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Experiencing frustration while driving can harm cognitive processing, result in aggressive
behavior and hence negatively influence driving performance and traffic safety. Being
able to automatically detect frustration would allow adaptive driver assistance and
automation systems to adequately react to a driver’s frustration and mitigate potential
negative consequences. To identify reliable and valid indicators of driver’s frustration,
we conducted two driving simulator experiments. In the first experiment, we aimed to
reveal facial expressions that indicate frustration in continuous video recordings of the
driver’s face taken while driving highly realistic simulator scenarios in which frustrated
or non-frustrated emotional states were experienced. An automated analysis of facial
expressions combined with multivariate logistic regression classification revealed that
frustrated time intervals can be discriminated from non-frustrated ones with accuracy
of 62.0% (mean over 30 participants). A further analysis of the facial expressions
revealed that frustrated drivers tend to activate muscles in the mouth region (chin
raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation
with almost whole-head functional near-infrared spectroscopy (fNIRS) while participants
experienced frustrating and non-frustrating driving simulator scenarios. Multivariate
logistic regression applied to the fNIRS measurements allowed us to discriminate
between frustrated and non-frustrated driving intervals with higher accuracy of 78.1%
(mean over 12 participants). Frustrated driving intervals were indicated by increased
activation in the inferior frontal, putative premotor and occipito-temporal cortices.
Our results show that facial and cortical markers of frustration can be informative
for time resolved driver state identification in complex realistic driving situations. The
markers derived here can potentially be used as an input for future adaptive driver
assistance and automation systems that detect driver frustration and adaptively react
to mitigate it.
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INTRODUCTION

Imagine driving through a city during rush hour on the way to
an important meeting. You started a little late and realize that
with the dense traffic conditions, it will be hard to arrive at the
meeting in time. You are becoming increasingly annoyed by the
driver in front of you who is driving provocatively slowly and
causes unnecessary extra stops at traffic lights. In addition, the
myriads of construction sites along your way further worsen the
situation. After yet another red light, you are really frustrated
and it appears unbearable to you to wait behind the bus right
after the light turned green. You accelerate to overtake the bus
but fail to see the pedestrian crossing the street and heading
to the bus.

The above story is one example of how frustration can
affect driving in a negative way and most readers have likely
experienced one or the other situation. Frustration can be seen
as an aversive emotional state resulting when goal-directed
behavior is blocked (Lazarus, 1991) that is associated with
negative valence and slightly elevated arousal (Russell, 1980;
Scherer, 2005). As driving is a goal-directed behavior (e.g.,
reaching the destination in time in the above example), blocking
events, as described above, can induce frustration and eventually
lead to aggressive (driving) behavior (Ekman and Friesen, 2003;
Lee, 2010; Jeon, 2015). In addition, frustration can have negative
effects on cognitive processes important for driving such as
attention, judgment and decision making (Jeon, 2015). Jeon
(2012) suggested that negative emotions may have a worse
influence on driving performance than distraction or secondary
tasks, as drivers normally are aware of the secondary task
and can pro-actively compensate for it. Conversely, negative
emotions may degrade driving performance without attempts for
compensation (Jeon, 2012). Taken together, reducing frustration
during driving is an important step towards improving road
safety (e.g., zero-vision of the European Commission, as
expressed in the White Paper on Transportation, European
Commission, 2011).

In order to reduce frustration and its potential negative
consequences in future intelligent driver assistance systems
by means of emotion-aware systems (e.g., Picard and Klein,
2002), it is necessary to automatically assess the drivers’ current
level of frustration. One potential indicator of emotions is the
momentary facial expression. Humans use facial expressions
to communicate their emotions and these facial expressions
appear to be relatively idiosyncratic to specific emotions (Ekman
and Friesen, 2003; Erickson and Schulkin, 2003) and hence
may discriminate between different emotions. Moreover, brain
activations are the physiological basis of emotions, appraisal
processes as well as subjective experiences (Scherer, 2005)
and may allow to objectively discriminate frustrated from
non-frustrated subjective states. Therefore, we will investigate
whether facial expressions and brain activation patterns are
indicative for frustration while driving.

Humans communicate emotions by changing the
configuration of the activation of their facial muscles which
is fundamental to understand each other in social interaction
(Erickson and Schulkin, 2003). Following from this, the idea is

to equip machines like vehicles with the same capability to read
facial expressions in order to gain the ability to interpret the
driver’s current emotional state and eventually become empathic
(e.g., Bruce, 1992; Picard and Klein, 2002). This vision becomes
realistic with the recent progress in the fields of image processing
and machine learning making it possible to automatically track
changes in facial activity from video recordings of the face
(Bartlett et al., 2008; Hamm et al., 2011; Gao et al., 2014). Still, to
the best of our knowledge, so far, only few studies investigated
the facial features accompanying frustration and whether these
can be used to discriminate frustration from other emotional
states. For example, a study by Malta et al. (2011) used facial
features to detect frustration in real world situations but did
not report the discriminative features. Studies from human-
computer interaction (HCI) linked frustration to increased facial
muscle movement in the eye brow and mouth area (D’Mello
et al., 2005; Grafsgaard et al., 2013). In addition, a recent study
investigating facial activity of frustrated drivers found that
muscles in the mouth region (e.g., tightening and pressing of
lips) were more activated when participants were frustrated
compared to a neutral affective state (Ihme et al., in press).
However, the authors employed a manual technique for coding
the facial muscle behavior and did not evaluate the potential of
automatic frustration recognition. Based on these earlier results,
we reasoned that automated recognition of frustration is possible
by combining lip, mouth and eye brow movements.

