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EEG-Based BCI Control Schemes for
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Madiha Tariq, Pavel M. Trivailo and Milan Simic*

School of Engineering, RMIT University Melbourne, Melbourne, VIC, Australia

Over recent years, brain-computer interface (BCl) has emerged as an alternative
communication system between the human brain and an output device. Deciphered
intents, after detecting electrical signals from the human scalp, are translated into
control commands used to operate external devices, computer displays and virtual
objects in the real-time. BCI provides an augmentative communication by creating a
muscle-free channel between the brain and the output devices, primarily for subjects
having neuromotor disorders, or trauma to nervous system, notably spinal cord
injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or
amputated residual limbs. This review identifies the potentials of electroencephalography
(EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could
benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis,
prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals
employed by the aforementioned applications that also provide feasibility for future
development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP)
and visual evoked potentials (VEP). The review is an effort to progress the development
of user’s mental task related to LL for BCI reliability and confidence measures. As a novel
contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots
are presented by a general control framework fitting in hierarchical layers. It reflects
informatic interactions, between the user, the BCI operator, the shared controller, the
robotic device and the environment. Each sub layer of the BCI operator is discussed in
detail, highlighting the feature extraction, classification and execution methods employed
by the various systems. All applications’ key features and their interaction with the
environment are reviewed for the EEG-based activity mode recognition, and presented in
form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within
the presented framework, for future generation of intent-based multifunctional controllers.
Despite the development of controllers, for BCl-based wearable or assistive devices that
can seamlessly integrate user intent, practical challenges associated with such systems
exist and have been discerned, which can be constructive for future developments in the
field.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), spinal cord injury (SCI), exoskeletons,
orthosis, assistive-robot devices
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INTRODUCTION

The field of assistive technologies, for mobility rehabilitation, is
ameliorating by the introduction of electrophysiological signals
to control these devices. The system runs independent of
physical, or muscular interventions, using brain signals that
reflect user’s intent to control devices/limbs (Millin et al,
2010; Lebedev and Nicolelis, 2017), called brain-computer
interface (BCI). Commonly used non-invasive modality to
record brain signals is electroencephalography (EEG). EEG
signals are deciphered to control commands in order to restore
communication between the brain and the output device when
the natural communication channel i.e., neuronal activity is
disrupted. Recent reviews on EEG-BCI for communication and
rehabilitation of lower-limbs (LL) could be found in (Cervera
etal., 2018; Deng et al., 2018; He et al., 2018a; Lazarou et al., 2018;
Semprini et al., 2018; Slutzky, 2018).

About five decades ago, EEG-BCIs used computer cursor
movements to communicate user intents for patient-assistance in
various applications (Vidal, 1973; Wolpaw et al., 2002; Lebedev
and Nicolelis, 2017). The applications are now widespread,
as machine learning has become one essential component
of BCI, functional in different fields of neurorobotics and
neuroprosthesis. For lower extremity, applications include
human locomotion assistance, gait rehabilitation, and
enhancement of physical abilities of able-bodied humans (Deng
et al., 2018). Devices for locomotion, or mobility assistance,
vary from wearable to (non-wearable) assistive-robot devices.
Wearable devices such as exoskeletons, orthosis, prosthesis,
and assistive-robot devices including wheelchairs, guiding
humanoids, telepresence and mobile robots for navigation are
the focus of our investigation.

Control schemes, offered by these systems, rely on the inputs
derived from electrophysiological signals, electromechanical
sensors from the device, and the deployment of finite state
controller that attempts to implicate user’s motion intention,
to generate correct walking trajectories with wearable robots
(Duvinage et al,, 2012; Jimenez-Fabian and Verlinden, 2012;
Herr et al., 2013; Contreras-Vidal et al., 2016). Input signals are
typically extracted from the residual limb/muscles i.e., amputated
or disarticulated lower-limbs (LL), via electromyography (EMG),
from users with no cortical lesion or intact cognitive functions.
Such solutions consequently preclude patient groups whose
injuries necessitate direct cortical input to the BCI controller, for
instance users with neuromotor disorders such as spinal cord
injury (SCI) and stroke, or inactive efferent nerves/synergistic
muscle groups. In this case direct cortical inputs from EEG
could be the central-pattern-generators (CPG) that generate basic
motor patterns at the supraspinal or cortical level (premotor and
motor cortex); or the LL kinesthetic motor imagery (KMI) signals
(Malouin and Richards, 2010). The realization of BCI controllers
solely driven by EEG signals, for controlling LL wearable/assistive
devices, is therefore possible (Lee et al, 2017). Several
investigations reinstate that CPG with less supraspinal control is
involved in the control of bipedal locomotion (Dimitrijevic et al.,
1998; Beloozerova et al., 2003; Tucker et al., 2015). This provides
the basis for the development of controllers, directly driven from

cortical activity in correlation to the user intent for volitional
movements (Nicolas-Alonso and Gomez-Gil, 2012; Angeli et al.,
2014; Tucker et al., 2015; Lebedev and Nicolelis, 2017) instead of
EMG signals. Consequently, controllers with EEG-based activity
mode recognition for portable assistive devices, have become
an alternative to get seamless results (Presacco et al., 2011b).
However, when employing EEG signals as input to the BCI
controller, there necessitates a validation about the notion that
EEG signals from the cortex can be useful for the locomotion
control.

Though cortical sites encode movement intents, the kinetic
and kinematic changes necessary to execute the intended
movement, are essential factors to be considered. Studies indicate
that the selective recruitment of embedded “muscle synergies”
provide an efficient means of intent-driven, selective movement,
i.e., these synergies, stored as CPGs, specify spatial organization
of muscle activation and characterize different biomechanical
subtasks (Chvatal et al., 2011; Chvatal and Ting, 2013). According
to Maguire et al. (2018), during human walking, Chvatal and
Ting (2012) identified different muscle synergies for the control
of muscle activity and coordination. According to Petersen et al.
(2012), the swing-phase was more influenced by the central
cortical control, i.e., dorsiflexion in early stance at heel strike,
and during pre-swing and swing phases for energy transfer from
trunk to leg. They also emphasized the importance of cortical
activity during steady unperturbed gait for the support of CPG
activity. Descending cortical signals communicate with spinal
networks to ensure that accurate changes in limb movement
have appropriately integrated into the gait pattern (Armstrong,
1988). The subpopulations of motor-cortical neurons activate
sequentially amid the step cycle particularly during the initiation
of pre-swing and swing (Drew et al., 2008). The importance of
cortical activation upon motor imagery (MI) of locomotor tasks
has been reported in Malouin et al. (2003) and Pfurtscheller et al.
(2006b). Similarly, the confirmation of electrocortical activity
coupled to gait cycle, during treadmill walking or LL control,
for applications as EEG-BCI exoskeletons and orthotic devices,
has been discerned by (He et al, 2018b, Gwin et al. (2010,
2011), Wieser et al. (2010), Presacco et al. (2011a), Presacco et al.
(2011b), Chéron et al. (2012), Bulea et al. (2013), Bulea et al.
(2015), Jain et al. (2013), Petrofsky and Khowailed (2014), Kumar
et al. (2015), and Liu et al. (2015). This provides the rationale
for BCI controllers that incorporate cortical signals for high-level
commands, based on user intent to walk/bipedal locomotion or
kinesthetic motor imagery of LL.

