate the effect of the
dimensional reduction on prediction performance, we used
support vector regression (SVR), a machine-learning based
multiple regression method (Drucker et al., 1996; Smola and
Schölkopf, 2004), to predict the 1SSRT. This method found
the hyperplane with a maximum margin to minimize the error,
keeping in mind that part of the error is tolerated and broke
the limitation of the linear regression model (i.e., the dimension
of the independent variables in SVR could be more than the
sample size). A range of uncorrected thresholds were also chosen
(p < 0.05, 0.01, 0.005 and 0.001, with a minimum of 10 voxels)
to determine the voxels which GM volumes were negative
correlated with 1SSRT. We found that the best prediction
performance was obtained at an uncorrected threshold of
p < 0.01, with an r(pred, actual) = 0.995 (p < 0.0001) and
an MSE = 0.0065 being obtained (Supplementary Table S5).
Compared with the linear regression model, SVR tended to
produce higher r(pred, actual), but also larger MSE. It is
hard to determine which model is better, however, we found
that the increase rate of MSE was larger than that of r(pred,
actual) between these two models. These results suggest that
the linear regression model may be more appropriate for
predicting 1SSRT.

There are several limitations to the present study that
require consideration. First, the sample size in this study was
relatively small; thus, the findings should be replicated in a
larger sample. Second, we used a single modality to extract
features. Multimodality imaging (VBM, DTI and resting-state
fMRI) may result in better prediction performance. Further
studies are expected to test these hypotheses. Third, we only
recruited the young subjects, except the older adults in this
present study. However, Hu et al. (2014) found that aging is
significantly positive correlated with SSRT among 18–72 years
adults and is associated with decreased GM volume. Therefore,
the linear regression model in young subjects may be not
identical with that in older subjects. Aging may affect the
prediction performance of GM volume. Considering this factor,
we only recruited the young subjects in our present study.
On the other hand, we also attempt to explore the structural
basis of SD effect on SSRT. In order to exclude the age
factor, we only analyzed the young subjects. Further studies
with larger sample size and more comprehensive sample are
required to examine the predictive ability of regional GM
volumes.

In conclusion, our results demonstrate that structural MRI
data can be used for the quantitative prediction of the change in
response inhibition performance after SD.
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