Still, the goal of this work is not only to evaluate whether
it is possible to discriminate frustrated from non-frustrated
drivers based on video recordings from the face, but also to
describe the patterns of facial muscle configuration related to
frustration. For this, we used a multistep approach. First of
all, we used a tool to extract the activity of facial action units
(AUs) frame by frame from video recordings of the face (we
used a commercial tool based on Bartlett et al., 2008). AUs are
concepts from the Facial Action Coding System (FACS, Ekman
et al., 2002) that can be regarded as the atomic units of facial
behavior related to activation of facial muscles. The frame-wise
activations of the facial AUs were then used as an input for
time-resolved prediction of participants’ frustration using a
machine learning approach which served to evaluate whether an
automated discrimination of frustration is possible. In a second
step, we aimed to identify the AU activations patterns that are
indicative for frustration. For this, we clustered the frame-wise
AU data in order to derive frequently occurring facial muscle
configurations. Because facial expressions are described as
momentary configurations of AU activations (Ekman, 1993), the
resulting cluster centroids can be interpreted as representations
of the frequently occurring facial expressions. The AU activations
in the cluster centroids are then used to describe which AUs
are activated and compared with previous results on facial
expressions of frustration (D’Mello et al., 2005; Grafsgaard et al.,
2013; Ihme et al., in press). In this way, we can determine which
facial expressions are shown by frustrated drivers and whether
these are in line with our expectation that facial expressions of
frustration are related to lip, mouth and eye brow movements.

Only few studies investigated neural correlates of frustration
despite it being a common emotional state. A functional
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magnetic resonance imaging (fMRI) study by Siegrist et al. (2005)
investigated chronic social reward frustration experienced in a
mental calculation task and revealed neural correlates of reward
frustration primarily in the medial prefrontal, anterior cingulate
and the dorsolateral prefrontal cortex (DLPFC). Bierzynska et al.
(2016) induced frustration in a somatosensory discrimination
task. The fMRI results revealed increased activation in the
striatum, cingulate cortex, insula, middle frontal gyrus and
precuneus with increasing frustration. Another fMRI study
from Yu et al. (2014) using speeded reaction times found
that experienced frustration correlated with brain activation in
PFC and in deep brain structures like the amygdala, and the
midbrain periaqueductal gray (PAG). These authors suggested
that experienced frustration can serve as an energizing function
translating unfulfilled motivation into aggressive-like surges
via a cortical, amygdala and PAG network (Yu et al., 2014).
Interestingly, other fMRI studies suggested a role of the anterior
insula in the subjective experience of feeling frustrated (Abler
et al., 2005; Brass and Haggard, 2007). Together, these fMRI
studies provided detailed anatomical information about potential
neural correlates of frustration, but mostly employed relatively
simple experimental paradigms to induce frustration. Thus, in
our study, we considered it desirable to employ a brain imaging
technology that is better compatible with real-world applications
in vehicles.

Functional near-infrared spectroscopy (fNIRS) is a
non-invasive optical imaging technique that uses near-infrared
light (600–900 nm) to measure cerebral blood flow changes
when neural activity is elicited (Jöbsis, 1977; Villringer et al.,
1993) based on neurovascular coupling similar to fMRI. fNIRS
can be used to measure brain activation in realistic driving
simulations and is relatively robust to movement artifacts
(Unni et al., 2017). However, fNIRS measurements focus on
cortical activation and their spatial resolution (around 3 cm)
is lower than fMRI. Perlman et al. (2014) recorded fNIRS data
from prefrontal cortical areas in 3–5-year-old children while
they played a computer game where the expected prize was
sometimes stolen by an animated dog to induce frustration. The
results suggest a role for the lateral PFC in emotion regulation
during frustration. Hirshfield et al. (2014) induced frustration by
slowing down the internet speed while participants performed
the task of shopping online for the least expensive model of
a specified product given limited time constraints. The fNIRS
results indicate increased activation in the DLPFC and the
middle temporal gyrus when frustrated. A more recent study
by Grabell et al. (2018) investigated the association between the
prefrontal activation from fNIRS measurements and irritability
scores in children. These authors reported an inverted U-shaped
function between the children’s self-ratings of emotion during
frustration and lateral prefrontal activation such that children
who reported mild distress showed greater activation than
peers who reported no or high distress highlighting the role of
the lateral prefrontal areas and their involvement in emotion
regulation. In sum, fNIRS and fMRI neuroimaging studies
revealed that activation in prefrontal cortices plus several other
brain areas, potentially specific to the exact task demands,
are modulated by frustration. Based on this, in our study, we

hypothesize that the lateral prefrontal areas might be indicative
of frustration while driving.