While BCIs may not require any voluntary muscle control,
they are certainly dependent on brain response functions
therefore the choice of BCI depends on the user’s sensorimotor
lesion and adaptability. Non-invasive types of BCI depend on
EEG signals used for communication, which elicit under specific
experimental protocols. Deployed electrophysiological signals
that we investigate, include oscillatory/sensorimotor rhythms
(SMR), elicited upon walking intent, MI or motor execution
(ME) of a task, and evoked potentials as event-related potentials
(ERP/P300) and visual evoked potentials (VEP). Such BCI
functions as a bridge to bring sensory input into the brain,
bypassing damages sight, listening or sensing abilities. Figure 1
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FIGURE 1 | Generic concept/function diagram of BCI controlled assistive LL devices based on motor imagery.

shows a schematic description of a BCI system based on MI,
adapted from He et al. (2015). The user performs MI of limb(s),
which is encoded in EEG reading; features representing the task
are deciphered, processed and translated to commands in order
to control assistive-robot device.

Reviewed control schemes deployed by wearable LL and
assistive-robots are presented in a novel way, ie., in form
of a general control framework fitting in hierarchical layers.
It shows the informatic interactions, between the user, the
BCI operator, the shared controller, and the robot device with
environment. The BCI operator is discussed in detail in the light
of the feature extraction, classification and execution methods
employed by all reviewed systems. Key features of present state-
of-the-art EEG-based BCI applications and its interaction with
the environment are presented and summarized in the form
of a table. Proposed BCI control framework can cater similar
systems based on fundamentally different classes. We expect
a progress in the incorporation of the novel framework for
the improvement of user-machine adaptation algorithms in a
BCL

The reviewed control schemes indicated that the MI/ME
of LL tasks, as aspects of SMR-based BCI have not been
extensively used compared to upper limbs (Tariq et al., 2017a,b,
2018). This is due to the small representation area of LL, in
contrast to upper limbs, located inside the interhemispheric
fissure of the sensorimotor cortex (Penfield and Boldrey, 1937).
The review is an effort to progress the development of user’s
mental task related to LL for BCI reliability and confidence
measures.

Challenges presently faced by EEG-BCI controlled wearable
and assistive technology, for seamless control in real-time, to
regain natural gait cycle followed by a minimal probability of
non-volitional commands, and possible future developments in
these applications, are discussed in the last section.

GENERAL CONTROL FRAMEWORK FOR
BClI WEARABLE LOWER-LIMB AND
ASSISTIVE-ROBOT DEVICES

In order to structure the control architecture adopted by
various BCI wearable LL and assistive robot-devices, a general
framework is presented in Figure2. This framework was
extended from Tucker et al. (2015) applicable to a range
of EEG-BCI controlled devices for LL assistance, including
portable exoskeletons, orthosis, prosthesis, and assistive-robots
(wheelchairs, humanoids, and navigation/telepresence robots).
Figure 2 reflects the generalized control framework, where
electrophysiological and transduced signal interactions, along
the feedforward and feedback loops, are shown for motion
intent recognition, during activity mode. Integral parts of the
framework include a user of the assistive robot-device, the
assistive-robot device itself, a BCI operator structure with sub-
level controls, shared control, communication protocol and
the interaction with environment. The BCI operator structure
constitutes of three sub-layers which are the feature extraction,
translation and execution layer, respectively. As a precaution to
ensure human-robot interaction safety, safety layers are used
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FIGURE 2 | Generalized framework in BCI controlled wearable LL and assistive devices for rehabilitation.

with the user and the robotic device parts of the framework.
The control framework is in a generalized form applicable to all
brain-controlled assistive robots.

BCI control is driven from the recognition of user’s motion
intentions; therefore we begin from the point of origin where
motion intentions arise (cortical levels). The first step involves
how to perceive and interpret the user’s physiological state (i.e.,
MI/ME or ERP) acquired via EEG. Following this, the status
of physical interaction between the user and the environment
(and vice versa), and the robotic device and the environment
(and vice versa) are checked. The assistive-robot’s state is
determined via electromechanical sensors. The user and assistive-
robot status inputs to the BCI operator and shared controller,
respectively.

Raw signals from the user and assistive LL device pass
through the communication protocol which directs them to
the connected client ie., BCI operator via pre-processing
and shared control module. Real-time signal acquisition and
operating software could be used to assign event markers to
the recorded data e.g., OpenViBE, BioSig, BCI++, BCI2000
etc. (Schalk et al., 2004; Mellinger and Schalk, 2007; Renard
et al, 2010). The streaming connection can be made using
TCP (when the time synchronization requirements do not
need accuracy <100ms) or LSL which incorporates built-in
network and synchronization capabilities (with accuracy of 1 ms)
recommended for applications based on ERPs.

Under the control framework components, BCI operator is
the core part comprising of three sub layers, described in detail
in section BCI Operator.

At feature extraction layer (intent recognition), user’s intent
of activities related to LL movements are perceived, discerned
and interpreted. Signal features associated to user’s kinesthetic
intent/execution of motor task (in case of SMR) are encoded

in form of feature vector (Lotte, 2014). The activity-mode
recognition for ERP, against displayed oddball menu for specific
location, uses frequency, or time domain features. It is the user’s
direct volitional control that lets voluntarily manipulate the state
of the device (e.g., joint position, speed, velocity and torque).

Translation layer (weighted class) takes account of the
translation of extracted signal features to manipulate the robotic
device, via machine understandable commands, which carry
the user’s intent. This is done by supervised, or unsupervised
learning (classification algorithm) which essentially estimates the
weighted class, represented by the feature vector, and identifies
the cognitive patterns for mapping to the desired state (unique
command).

The desired state of user intent is carried to the execution
layer (commands for device-specific control) where an error
approximation is done with reference to current state. The state
of the device is also sent to the execution layer via shared
controller, as a feedforward control, in order to comply with the
execution layer. The execution layer sends control commands
to the actuator(s) of the device and visual feedback to the user
via shared control unit in order to minimize the possible error.
The feedback control plays a vital role in achieving the required
output (usually accounts for the kinematic or kinetic properties
of the robot-device).

This closes the overall control loop and the robotic device
actuates to perform the required task(s). As the wearable
assistive-robot is physically placed in close contact with the
user, and that the powered device is likely to generate output
force, safety mechanisms are kept into consideration with the
user and hardware in the control framework. Inter-networking
between subsystems of the generalized control architecture relies
on the exchange of information sent at signal-level as well as
physical-level.
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USER ADAPTABILITY AND EEG SIGNAL
ACQUISITION

The type of BCI is directed based on the user’s lesion level and
extent of adaptability to adhere with the specific BCI protocol.