To the best of our knowledge, no study exists that investigated
the brain activation of drivers experiencing frustration and
that uses brain activity measured with fNIRS for automated
recognition of frustration. In addition, we are not aware of
any study that aimed at continuous, time resolved prediction
of driver frustration from facial expression or brain activation
measurements. Therefore, the goals of this study were to evaluate
whether it is possible to detect spontaneously experienced
frustration of drivers based on: (1) video recordings of the
face; and (2) brain activation as measured with fNIRS. In
addition, we aimed to reveal facial muscle features and cortical
brain activation patterns linked to frustration. To this end,
we conducted two driving simulator experiments, in which
frustration was induced through a combination of time pressure
and blocking a goal, while videotaping the faces of the
participants (Experiment 1) and recording brain activation
using fNIRS (Experiment 2). We employed a multivariate
data-driven approach to evaluate whether a discrimination of
frustration from a non-frustrated state is possible using the data
at hand. This analysis provided us with an estimate for the
discriminability of the two induced affective states but could not
tell about the underlying patterns of facial and brain activity that
are related to frustration. Therefore, additionally, we investigated
the underlying facial expressions and brain activity patterns in a
second step and report the results thereof.

MATERIALS AND METHODS

Experiment 1
Participants
Thirty-one volunteers participated in Experiment 1. The video
recording of one participant failed due to a technical problem.
Consequently, the data of 30 participants (twelve females, age
mean [M] = 26.2 years, standard deviation [SD] = 3.5 years)
were included in the analysis. All participants held a valid
driver’s license, gave written informed consent prior to the
experiment and received a financial compensation of 21 e
for their participation. The experiments of this study were
carried out in accordance with the recommendations of the
guidelines of the German Aerospace Center and approved by
the ethics committee of the Carl von Ossietzky University,
Oldenburg, Germany. All subjects gave written informed consent
in accordance with the Declaration of Helsinki.

Experimental Set-Up
The study was accomplished in a driving simulator consisting of
a 46-inch screen (NECMultiSync LCD4610) with a resolution of
1366× 768 pixels, a G27 Racing gaming steering wheel (Logitech,
Newark, CA, USA) including throttle and brake pedal and a
gaming racing seat. Via the steering wheel and the pedals, the
participants could control a virtual car in a driving simulation
(Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany). Sounds of the driving simulation were presented
via loudspeakers (Logitech Surround Sound Speakers Z506).
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During the experiment, the participant’s face was filmed using a
standard IP-Camera (ABUS,Wetter, Germany) with a resolution
of 1280× 720 pixels at a sampling rate of 10 frames per second.

Experimental Design and Cover Story
Frustration is experienced when goal-directed behavior is
blocked (Lazarus, 1991) and can be intensified by time pressure
(e.g., Rendon-Velez et al., 2016). Therefore, a cover story was
created that told the participants to imagine being a driver at
a parcel delivery service and having to deliver a parcel to a
client (goal-directed behavior) within 6 min (time pressure).
Participants were told that they received 15e reimbursement for
the experiment plus a bonus of 2 e for every parcel delivered
within the given time. The drives took place in a simulated urban
environment with two lanes (one per direction). Participants
were told to stick to the traffic rules and to not exceed the speed
limit of 50 km/h (∼31 mph, which is the standard speed limit in
urban areas in Germany). The experiment started with a short
training with moderate traffic which lasted about 10 min. All
participants drove the drives of all conditions (within-subjects
block design), which are specified in the following sections.

Frust Condition
Three drives were used to induce frustration. In these, the
participants had to deliver the parcel in 6 min, but their driving
flow was blocked by events on the street. It was tried to distribute
the occurrence of the frustrating events roughly equal over time
in the scenario. However, the exact timing differed and also
depended on participants’ speed. In addition, the nature of the
events was varied (e.g., red lights, construction sites, slow lead
cars that could not be overtaken, or a pedestrian crossing the
street slowly) with the goal to create a scenario feeling as natural
as possible to the participant. In two Frust drives, the participants
were told after 6 min that the parcel could not be delivered in
time, they will win no extra money and they should stop the car
(of these two drives, the first drive had six frustrating events and
the second one had eight). In the third drive participants were
told after 5:40 min that they successfully delivered the parcel and
won 2 e extra (this drive had eight frustrating events).

NoFrust Condition
Three further drives served as control condition. The participants
had to deliver the parcel in 6 min with only little or moderate
traffic on the ego lane (i.e., the lane they drove on), so that driving
at the maximally allowed speed was almost always possible. In
two of the drives, the participants were told after a fixed amount
of time below 6 min (5:41 and 5:36 min) that they successfully
delivered the parcel and won 2 e extra. The third non-frustrated
drive ended after 6 min with a message that the time is over and
no extra money was won.

The design of the frustrating drives was similar to the
experimental manipulations of earlier studies on driver
frustration (Lee, 2010; Lee and LaVoie, 2014). The participants
drove the experimental conditions in random order and
were not informed whether the current drive was a Frust
or a NoFrust drive, i.e., they only experienced more or
less frequently blocking events during a given drive. In
order to reduce carry-over effects between the experimental

drives, the participants had to drive for about 2 min
through the same urban setting without any concurrent
traffic between two experimental drives. Between the drives,
there were breaks, in which participants had to fill in the
questionnaires mentioned below and could take some time to
relax.

Subjective Rating
As a manipulation check, the participants rated their subjectively
experienced emotion using the SAM (Bradley and Lang, 1994)
after each drive. In addition, they filled in the NASA-Task Load
Index (NASA-TLX) after each Frust andNoFrust drive (Hart and
Staveland, 1988). Here, we specifically focused on the frustration
scale. One participant did not fill in the NASA-TLX, so only
29 questionnaires could be analyzed for that scale.

Data Analyses
Subjective Rating
The subjective ratings for the three used questionnaire items were
compared to each by means of analysis of variance (ANOVA).
Partial eta-squared (η2p) was calculated for each test as an
indicator for effect size.

Pre-processing of Video Data
The software FACET (Imotions, Copenhagen, Denmark), which
is based on the CERT toolbox (Bartlett et al., 2008), was used
to extract information regarding the frame-wise AU activity.
FACET makes use of the FACS (Ekman et al., 2002) and can
determine the activation of 18 AUs as well as head motion
(pitch, roll and yaw in ◦). An overview of the AUs recorded by
FACET can be found in Table 1. The activation of AUs is coded
as evidence, which indicates the likelihood of activation of the
respective AU. For instance, an evidence value of 0 means that
the software is uncertain about whether or not the respective
AU is activated, a positive evidence value refers to an increase
in certainty and a negative value to decreasing certainty. In
order to reduce inter-individual difference in the evidence value,
we subtracted the mean evidence value of the first minute of
each drive per AU from the remaining values. In addition,
a motion correction was accomplished as FACET operates
optimally if the participants’ face is located frontally to the
camera. Therefore, we analyzed only the frames with a pitch
value between−10◦ to 20◦ as well as roll and yaw values between
−10◦ and +10◦. About 10.6% of the data were removed in this
step.

Multivariate Cross-Validated Prediction of Frust and
NoFrust Drives Based on AU Data
We used a multivariate logistic ridge regression (Hastie et al.,
2009) decodingmodel implemented in the Glmnet toolbox (Qian
et al., 2013) for the prediction of Frust and NoFrust drives
from the z-scored AU activation (i.e., time resolved evidence).
A 10-fold cross-validation approach was used to validate the
model. For this, the time series data were split into 10 intervals.
This approach avoids overfitting of the data to the model and
provides an estimate of how well a decoding approach would
predict new data in an online analysis (Reichert et al., 2014).
In the logistic ridge regression, the λ parameter (also as hyper-
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TABLE 1 | Overview of recorded action units (AUs).

AU Description

1 Inner brow raiser
2 Outer brow raiser
4 Brow lowerer
5 Upper lid raiser
6 Cheek raiser
7 Lid tightener
9 Nose wrinkler
10 Upper lip raiser
12 Lip corner puller
14 Dimpler
15 Lip corner depressor
17 Chin raiser
18 Lip puckerer
20 Lip stretcher
23 Lip tightener
24 Lip pressor
25 Lips part
28 Lip suck

The list and the descriptions of the AUs have been taken from the website of
Imotions (Farnsworth, 2016).

parameter) determines the overall intensity of regularization. We
used a standard nested cross-validation procedure to train the
model and test generalization performance. The λ parameter was
optimized in an inner 10-fold cross-validation loop implemented
in the training. The outer cross-validation loop tested the
generalization of the regression model with the optimized λ on
the held-out test dataset. The input features that went into the
decoding model were the pre-processed AU activations averaged
across 10 data frames (= 1 s, no overlapping windows) to
reduce the amount of data and increase the signal to noise ratio
without increasing the model complexity. The model weights
these input features and provides an output which is between
0 and 1. This output value indicates the likelihood for the test
data classified as either the Frust class or the NoFrust class.
An output ≥0.5 is considered to be classified as Frust drive
whereas an output<0.5 is considered to be classified as a NoFrust
drive.

The accuracy of the classification model of the individual
participants was calculated as follows:

Model Accuracy (%) =

TPRFrust + TPRNoFrust

TPRFrust + TPRNoFrust + FPRFrust + FPRNoFrust
∗ 100 (1)

In Equation 1, the TPR is the true positive rate and FPR is the
false positive rate of the two conditions as denoted by Frust or
noFrust. The model accuracy by itself is not a sufficient measure
for evaluating the robustness of the model. Other performance
measures like recall and precision are important indicators
to evaluate whether the model exploits group information
contained in the data and are insensitive to group size differences
(Rieger et al., 2008). Recall is the proportion of trials which
belong to a particular empirical class (Frust or NoFrust) and
were assigned to the same class by the model. Precision provides
information about how precise the model is in assigning the
respective class (Frust or NoFrust). In this study, we report
the F1-score, which is the harmonic average of precision and

recall. An F1-score of 1 indicates perfect precision and recall
(Shalev-Shwartz and Ben-David, 2016). The F1-score for the
Frust condition was calculated as follows:

F1-score =
2 ∗ TPRFrust

2 ∗ TPRFrust + FPRFrust + FPRNoFrust
(2)