User Adaptability

In order for the portable LL wearable-BCI controllers to be
compliant with residual neuromusculoskeletal structures, the
sensorimotor control loop of human locomotion is taken into
account, since the volitional and reflex-dependent modulation
of these locomotion patterns emerges at the cortical levels
(Armstrong, 1988; Kautz and Patten, 2005; Bakker et al., 2007;
Zelenin etal., 2011; Pons et al., 2013; Angeli et al., 2014; Marlinski
and Beloozerova, 2014; Capogrosso et al., 2016). This may
essentially preclude the direct control of LL via neural activity
alone, while keeping a balance and orientation during dynamic
tasks. However, the sole employment of cortical activity is still
useful for providing high-level commands to the controller of
the device to execute volitional movements (Carlson and Millan,
2013; Contreras-Vidal and Grossman, 2013; Kilicarslan et al.,
2013), for patients whose injuries necessitate a direct input from
cortex to the robotic device controller. Therefore, the critical
aspect for a functional portable LL device is the lesion measure
and the physiological constraints based on which the user can
adapt to the BCI protocol. The physiological constraints in such
cases can be compensated through assistance, like shared control.

EEG Signal Acquisition

The neuronal activity can be divided into spikes and field
potentials. Spikes show action potentials of neurons individually
and are detected via invasive microelectrodes. Field potentials on
the other hand can be measured by EEG and they reflect the
combined synaptic, axonal and neuronal activity of the neuron
groups (Yang et al.,, 2014; He, 2016).

The communication components in EEG activity useful for
BCI include, the oscillatory activity comprising of delta, theta,
alpha/mu, beta and gamma rhythms; the ERP (P300), the VEP,
and slow cortical potentials (SCP). Oscillatory rhythms fluctuate
according to the states of brain activity; some rhythms are
distinguished depending on these states (Semmlow and Griffel,
2014). The Mu and beta rhythms are also termed SMR. The SMR
elicit event-related desynchronization (ERD) or event-related
synchronization (ERS) which are directly related to proportional
power decrease upon ME/MI of limb(s) movement or power
increase in the signal upon rest, respectively; they are non-
phase locked signals (Kalcher and Pfurtscheller, 1995). Evoked
potentials on the other hand are phase-locked. A BCI system
employs evoked potentials when requiring less or no training
from the user i.e., a system based on stimulus-evoked EEG signals
that provides task-relevant information (Baykara et al., 2016),
useful for locked-in or multiple sclerosis patients. This involves
the presentation of an odd-ball paradigm in case of P300 or
multiple visual stimuli flashing, e.g., letters, digits on screen in
case of VEP. The P300 is derived from user response that evokes
approximately 300 ms after stimulus triggering and corresponds
to positive voltage peak (Lazarou et al., 2018). VEP measures the

time for the visual stimulus to travel from the eye to occipital
cortex.

Users can generally be grouped based on their physical and
mental state, for instance locked-in patients with intact eye
muscles, can communicate via ERP signals, whereas patients with
motor complete but sensory incomplete SCI can utilize SMR
signals based on MI. Figure 3 shows the electrophysiological
signals that are extensively employed by BCI system for
communication; however EEG signals employed by the wearable
LL and assistive devices are highlighted for this study.

Deployed Oscillatory Rhythms

For assistive devices, the two commonly used SMR acquired from
the motor cortex are mu (8-11 Hz) and beta (12-30 Hz) rhythms,
which elicit upon ME/MI tasks. The ME task is based on the
physical motion of the user’s limbs that activate the motor cortex;
this includes the development of muscular tension, contraction
or flexion. The MI is a covert cognitive process based on the
kinesthetic imagination of the user’s own limb movement with no
muscular activity also termed “kinesthetic motor imagery” (KMI)
(Mokienko et al., 2013). Motor tasks can generally be upper or
lower limb related (Malouin et al., 2008). The upper limb motor
tasks activate hand area (Vasilyev et al,, 2017) and LL motor
tasks activate foot representation area of the cortex respectively
(Wolpaw and Wolpaw, 2012). The advantage with MI signals is
that they are free of proprioceptive feedback unlike ME tasks.

It was suggested by Wolpaw and Mcfarland (2004), that
the use of mu and beta rhythms could give similar results as
those presented by invasive methods for motor substitution.
A non-invasive BCI could clinically support medical device
applications (as discussed in section Lower-Limb Assistive-Robot
Applications in Different Environments). The BCIs for control
of medical device applications are reported in Allison et al.
(2007); Daly and Wolpaw (2008), and Frolov et al. (2017). It
was observed that BCI employed by assistive-robot devices for
control purposes was focused on upper limb MI (Belda-Lois et al.,

| Oscillatory EEG Activity/
Mu-Beta (Sensorimotor

| Rhythms,
i ) Event-Related

Desynchronization (ERD)/
Event-Related
Synchronization (ERS)

|

| Event-Related Potentials
(ERP)/ P300 Evoked
Potentials

|

Electrophysiological L Visual Evoked Potentials
Signals Used in BCI |

Slow Cortical Potentials

e
Neuronal Potentials/
Cortical Neuronal Action
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FIGURE 3 | Electrophysiological signals used in BCI controlled wearable LL
and assistive-robot devices.
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2011) such as hand and fingers, for applications including BCI
hand orthotics and exoskeleton (Schwartz et al., 2006; Soekadar
et al., 2015). This is because the foot representation area is near
the mantelkante, which is situated deep within interhemispheric
fissure of the human sensorimotor cortex (Penfield and Boldrey,
1937). However, it never withheld progress into this direction.
Research on LL, precisely the foot MI/ME for controlling assistive
robots, is in progress (Pfurtscheller et al., 2006a; Hashimoto and
Ushiba, 2013; Tariq et al., 2017b, 2018). It was proved that the
induction of beta ERS in addition to mu-beta ERD, improved the
discrimination between left and right foot imagery and stepping
tasks, as accurate as hand MI (Pfurtscheller et al., 2005, 2006a;
Pfurtscheller and Solis-Escalante, 2009; Hashimoto and Ushiba,
2013; Liu et al., 2018) which provides a basis for research in BCI
controlled foot neuroprosthesis. To our knowledge no literature
on explicit employment of knee or hip KMI tasks in any BCI
experimental protocol is available except for (Tariq et al., 2017a).

Besides the KMI of LL, cortical signals arising from the
sensorimotor control loop of human locomotion intent is taken
into account, for the portable LL wearable-BCI controllers to
be compliant with the residual neuromusculoskeletal structures
(La Fougere et al.,, 2010) suggested that brain areas underlying
walking MI overlie the supplementary motor area and pre-
frontal cortex. The idea of walking from thought based on foot
imagery has also been presented in Pfurtscheller et al. (2006b).
A novel way of therapy that earlier provided limited grade
of motor-function recovery for chronic gait function impaired
subjects due to foot-drop was described (Do et al., 2011, 2012).
They integrated EEG-based BCI with non-invasive functional
electrical stimulation (FES) system. It resulted in enabling the
brain-control of foot dorsiflexion directly in healthy individuals.
Takahashi et al. (2009, 2012) validated the feasibility of short-
term training by employing ERD and FES based on dorsiflexion
of paralyzed ankle experiments. Beta corticomuscular coherence
(CMC) gave a measure of communication amid sensorimotor
cortex and muscles. Garcia-Cossio et al. (2015) demonstrated the
possibility to decode walking intentions from cortical patterns.
Raethjen et al. (2008) found coherence in EEG at stepping
frequency and electromyography (EMG) anterior tibial muscles
pattern for rhythmic foot movements.

Work on analyzing EEG signals for detection of unexpected
obstacles during walking was presented recently (Salazar-Varas
et al., 2015). Observation of electrocortical activity related to
walking gait-cycle and balancing experiments has been reported
in Presacco et al. (2011b). Electrocortical activity resulting from
gait-like movements and balancing with treadmill, Erigo R tilt
table, and customized stationary bicycle with rigid reclined
backboard (as pedaling device) have been discussed in Wieser
et al. (2010), Gwin et al. (2011), Presacco et al. (2011a), Jain
etal. (2013), Petrofsky and Khowailed (2014), Bulea et al. (2015),
Kumar et al. (2015), and Liu et al. (2015).

Deployed Event-Related and Evoked Potentials

ERPs have successfully been deployed in ambulatory and
motor conditions without affecting the recorded EEG data. P300
showed to improve the performance of an EEG-based BCI system

during ambulatory conditions or foot dorsiflexion/plantar-
flexion condition (Lotte et al., 2009; Castermans et al., 2011b;
Duvinage et al., 2012). They used similar experimental protocol
i.e,, oddball paradigm while subjects were physically walking
or moving feet in dorsiflexion or plantar-flexion direction. In
addition to this, the somatosensory evoked potentials (SEP) were
deployed in assistive technologies. These potentials commonly
elicit by bipolar transcutaneous electrical stimulation applied on
the skin over the trajectory of peripheral nerves of the upper limb
(the median nerve) or LL (the posterior tibial nerve), and then
recorded from the scalp (Sczesny-Kaiser et al., 2015). In addition
to the wearable devices, assistive technologies as EEG-BCI
controlled wheelchairs and humanoid robots have successfully
deployed the P300 (Rebsamen et al., 2007, 2010; Pires et al.,
2008; Iturrate et al., 2009b; Palankar et al., 2009; Lopes et al.,
2011; Kaufmann et al., 2014) and VEP signals (Bell et al., 2008).
However, the only drawback, with employment of ERP and VEP
signals in a BCI for the control of assistive devices precisely
wearables, is the presence of visual stimulus set-up within the
device that makes it less convenient for portable applications.

COMMUNICATION PROTOCOL

Like a basic communication system, the BCI for control of
assistive devices has an input, an output, translation components
for converting input to output, and a protocol responsible for the
real-time operation onset, offset and timing.

Acquired EEG signals are transferred to the BCI operator
via a communication protocol. Similarly sensor output from
the robot device is directed to the shared control unit via
communication protocol, Figure2. Communication protocol
could be a transmission control/internet protocol (TCP/IP), a
suite of communication protocols used to interconnect network
devices on the internet or a private network. For instance, in
EEG-BCI controlled humanoids, the data (visual feedback images
from the humanoid monocular camera and motion commands
from the BCI system) were transmitted using wireless TCP/IP
communication between the humanoid and other systems (Chae
et al., 2011a,b, 2012).

An alternate approach is the lab streaming layer (LSL),
which allows synchronization of the streaming data across
devices. Information can be streamed over the network from
“Presentation to the LSL” (Iturrate et al., 2009b; Renard et al,,
2010; Kothe and Makeig, 2013; Gramann et al., 2014). Recent
assistive applications (Galdn et al., 2008; Millin et al., 2009)
such as wheelchairs, and mobile robots, use controller area
network (CAN) bus which is a robust vehicle bus standard. It is
designed to allow microcontrollers and devices to communicate
in applications without a host computer and follows a message-
based protocol. It is a low cost, fault tolerant communication
system, with the data transfer rates in the range of 40 Kbit/s to
1 Mbit/s.

BCI OPERATOR

After passing
acquired EEG

communication
directed to

through  the
signals  are

protocol,
connected
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client, ie., the BCI
first.

operator, but are pre-processed

Preprocessing

The acquired raw EEG signals are pre-processed, as
they are susceptible to noise and artifacts. It could be
hardware/environmental noise, experimental error or
physiological artifact. As hardware and environmental noise are
not brain-related, it is best to remove them before converting
raw EEG to signal features.

Removal of Noise

Hardware noise in the EEG signal usually occurs due to
instrument degradation, electrode wear, mains interference
(AC power lines), electromagnetic wave sources as computers,
mobile phones, notebooks, wireless routers or other electronic
equipment. High noise frequencies in the signal can be removed
by notch filters (50 or 60Hz for power lines). To block
electromagnetic waves, electromagnetic shields could be used.

Removal of Artifacts

EEG artifacts arise due to physiological activities such as
skin impedance fluctuations, electrooculography activity, eye
blinks, electrocardiographic activity, facial/body muscle EMG
activity and respiration. As the frequency ranges, for the
aforementioned physiological signals are typically known, the
bandpass filter can be an effective preprocessing tool. Most
EEG-based BCI systems for assistive technologies have shown
the successful implementation of simple low-pass, high-pass,
or bandpass filters to remove physiological artifacts. Other
methods for artifact removal include temporal filtering, spatial
filtering, independent component analysis (ICA) (Viola et al,
2009), principal component analysis (PCA), linear regression,
blind source separation (BSS) (Ferdousy et al., 2010), wavelet
transform, autoregressive moving average, nonlinear adaptive
filtering, source dipole analysis (Fatourechi et al., 2007) or
thresholding of meaningful parameters (e.g., channel variance)
based on a prior statistical analysis (Nolan et al., 2010).

Feature Extraction Layer
After preprocessing of data, different brain activities are classified
based on their selected features.

Band Power Features

The band power features, usually used, are the time-frequency
components of ERD/ERS. After bandpass filtering, resulting
signal is squared to obtain its power p [t] = x% [t], where x is the
filtered single band EEG signal amplitudes and p is the resulting
band-power values. To smooth-out (average) the signal, a w-
sized smoothing window operation is used. This is followed by
a logarithm of the processed signal sample, using Equation 1:

_ 1
pin) =ln<; %p[n—k]) (1)

where p [n] are the smoothed band-power values, and w is the
smoothing window size. In their work (Presacco et al., 2011b;
Contreras-Vidal and Grossman, 2013), the feature extraction

method employed by EEG-BCI lower exoskeleton, for neural
decoding of walking pattern, included power spectral density
(PSD) analysis of the kinematic data and adaptive Thompson’s
multitaper for each channel of EEG recorded, during rest and
walking tasks. Decoding method employed a time-embedded
linear Wiener filter, independently designed and cross-validated
for each extracted gait pattern. Parameters of the model were
calculated with Gaussian distribution method. This ensured
the feasibility of successfully decoding human gait patterns
with EEG-BCI LL exoskeleton. Similarly, the results tested a
on paraplegic subject for BCI controlled lower exoskeleton
(Kilicarslan et al., 2013) reflect the method of decoding closed
loop implementation structure of user intent with evaluation
accuracy of 98%. Data was filtered in delta band (0.1-2 Hz) using
2nd order Butterworth filter. The filtered data was standardized
and separate channels were used, to create feature matrix to
extract delta band features.