Characterization of Facial Activation Patterns of
Frustration: Clustering
A clustering approach was employed to identify patterns of
co-activated AUs frequently occurring in the Frust and in
the noFrust drives and to compare these between the two
conditions. These patterns of co-activated AUs can be seen
as the most frequently shown facial expressions during the
driving scenarios. For the clustering, we separated the AU data
in two sets: a training data set that contained two randomly
selected drives from the Frust condition per participant and a
test set including the remaining Frust drives and one randomly
selected noFrust drive. For the cluster analysis, we used the
data of all participants to ensure sufficient sample size. A
recent work that simulated the effect of sample size on the
quality of the cluster solution recommends using at least 70
times the number of variables considered (Dolcinar et al.,
2014). The number of sample points in our training data
set was roughly 14 times higher than this recommendation
(30 participants × 2 drives × 5 min × 60 s = 18,000 data
points>70× 18 AUs = 1,260). K-means clustering with k = 5 was
conducted on the training set. A value of k = 5 was chosen after
visually inspecting a random selection of video frames of the
face recordings. It seemed as if five different expressions were
shown predominantly. We applied the resulting cluster centroids
to cluster the data from the test set (i.e., each data point was
assigned to the cluster with the smallest distance to the centroid).
From this, we could determine the percentage of data points per
condition assigned to each of the five clusters (per participant)
and compare the conditions by means of paired Wilcoxon tests.
In addition, we characterized the resulting clusters by their
patterns of activated AUs in the centroids. An AU was assumed
to be activated if the evidence in the centroid was ≥0.25. This
criterion was adopted from Grafsgaard et al. (2013), who used
the same threshold to select activated AUs in their work. We
report the five resulting clusters with the AUs that characterize
these as well as the results of the Wilcoxon test. Moreover, we
investigated the relationship between the subjectively reported
frustration levels (by means of the NASA-TLX frustration item)
and the probability of the clusters in the test set. For this, we
correlated both values with each other using Kendall’s Tau (as
the data were not normally distributed). In order to account
for the variability between subjects, we additionally performed
a linear mixed effects analysis of the relationship between the
probability of Cluster 4 and the subjective frustration rating
using the combined data of training and test set. With this,
we wanted to estimate whether we can predict the probability
of showing Cluster 4 using the subjective frustration rating as
fixed effect. As random effects we had intercepts for participants
and by-participant random slopes for the effect of the subjective
rating. P-values were obtained by likelihood ratio tests (χ2)
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of the full models with the effect in question against the
models without the effect in question (see Winter, 2013). The
models were calculated using the R package lme4 (Bates et al.,
2015).

Experiment 2
Participants
Sixteen male volunteers aged between 19 and 32 (M = 25.3,
SD = 3.5) years participated in Experiment 2. All participants
possessed a valid German driving license and provided written
informed consent to participate prior to the experiment.
They received a financial compensation of 30 e for the
participation in the experiment. The data from one participant
was excluded because the participant suffered from simulation
sickness during the course of the experiment. Data from
three other participants were excluded due to a large number
(>50%) of noisy channels in the fNIRS recordings. The
mean age of the remaining participants was 25.2 (SD = 3.8)
years. This study was carried out in accordance with the
recommendations of the guidelines of the German Aerospace
Center and approved by the ethics committee of the Carl von
Ossietzky University, Oldenburg, Germany. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Experimental Set-Up
The experiment was accomplished in the virtual reality (VR) lab
with 360◦ full view at the German Aerospace Center (Fischer
et al., 2014). Participants sat in a realistic vehicle mock-up
and controlled the mock-up car in the driving simulation
(Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany) via a standard interface with throttle, brake pedal,
steering wheel and indicators.

Experimental Design and Cover Story
The same parcel delivery service cover story as in Experiment 1
was used. The only difference was that the participants received
a slightly higher basic reimbursement of 18 e (instead of
15 e in Experiment 1) due to the longer overall duration
of the experiment. The bonus of 2 e for every parcel
delivered within the given time was the same as in Experiment
1. In the end, all participants were paid 30 e for their
participation, irrespective of their success. The experiment
was structured as a block design and began with a short
training of roughly 10 min with moderate traffic. Thereafter,
we recorded the baseline data for 2 min following which
the participants drove the Frust and noFrust drives (six per
condition) in alternation on the same urban track as in
Experiment 1. The order of each type of drives was randomized.
The experimental conditions are specified in the following
sections.

Frust Condition
In the Frust drives, the participants had to deliver the parcels
within a maximum time of 6 min, but their driving was
blocked by events on the street (similar to Experiment 1,
but with a bit less complexity, e.g., no pedestrians involved).

The blocking events had an average time distance of 20 s
(i.e., after 20 s of driving, an obstacle occurred). There were
seven blocking events per drive. However, if the participant
drove very slowly, it could be that less blocking events were
passed. In case they reached the goal within 6 min, a message
was presented telling them that they received 2 e. If they did
not reach the goal after 6 min, they were informed that they
did not succeed this time. Both messages ended the drives
accordingly.