In 2012 (Noda et al., 2012) proposed an exoskeleton robot
that could assist user stand-up movements. For online decoding
they used 9th order Butterworth filter for 7-30 Hz band. After
down-sampling, Laplace filter and common average subtraction
were applied for voltage bias removal. The covariance matrix
of the processed data was used as input variable for the two-
class classifier; the results were productive. Other EEG-BCI lower
exoskeletons (Gancet et al., 2011, 2012) considered employing
steady-state VEP (SSVEP) for motion intention recognition.
Proprioceptive artifacts removal (during walk) is aimed to be
removed using ICA. Other recent work on LL exoskeleton
controlled via SSVEP includes (Kwak et al., 2015). In the SEP-
controlled LL exoskeleton (Sczesny-Kaiser et al., 2015), SEP
signals were sampled at 5kHz and bandpass filtered between 2
and 1,000 Hz. In total 800 evoked potentials were recorded in
epochs from 30 before to 150 ms after the stimulus, and then
averaged. Paired-pulse suppression was expressed as a ratio of
the amplitudes of second and first peaks, which was the primary
outcome parameter. For correlation analysis, they calculated the
difference of mean amplitude ratios.

For a BCI controlled robotic gait orthosis (Do et al,, 2011,
2013) an EEG prediction model was generated to exclude EEG
channels with excessive artifacts. The EEG epochs corresponding
to idling and walking states were then transformed into frequency
domain, their PSD were integrated over 2 Hz bins, followed by
dimensionality reduction using class-wise principal component
analysis (CPCA). The results established feasibility of the
application.

BCI and shared control wheelchairs, based on MI signals
to ensure interference free navigation protocol, was presented
in Millan et al. (2009) and Carlson and Millan (2013). They
estimated PSD in the 4-48 Hz band with a 2Hz resolution.
ERD was observed in the mu band power 8-13Hz. These
changes were detected by estimating the PSD features every
16 times/s using Welch method with five overlapped (25%)
Hanning windows of 500 ms. In order to select subject-specific
features, that maximize the separability between different tasks
(based on training data cross validation) the canonical variate
analysis (CVA) was used. In a similar work presented by Galan
et al. (2008) for BCI controlled wheelchair, feature selection
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was done by picking stable frequency components. The stability
of frequency components was assessed using CVA one per
frequency component on the training set.

Time-Domain Parameters
The time-domain parameters compute time-varying power of

the first k derivatives of the signal; p; (f) = % where i =
0, 1,..., kand x is the initial EEG signal. Resulting derivatives

are smoothed using exponential moving average and logarithm,
used in feature vector generation, as given in Equation 2:

piln] =In (up; [n] — (I — w) p; [n — 1]) )

where p is the smoothed signal derivatives, u is the moving
average parameter, u € [0; 1].

EEG-BCI for control of LL orthosis (Taylor et al., 2001;
Duvinage et al., 2012) combined a human gait model based on
a CPG and a classic but virtual P300 to decipher user’s intent for
four different speeds. P300 was used to control the CPG model
and the orthosis device by sending high-level commands. The
frequency band for P300 were high-pass filtered (temporal) at
1Hz cut off frequency using 4th order Butterworth filter. This
was followed by designing of an xDAWN-based spatial filter,
by linearly combining EEG channels. When EEG signals were
projected into this subspace, P300 detection was enhanced. The
resulting signal was epoched using time window that started
after stimulus, averaged and sent to the classifier. In another
related work (Lotte et al., 2009), the epoching of P300 signal was
done by selection of related time window, followed by bandpass
filtering in 1-12Hz range using 4th order Butterworth filter.
Post this; winsorizing for each channel was done by replacing
values within 5% most extreme values by most extreme values
from remaining 95% samples from that window. A subset of
the features was selected using the sequential forward floating
(SFES) feature selection algorithm that ensured the maximization
of performance of the BCI system.

The EEG-BCI for foot orthosis reported in Xu et al. (2014),
employed bandpass filtering (0-3 Hz). The system was based on
the detection of movement-related cortical potentials (MRCP).
The data between 0.5 and before 1.5 s, after the movements, were
extracted as the “signal intervals” while others were extracted as
the “noise intervals.” The measure analysis of variance, ANOVA,
was used for statistical analysis.

The P300-BCI wheelchair incorporated bandpass filtering
between 0.5 and 30Hz and characterized the P300 signal in
the time domain. For each EEG channel, 1-s sample recordings
were extracted after each stimulus onset and filtered using the
moving average technique. The resulting data segments for each
channel selected were concatenated, creating a single-feature
vector (Iturrate et al., 2009a,b).

Common Spatial Patterns

The common spatial pattern (CSP) features are sourced from a
preprocessing technique (filter) used to separate a multivariate
signal into subcomponents that have maximum differences in
variance (Miller-Gerking et al,, 1999). The difference allows

simple signal classification. Generally, the filter can be described
as a spatial coefficient matrix W, as shown in Equation 3:

S=wTE (3)

where S is the filtered signal matrix, E is the original EEG
signal vector. Columns of W denote spatial filters, while W7
are the spatial patterns of EEG signal. In their work (Choi
and Cichocki, 2008) used SMR to control wheelchair. For
pre-processing they employed the second order BSS algorithm
using a modified and improved real-time AMUSE algorithm
that enabled a rapid and reliable estimation of independent
components with automatic ranking (sorting) according to
their increasing frequency contents and/or decreased linear
predictability. The AMUSE algorithm worked as 2 consecutive
PCAs; one applied to the input data and the second applied
to the time-delayed covariance matrix of the output from the
previous stage. For feature extraction, CSP filter was used that
distinguish each data group optimally from the multichannel
EEG signals.

SMR-based humanoid robots used the KMI of left hand,
right hand, and foot as control signals (Chae et al, 2011b,
2012). Sampled EEG signals were spatially filtered with large
Laplacian filter. During the overall BCI protocols, Laplacian
waveforms were subjected to an autoregressive spectral analysis.
For amplitude features extraction, every 250ms observation
segment was analyzed by the autoregressive algorithm, and the
square root of power in 1 Hz wide frequency bands within 4-
36 Hz was calculated.

Translation Layer

After passing through the feature extraction layer, the feature
vector is directed to the translation layer to identify user
intent brain signals, and manipulate the robotic device
via machine understandable commands for interfacing.
Different classification techniques for distinct features are
used. Classification algorithms, calibrated via supervised or
unsupervised learning, during training phase, are able to detect
brain-signal patterns during the testing stage. This essentially
estimates the weighted class, represented by the feature vector
for mapping to the desired state (unique command). A recent
review on most commonly used classification algorithms for
EEG-BCIs has been reported by (Lotte et al., 2018). Some of the
commonly used classification methods in EEG-BCI controllers
for LL assistance are LDA, SVM, GMM, and ANN (Delorme
etal., 2010, 2011).

Linear Discriminant Analysis

One of the most extensive and successfully deployed classification
algorithms, in EEG-BCI for assistive technologies is the linear
discriminant analysis (LDA). The method employs discriminant
hyper-plane(s) in order to separate data representing two or more
classes. Since it has low computational requirements, it is most
suitable for online BCI systems. A feature a can be projected
onto a direction defined by a unit vector &, resulting in a scalar
projection b, given by Equation 4:

b=a & (4)
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The aim of LDA classification is to find a direction @, such
that, when projecting the data onto @ it maximizes the distance
between the means and minimizes the variance of the two classes
(dimensionality reduction). It assumes a normal data distribution
along with an equal covariance matrix for both classes (Lotte
etal., 2007). LDA minimizes the expression given by Equation 5:

2
(my —my)
T ®
o T Sw
where mgy and my are the means and sy and sy are the
standard deviations of the two respective classes, after projecting
the features onto @&. EEG-BCI lower exoskeletons used LDA
for the reduction of data dimensionality (Kilicarslan et al.,
2013). EEG-BCI lower orthosis employed a 12-fold LDA using
voting rule for decision making in selection of speed (Lotte
et al.,, 2009; Duvinage et al., 2012). Dimensionality reduction,
using CPCA and approximate information discriminant analysis
(AIDA), were used in the robotic gait orthosis system (Do et al.,
2011, 2013). The BCI-driven orthosis (Xu et al., 2014) used
the manifold based non-linear dimensionality reduction method,
called locality preserving projection (LPP), along with LDA, to
detect MRCPs. EEG-BCI wheelchairs successfully deployed LDA
(Galén et al., 2008; Iturrate et al., 2009a,b). LDA was successfully
used for translation of EEG signal into movement commands in
humanoids (Chae et al., 2011a,b, 2012).

Support Vector Machine

The goal of SVM classifier is to maximize the distance between
the separating hyper plane and the nearest training point(s) also
termed support vectors. The separating hyper plane in the 2D
feature space is given by the Equation 6:

y:wa+b (6)

where @, x € R?> and b € R!. The hyper plane (also called
the decision border) divides the feature space into two parts.
Classified results depend on which side of the hyper plane the
example is located. In SVM, the distances between a hyper plane
and the nearest examples are called margins.

Though SVM is a linear classifier, it can be made with non-
linear decision boundaries using non-linear kernel functions,
such as Gaussian or radial basis functions (known as RBF).
The non-linear SVM offers a more flexible decision boundary,
resulting in an increase in classification accuracy. The kernel
functions, however, could be computationally more demanding.
EEG-BCI wheelchairs have successfully used linear SVM for
dynamic feature classification (Bell et al, 2008; Choi and
Cichocki, 2008; Ferreira et al,, 2008; Rebsamen et al.,, 2010;
Belluomo et al, 2011). It was also successfully implemented
in EEG-BCI humanoid (Bell et al., 2008) and mobile robots
(Ferreira et al., 2008; Belluomo et al., 2011).

Gaussian Mixture Model

The GMM is an unsupervised classifier. This implies that the
training samples of a classifier are not labeled to show their class.
More precisely, what makes GMM unsupervised is that during

the training of the classifier, estimation is done for the underlying
probability density functions of the observations (Scherrer,
2007). Several EEG-BCI applications utilized the GMM as a
feature classifier, such as lower exoskeletons, wheelchairs and
mobile robots (Galan et al., 2008; Millan et al., 2009; Carlson and
Millan, 2013; Kilicarslan et al., 2013).

Artificial Neural Network

The ANNSs are non-linear classifiers inspired by human’s nervous
system ability to adaptively react to changes in surroundings.
They are commonly used in pattern recognition problems,
due to their post-training capability to recognize sets of
training-data-related patterns. ANNs comprise of assemblies
of artificial neurons that allow the drawing of non-linear
decision boundaries. They can be used in different algorithms
including multilayer perception, Gaussian classifier, learning
vector quantization, RBF neural networks, etc. (Anthony and
Bartlett, 2009). In their proposed model for lower exoskeleton
(Gancet et al,, 2011, 2012), they aim at adopting processing
method as dynamic recurrent neural network (DRNN).

Execution Layer

Once classified, the desired state of user intent is carried to the
execution layer for an error approximation. The approximation
in reference to the present state of the device is used to drive the
actuator for reducing any error. The execution layer of control is
highly device-specific. It could rely on feedforward or feedback
loops (Tucker et al., 2015).

Feedforward control needs some model to predict the system’s
future state, based on the past and present set of inputs and the
device state. Aforementioned control inputs can be effective for
reducing the undesired interaction forces, that could occur due
to the added mass, inertia and friction of the device (Murray
and Goldfarb, 2012). On the contrary feedback controllers do
not require a model of the system, but require an estimate of
the current state. The controller compares current state with the
desired state of the device and modulates the power input to
the device accordingly (Millan et al., 2009; Duvinage et al., 2012;
Noda et al., 2012; Contreras-Vidal and Grossman, 2013; Do et al.,
2013; Kilicarslan et al.,, 2013; Xu et al., 2014; Contreras-Vidal
et al., 2016).

SHARED CONTROL

Shared control is used to couple the user’s intelligence, i.e.,
cognitive signals with precise capabilities of the robotic device
given the context of surroundings, resulting in reduced workload
for the user to continuously deliver commands to drive
the robotic device. Inputs to the shared control module are
sensory readings of the robotic device and output of the BCI
operator (classified signal). The classified signal is combined
with the robot’s precise parameter e.g., velocity to generate
smoother driving output. Several assistive technologies for motor
impairment have successfully employed shared controllers for
navigational assistance to maneuver the assistive devices in
different directions, independently and safely (Galan et al., 2008;
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Millan et al., 2009; Tonin et al., 2010, 2011; Carlson and Millan,
2013).

This refers to the idea of switching between operators, i.e.,
if the user needs no navigational assistance he will be granted
full control over the robotic device; otherwise, sole mental
commands will be used and modified by the system. One key
aspect of shared control is the two-way communication between
the human and the robot. The shared control is beneficial
primarily for navigational directions. In the case of robots with
only three possible steering mental commands such as forward,
left, and right, there is a need of assistance by the device for
fine maneuvering. Secondly, the cognitive commands might not
always be perfect, i.e., could be vague. In the case of errors, an
extra navigational safety is required by the system to interpret the
meaning of the command. In this way the system would be able
to perceive any new environment.

LOWER-LIMB ASSISTIVE-ROBOT
APPLICATIONS IN DIFFERENT
ENVIRONMENTS

The last integral part, of the control framework, is the robotic
device, as observed in Figure 2. In this section, the current state-
of-the-art EEG-based activity mode recognition in a BCI for
control of LL assistive devices is summarized in Table 1.

BCI Exoskeletons

In order to control a LL robotic exoskeleton (NeuroRex),
Contreras-Vidal and Grossman (2013) and Kilicarslan et al.
(2013) decoded neural data for human walking from Presacco
etal. (2011b). They evaluated the degree of cognitive-motor-body
adaptations while using portable robot. Their results proved that
NeuroRex can be regarded as an augmented system of locomotor
therapy (LT) by reviewing its initial validation in a paraplegic
patient having SCI. They also performed comprehensive clinic
assessments for user safety protection.

The MINDWALKER (Gancet et al., 2011, 2012) is another
project where researchers proposed a novel idea of presenting the
SCI patients with intact brain capabilities. The facility of crutch-
less assistive LL exoskeleton is based on brain neural-computer
interface (BNCI) control for balanced walking patterns. It also
evaluated the potential effects of Virtual Reality (VR) based
technology that could support patient/user training for reaching
a high confidence level for controlling the exoskeleton virtually
before the real transition. Other brain controlled exoskeletons are
reported in Noda et al. (2012), Kwak et al. (2015), Sczesny-Kaiser
et al. (2015), and Lee et al. (2017).