NoFrust Condition
The noFrust drives served as control condition. Participants were
told that they had to pick up the parcels from headquarters.
There was moderate traffic on the ego lane, so that driving at
the maximally allowed speed was almost always possible. The
drives took 5min. Between the drives, there were breaks, in which
participants had to fill in the questionnaires mentioned below
and could take some time to relax.

Subjective Rating
As a manipulation check, the participants rated their subjectively
experienced emotion using the SAM (Bradley and Lang, 1994)
after each drive.

fNIRS Set-Up
Functional near infrared spectroscopy is a non-invasive optical
imaging technique that uses near-infrared light (600–900 nm)
to measure hemodynamic responses in the brain (Jöbsis,
1977; Villringer et al., 1993). This is done by measuring the
absorption changes in the near-infrared light that reflects the
local concentration changes of oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) in the sub-cortical brain areas as
correlates of functional brain activity. We recorded fNIRS data
from the frontal, parietal and temporo-occipital cortices using
two NIRScout systems (NIRx Medical Technologies GmbH,
Berlin, Germany) in tandem mode resulting in 32 detectors
and emitters at two wavelengths (850 and 760 nm). In total,
we had 80 channels (combinations of sources and detectors)
each for HbO and HbR as shown in Figure 1. The distances
for the channels ranged between 2 cm and 4 cm (M = 3.25,
SD = 0.45). The shortest channels were the source-detector
combinations S5-D11 and S9-D16 in the bilateral prefrontal
areas whereas the longest channels were S25-D19 in the parietal
midline and S28-D29 and S30-D30 in the bilateral occipital areas
(see Figure 1). To ensure that the fNIRS cap was placed in a
reliable way across all participants, we checked if the position of
the optode holder on the fNIRS cap for the anatomical location
Cz on the midline sagittal plane of the skull is equidistant
to the nasion and the inion and equidistant to the ears. The
sampling frequency of the NIRS tandem system was almost
2 Hz.

Data Analyses
Subjective Rating
The subjective ratings for the two questionnaire items were
compared to each by means of ANOVA. Partial eta-squared
effect sizes (η2p) were calculated for each test.
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FIGURE 1 | Probe placement of functional near-infrared spectroscopy (fNIRS)
channels. Topologic layout of emitters (red), detectors (green) and fNIRS
channels (purple) with coverage over the frontal, parietal and
temporo-occipital cortices superimposed on a standard 10-20 EEG layout.
The anatomical markers are highlighted by red, green, yellow and black
circles. The blue circle marks the frontal central midline (FCz) sagittal plane.
Figure reproduced from NIRStar software with permission from NIRx Medical
Technologies, LLC, Minneapolis, MN, USA.

fNIRS Data Pre-processing
The raw data from fNIRS measurements record the influence
of not only cortical brain activity but also other systemic
physiological artifacts (cardiac artifacts, respiration rate, Mayer
waves) and movement artifacts causing the signal to be noisy.
To reduce the influence of these artifacts, the raw data was
pre-processed using the nirsLAB analysis package (Xu et al.,
2014). We first computed the coefficient of variation (CV)
which is a measure for the signal-to-noise ratio (SNR) from
the unfiltered raw data using the mean and the standard
deviation of each NIRS channel over the entire duration
of the experiment (Schmitz et al., 2005; Schneider et al.,
2011). All channels with a CV greater than 20% were
excluded from further analysis. Additionally, we performed a
visual inspection and deleted channels which were excessively
noisy with various spikes. On average, 64 channels each for
HbO and HbR per participant and were included in the
analysis (SD = 7.46). We then applied the modified Beer-
Lambert’s law to convert the data from voltage (µV) to
relative concentration change (mmol/l; Sassaroli and Fantini,
2004).

To reduce effects of movement artifacts and systemic
physiology, we used an autoregressive model of order n (AR(n);
nmax = 30) based on autoregressive iteratively reweighted least
squares developed by Barker et al. (2013) implemented as a

function in the nirsLAB 2017.6 Toolbox1. The algorithm fit the
residuals of each individual channel to an AR(n) model, where n
is the order that minimized the Bayesian information criterion.
With the resulting autoregressive coefficients, a pre-whitening
filter was generated that was applied to the fNIRS data. The
reason for that is the fact that fNIRS time series data are
typically characterized by large outliers caused by movement
artifacts and serially correlated noise from the physiological
artifacts and the temporal correlation of the time samples.
This generally leads to incorrect estimation of regressor weights
when performing univariate regression analyses and results
in overestimation while computing corresponding statistical
values, causing an increase in false positives and false negatives
(Tachtsidis and Scholkmann, 2016). Pre-whitening can handle
such noise correlated time series data where an autoregressive
model takes into account the correlation between the current
time sample and its neighboring samples and models the
temporal correlations.

Multivariate Cross-Validated Prediction of Frust and
NoFrust Drives From fNIRS Data
In line with Experiment 1, we used the multivariate logistic ridge
regression (Hastie et al., 2009) decoding model implemented
in the Glmnet toolbox (Qian et al., 2013) for the prediction of
Frust and NoFrust drives from sample-by-sample fNIRS brain
activation data. The input features that went into the decoding
model were the pre-processed HbO and HbR values which were
z-scored for the particular segments of Frust and noFrust drives.
Both HbO and HbR features were used simultaneously. The
model weighted these input features and provided an output
between 0 and 1. This output value indicates the likelihood for
the test data classified as either the Frust class or the NoFrust
class. Like in Experiment 1, accuracy and F1 score are reported
to estimate the model prediction.