BCI Orthosis

EEG-based activity mode recognition for orthotic devices has
been investigated by Duvinage et al. (2012). They proved the
concept of considering user’s intent by combining CPG-based
human gait model and classic P300-BCI for five different
states; three speed variations, a stop state and a non-control
state. Using unnatural P300 command by augmented reality
eyewear (from Vuzix, Rchester, USA) decision was sent to

the Virtual Reality Peripheral Network (VRPN) server to be
exploited while wearing LL orthosis. This was based on the pilot
study carried by Lotte et al. (2009), where a solution to the
constraints, such as deterioration of signals (during ambulation),
was avoided by using slow P300 for control during sitting,
walking and standing. Authors of Castermans et al. (2011a) used
an experimental protocol to limit movement artifacts present in
EEG signals compared to real walk on treadmill. They suggested
that rhythmic EEG activity could be exploited for driving a
user intent-based foot-ankle orthosis built on PCPG algorithm.
Similar investigation was conducted by Raethjen et al. (2008).

In their work, Do et al. (2013) proposed a novel approach
of BCI controlled lower extremity orthotics to restore LL
ambulation for partially and complete SCI subjects suffering from
cardiovascular disease, osteoporosis, metabolic derangements
and pressure ulcers. They developed an EEG prediction model
to operate the BCI online and tested the commercial robotic
gait orthosis system (RoGO) for two states, idling and walking
KMI. Similarly, testing for intuitive and self-paced control of
ambulation was also done with an avatar in a virtual reality
environment (VRE) (Wang et al,, 2012; King et al., 2013). Other
similar investigations are reported in Wang et al. (2010) and Do
etal. (2011).

The BCI driven motorized ankle-foot orthoses, known as
(BCI-MAFO), intended for stroke rehabilitation was presented
in Xu et al. (2014). Their system was able to detect imaginary
dorsiflexion movements (for walking gait) within a short latency,
by analyzing MRCPs. Upon each detection, the MAFO was
triggered to elicit passive dorsiflexion, hence, providing the user
a binary control of robotic orthosis. The MEP was elicited by
transcranial magnetic stimulation (TMS); the results reflected
an effective way to induce cortical plasticity for motor function
rehabilitation.

BCIl Wheelchairs, Humanoids, and Mobile
Robots

Assistive technologies such as wheelchairs controlled via EEG-
BCI have extensively been researched. In their work, Carlson
and Millan (2013) proposed the idea of combining a commercial
wheelchair and BCI with a shared control protocol. The paradigm
was based on KMI of left/right hand, both feet, or in idle
state; each against three distinct tasks as move left/right or
forward by avoiding obstacles. Modifications in the commercial
mid-wheel drive model (by Invacare Corporation) were directly
controlled by a laptop. An interface module, based on remote
joystick, was used between the laptop and wheelchair's CANBUS-
based control network. Wheel-encoders were added for motion
feedback alongside sonar sensors and webcams for environment
feedback to the controller using cheap sensors compared to other
systems. Previous solution required continuous commands from
the user, in order to drive the wheelchair, that ended up in high
user workload (Milldn et al., 2009). Other similar systems were
proposed by Vanacker et al. (2007) and Galan et al. (2008).
Research on the challenges faced during fully control
automated wheelchairs with BCI was done by Rebsamen et al.
(2007, 2010). Their results proved that if synchronous evoked
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P300 signals are used for mobile commands, and oscillatory
rhythms are used for stop command, the system is efficient
and safe enough to drive the real-time wheelchair in possible
directions. They used Yamaha JW-I power wheelchair with two
optical rotary encoders attached to glide-wheels for odometry, a
bar code scanner for global positioning and a proximity sensor
mounted in front of the wheelchair for collision avoidance.
User could reach the destination, by selecting amongst a list
of pre-defined locations. This was primarily for patients with
lost voluntary muscle control, but intact cognitive behavior who
could use a BCI, such as LL amputees.

Other P300-BCI wheelchairs’ research include work done by
Iturrate et al. (2009a,b) where the system relied on synchronous
stimulus-driven protocol. The work done by Palankar et al.
(2009) focused on, completely and partially locked-in patients,
and provided them with an effective model of a 9-DOF
wheelchair-mounted robotic arm (WMRA) system. Pires et al.
(2008) and Lopes et al. (2011) contributed in visual P300
based BCI for steering wheelchair assisted by shared-control.
Kaufmann et al. (2014) validated the feasibility of a BCI based on
tactually-evoked ERP for wheelchair control. Other wheelchairs
controlled via EEG-based BCI include (Choi and Cichocki, 2008;
Tsui et al., 2011; Huang et al., 2012; De Venuto et al., 2017).

In their report (Tonin et al, 2010, 2011) presented a
BMI-controlled telepresence robot for people with motor
impairment that could allow them completion of complex tasks,
in similar time as that consumed by healthy subjects. They
were able to steer Robotino™ (by FESTO), via asynchronous
KMI of left/right hand and feet. The system incorporated
shared control for obstacle avoidance, safety measures and for
interpreting user intentions to reach goal autonomously. A
similar project was earlier presented by Millan et al. (2004)
for mobile robot control in indoor environment via EEG.
In order to recognize environment situations, a multilayer
perception was implemented. Sensory readings were mapped
to 6 classes of environmental states: forward movement, turn
left, follow left wall, right turn, follow right wall and stop.
These environmental states were generated against mental
tasks as relax, KMI of left/right hand, cube rotation imagery,
subtraction and word association. Research for control of
two coordinated mobile robots, via SMR and ERP, that
could be useful for motor impaired people, is done by
Belluomo et al. (2011). Similarly mobile robot (Pioneer 2-DX)
control based on mu ERD/ERS was done by Ferreira et al.
(2008).

As per our knowledge, reflected from the literature, there is
no viable active prosthetic ankle-foot, or prosthetic LL device,
controlled via EEG-BCI for amputees.

PRACTICAL CHALLENGES

In order to design a controller for an assistive-robot device there
is a need of a seamless integration between the BCI operator,
and the execution of required tasks from the output device
with minimal cognitive disruption. However, there are challenges
associated to the real-time implementation of the system, when

dealt with motor impaired population. Some open problems
and challenges associated to wearable systems have recently
been summarized in (Deng et al., 2018; Lazarou et al., 2018;
Semprini et al., 2018). The following sections discuss in detail
practical challenges associated to EEG-BCI wearable and assistive
technologies.

Wearable Lower-Limb Device Challenges

A critical need for reliable EEG-BCI is required that could
interpret user intent and make context-based decisions from
the user’s present internal state. This would allow a direct and
voluntary operation of the wearable LL devices beyond the
user’s affected physical, cognitive or sensory capabilities. With
wearable LL devices it is observed that they did not embed
shared controllers. The system should involve the development
of reliable discrete classifiers, combined with continuous (model-
based) neural interfaces, to predict the subject’s intent without
needing continuous supervisory control, but an “assist-as-
needed” control from the BCI. Wearable LL technologies
should embed features such as, self-calibration, self-analysis
(with backward-forward failure attribution analysis) and error-
correction. This is followed by adopting appropriate behavioral
testing methods for performance evaluations of the system.

Clinical evaluation of wearables needs standardized safety
and tolerability assessment of important factors such as
cardiometabolic, musculoskeletal, skin, and biomechanical risks,
followed by the assessment of cognitive-behavioral discrepancies
that define the user profile. Cardiorespiratory safety is of
principal importance as individuals with stroke and SCI may
have autonomic instability that can alter the pressure of
blood-flow. Their heart rates may not respond correctly to
increased cardiorespiratory demands, depending on the lesion
intensity. The cardiorespiratory demands of supported BCI-
exoskeleton/orthosis usage must primarily be assessed and
carefully monitored also for reasons as: (1) the mean peak
heart fitness levels after SCI vary considerably depending
on the lesion characteristics, but are generally much lower
than normal; and (2) the skeletal muscle after SCI (or any
central-nervous system injury) shifts in a shortfall severity
from slow to a fast jerk molecular composition. Patients
with abnormal gait biomechanics and fitness levels must
show adequate cardiorespiratory tolerance based on subject
perceived exertion scales, and objective monitoring of metabolic
profiles. This metabolic surveillance, along with careful clinical
measures, to assess muscle injury, is inevitable for validating
the cardiorespiratory, metabolic, and muscle safety during
exoskeleton/orthosis use.

During rehabilitation, the wearable robotics may impose
unusual joint kinetics and kinematics that could potentially
injure bone or skin, particularly in stroke or SCI patients
that usually have osteoporosis, unusual spasticity patterns, or
contractures. For safe utilization a standard screening for
assessment of bone health using dual X-ray absorptiometry and
identification of abnormal torque or impulses ahead of time,
could retain from injury. There should be a careful consideration
between engineers, clinicians, and subjects with neurological
disability to rightly apply this new technology.
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Substantial research and understanding of the cortical
representations, for the perception of bipedal locomotion, is vital
for evaluating changes in cortical dynamics when wearing closed-
loop BCI portable devices, and gauging on how these changes are
correlated with gait adaptation. As the BCI wearable devices are
designed to be stable, they have to finish one complete cycle of
gait before stopping, resulting in a slow time-response compared
to the model’s output. This is why in some systems the subject
has to keep standing, as long as he can, after stopping the robot
for continuously recording the model’s output state.

With P300-wearable LL devices, the decision time is
relatively slow for real-time applications such as walking.
The solution could involve implementation of more complex
pipelines that include artifact removal techniques specific to
gait-artifacts, followed by a better management of stimulus
presentation duration. The P300 pipeline does not allow working
asynchronously, which is an important aspect for the patient’s
comfort (can be tiring). Following this, the poor experimental
paradigm that usually includes a screen on a treadmill is not
applicable for street walking; accordingly, an augmented reality
eyewear seems to be indispensable.

Assistive-Robot Challenges

Clinical evaluations revealed that subjects with poor BCI
performance require an extra need for assistance while
maneuvering assistive-robots during complex path plans such as
narrow corridors, despite the arduous BCI training.

The use of adaptive assistance with BCI wheelchairs increases
the task performance of the user; however, the fixed activation
levels of the system do not integrate the users performance.
This is due to the varying fatigue and hormone levels of the
user, due to which the shared controller may not offer constant
level of assistance. Consequently, similar system behavior is
always activated when the activation threshold is reached, even
though an experienced user might still be able to recover from
the disorientation on its own. System performance could be
increased, if a user model is built at runtime, and the level of
experience to determine the thresholds is estimated when the
system behavior is activated.

Various customized filtering approaches have been deployed
by researchers during different states of wheelchair use, for
instance, the regular on and off switching of filter in between
sessions of start and stop. Given in Kwak et al. (2015), when
the filter was switched on or off, the subject was required to
use another mental mode (or at least adapt its existing one)
as the driving system was different when the filtering was
applied. This resulted in a confusion mode which is a common
problem in shared control systems. When the subject’s acquired
strategies are built up using one driving system (i.e., without
filtering) and applied to the other situation (i.e., with filtering),
it ends up in a weak performance, leading to a situation where
the environmental filter is actually working against the user’s
intention. With present BCI-wheelchairs that incorporate shared
controllers, if the activation levels of the system do not integrate
the user’s performance, it could lead to degradation or loss of
function.

Reportedly P300-wheelchairs were too slow to stop in
real-time, after the selection of a sub-goal from menu, the
user has to focus on a validation option, due to which the
wheelchair stops and waits for the next command (followed
by validation) from the user. Consequently this ends up in
more stationary positions than actually moving to specific
destinations.

CONCLUSIONS

In this paper, we have presented a comprehensive review of
the state-of-the-art EEG-BCI controlled wearable and assistive
technologies for users having neuromotor disorder, SCI, stroke,
disarticulation or amputation of residual LL. All reviewed
applications are presented in the form of a generalized BCI
control framework. The control framework is inclusive of the
user, the BCI operator, the shared controller, and the robot device
with the environment. Each element of the control framework
was discussed in detail. The BCI operator is based on sub-
layers, each of which is highlighting the feature extraction,
classification and execution methods respectively, employed
by each application. The reviewed applications comprised
of oscillatory rhythms, event-related and evoked potentials
as input signals. The EEG-BCI based portable and assistive
device applications included exoskeletons, orthosis, wheelchairs,
mobile/navigation robots and humanoids. Key features from
each application were discussed and presented in the Table 1.

Based on the review we concluded that LL tasks, such as knee,
or hip joint movements, have never been explicitly employed as
MI or ME tasks in any BCI experimental protocol. Only foot
or upper limb kinesthetic tasks are deployed. Additionally, it is
observed that the EEG-based activity mode recognition, used
to control wearable LL devices, only comprise of exoskeletons
and orthosis. No viable prosthetic ankle-foot, or prosthetic LL
device, employing EEG signals, for activity mode recognition, is
currently available.

In most applications based on P300, strong output signals
were observed that resulted in accurate command functions. It
was followed by a slow performance pace and a loss in the user
concentration due to stimulus presentation. On the contrary,
applications employing SMR, where no stimulus protocol is
involved, reflected a faster performance speed, followed by a
weaker output signal during asynchronous mode.

Performance of EEG-based BCI, deployed by assistive
technologies, is constrained due to the design of non-invasive
modalities, compared to invasive ones and due to the limited size
of features employed. In the case of complex movements more
sets of parameters are required to execute a seamless output. This
is still one of the challenging problems that require expertise
to develop efficient and robust algorithms to apprehend user’s
motion intention.

In the most of the reviewed applications, there is a lack
of quantitative performance indicators for the algorithms’
evaluations. There is no explicit signal classification, percentage
given. Error measurements between expected and real system
trajectories are missing. There is no indication about the
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measurements of the user-energy consumption, the walking
endurance and the system costs. Finally, an important issue
of carrying tests under realistic conditions, with patients
having LL pathologies, needs special attention, provided the
observations make the comparison of the dynamic behavior of
each application difficult.
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