Characterization of Brain Areas Predictive to Frustration:
Univariate Regression Analysis
In order to characterize the pattern of brain areas involved
during frustrating drives, we performed univariate regression
analyses on a single-subject level separately for each fNIRS
channel using the generalized linear model (GLM) analysis
module implemented in the nirsLAB Toolbox. Our design
matrix consisted of two regressors that corresponded to the
entire blocks of Frust and noFrust drives. The autoregressive
model AR(n) from Barker et al. (2013) that generated the
pre-whitening filter and was applied to the fNIRS time-series
data was also applied to the design matrix. Regression
co-efficients were estimated by convolving a boxcar function
weighted corresponding to the entire blocks of Frust and
noFrust drives with a canonical hemodynamic response function
(HRF) implemented in the nirsLAB toolbox (Xu et al., 2014)
which composed of one gamma function for HbO. The time
parameters at which the response reached the peak and
undershoot were 6 s and 16 s, respectively. The canonical
HRF was reversed for HbR in order to match the effect-
sizes for HbO and HbR brain maps for a particular contrast

1https://www.nitrc.org/projects/fnirs_downstate
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in the same direction since the HbO and HbR signals are
correlated negatively. This setting is applied by default in
nirsLAB while estimating the GLM co-efficients for HbR.
Channel-wise beta values were used to compute t-statistic for
each channel separately for the contrast (difference: Frust-
noFrust). Finally, we performed a group level analysis for
generalization of the brain areas predictive to frustration while
driving. The beta values computed from GLM for each channel
and each participant in the individual analysis was used for the
group-level analyses. The group-level analyses represented the
standard deviation for the beta values for each channel across
participants.

RESULTS

Experiment 1
Subjective Rating
The participants rated the drives from the Frust condition as
significantly more arousing, more negative and more frustrating
than the drives from the NoFrust condition. The results of
the subjective rating are presented in Table 2. The frustration
rating showed a strong negative correlation with the valence
rating (r = -0.61, p < 0.001) and a marginal significant positive
correlation with the arousal rating (r = 0.24, p = 0.06). Valence
and arousal were negatively correlated (r =−0.46, p< 0.001).

Multivariate Prediction of Frust and NoFrust Drives
Based on AU Data
The average classification accuracy for the Frust vs. the noFrust
condition using the multivariate approach based on the AU
activations was 62.0% (SD = 9.6%) and the mean F1 score
was 0.617 (SD = 0.097). The individual classification results for
each participant from the 10-fold cross-validation are presented
in Table 3. Figure 2 depicts the results from the multivariate
logistic ridge regression model from the participant with the
highest classification accuracy of 77.8% (participant 11). The
results presented in this figure show the model output for all
test data. In Figure 2, each orange sample point is the output
of the decoding model for the AU test data seen from the Frust
drives. Similarly, each green sample point is the output of the
model for the AU test data as seen from the noFrust drives.
We present our results in the form of TPR (i.e., data from
a particular drive is classified as the correct drive) and FPR
(i.e., data from a particular drive is classified as the opposite
drive). Here, one can see that a TPR of 78.5% and 77.2% and a

FPR of 21.5% and 22.8% were achieved for the Frust and NoFrust
drives respectively. For the example participant, an F1-score of
0.78 was achieved.

Characterization of Facial Activation Patterns of
Frustration: Clustering Approach
The resulting cluster centroids from the k-means clustering,
which can be seen as the most frequently shown facial
expressions during the drives, are presented in Figure 3.
When applying the cluster centroids to the (unseen) test set,
Cluster 4 and Cluster 5 displayed a significantly different
relative frequency of occurrence (i.e., percentage of video frames
attributed to this cluster centroid) between the two conditions.
Specifically, Cluster 4 was found more often in the Frust
condition (M = 27.3%, SD = 14.18%) compared to the noFrust
condition (M = 10.9%, SD = 12.1%, Z = 3.95, p < 0.001) and
Cluster 5 more often in the noFrust (M = 33.7%, SD = 19.9%)
than the Frust condition (M = 22.7%, SD = 10.9%, Z = −1.87,
p < 0.05). No significant differences were observed for the
three other clusters (see Table 4). Cluster 4 is characterized
by above threshold activity (i.e., evidence >0.25) in AU9 (nose
wrinkler), AU17 (chin raiser), AU18 (lip pucker) and AU24 (lip
pressor). In comparison, Cluster 5 accounts for no AU with
above threshold evidence. The other clusters are described by
different patterns of AU activity: Cluster 1 shows little activity
in all AUs (only AU12 [lip corner puller] has evidence >0.25),
Cluster 2 the highest activation in AU6 (cheek raiser), AU9 (nose
wrinkler), AU10 (upper lip raiser) as well as AU12 (lip corner
puller) and Cluster 3 mostly in AU4 (brow lowerer), AU9 (nose
wrinkler) and AU28 (lip suck; see Table 5 for an overview and
a possible interpretation). Interestingly, the correlation analysis
revealed that the frequency of occurrence of the cluster that
was shown more often in the Frust condition (Cluster 4)
also positively correlated with the subjective frustration rating
(τ = 0.27, p < 0.05, see Figure 4). No other cluster showed
a significant relationship with the subjectively experienced
frustration (Cluster 1: τ = 0.13, p = 0.15, χ2

(1) = 3.57, p = 0.06;
Cluster 2: τ = 0.02, p = 0.85, χ2

(1) = 0.75, p = 0.38; Cluster 3:
τ = −0.03, p = 0.75, χ2

(1) = 0.03, p = 0.86; Cluster 5: τ = 0,
p = 0.98, χ2

(1) = 0.03, p = 0.87). The positive relationship
between the frustration rating and probability of Cluster 4 was
confirmed by results of the linear mixed effects analysis including
intercepts for participants and by-participant random slopes as
random effects, which revealed a significant relationship between
the subjective frustration rating and Cluster 4 probability
(χ2
(1) = 6.74, p < 0.01). The analysis of the fixed effect rating

TABLE 2 | Means (M), standard deviations (SD) and results of the analysis of variance (ANOVA) for the subjective ratings (self-assessment manikin [SAM] valence, SAM
arousal and NASA Task Load Index [NASA-TLX] frustration score).

Frust noFrust ANOVA

M SD M SD F df p η2
p

SAM arousal 4.9 1.6 3.9 1.6 14.67 (1, 29) <0.01∗ 0.34
SAM valence 0.0 1.3 1.8 1.2 73.06 (1, 29) <0.001∗ 0.72
NASA-TLX frustration 6.3 2.2 4.4 2.0 33.70 (1, 28) <0.001∗ 0.55

Note that one participant failed to fill in the NASA-TLX which explains the reduced number of degrees of freedom (df) for that item. Higher values indicate higher arousal
(1–9), higher valence (−4 to +4) and higher frustration (1–9). Significant results are marked with a “∗”.
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TABLE 3 | Ten-fold cross-validated predictions of Frust and NoFrust drives from AU data using multivariate logistic ridge regression analysis for all participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Mean accuracy (%) 63 59 58 55 49 54 78 78 56 60 78 70 70 56 58
F1-score 0.61 0.58 0.58 0.54 0.49 0.54 0.78 0.78 0.56 0.60 0.78 0.70 0.70 0.56 0.58

Participant P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

Mean accuracy (%) 49 70 73 60 64 53 64 73 60 55 64 51 71 41 71
F1-score 0.49 0.70 0.72 0.60 0.65 0.53 0.63 0.73 0.59 0.53 0.64 0.51 0.72 0.40 0.70

FIGURE 2 | Ten-fold cross-validated prediction of frustrating and
non-frustrating drives from action unit (AU) activations using multivariate
logistic ridge regression analysis for an example participant (P11). The data of
this participant allowed the classification with the highest accuracy.

revealed that each increase of the subjective frustration rating by
1 on the scale increased the probability of showing Cluster 4 by
1.5% (standard error: 0.5%). Comparing themodel with a simpler
model without inclusion of random effects revealed that the
Akaike information criterion (AIC, Akaike, 1998) was lower for
the model with random effects (AIC = −110.2) compared to
the one without the random effects (−95.5). This suggests that
the model better explains the data if the random effects are
included.

Experiment 2
Subjective Ratings
In concordance with the results of Experiment 1, the participants
rated the Frust drives as more arousing (SAM arousal, Frust:
M = 4.7, SD = 1.4; noFrust: M = 3.5, SD = 1.1, F(1,11) = 26.87,
p < 0.01, η2p = 0.71) and more negative (SAM valence, Frust:
M = 0.75, SD = 1.2; noFrust: M = 1.5, SD = 1.0, F(1,11) = 15.67,
p< 0.01, η2p = 0.59) than the noFrust drives. Valence and arousal
were negatively correlated (r = 0.55, p< 0.01).

Multivariate Prediction of Frust and NoFrust Drives
From fNIRS Data
The mean frustration prediction accuracy and F1-score obtained
with fNIRS brain activation recordings across all participants
were 78.1% (SD = 11.2%) and 0.776 (SD = 0.115), respectively.
Table 6 lists the individual results for all participants.

Figure 5 shows the distributions of single time interval
predictions of the multivariate logistic ridge regression model for
the participant with the highest classification accuracy of almost
95% for HbR and HbO data. In this participant, a TPR of 96.5%

FIGURE 3 | Radar plots showing the results of the k-means clustering. Each
plot shows the centroids of one Cluster with each axis of the radar plot
referring to the evidence of one AU. The dots mark the evidence for the
respective AU, i.e., the further outside they are, the higher the evidence is (the
axis for evidence ranges from −1.5 to +1.5 with each gray line indicating a
step of 0.5). AUs that are considered as activated (i.e., with an evidence
≥0.25, indicated by blue circle line) are printed in black, the others in gray.

and 93.3% and a FPR of 3.5% and 6.7% were achieved for the
Frust and NoFrust drives, respectively.

Characterization of Brain Areas Predictive to
Frustration
We performed univariate GLM analyses separately for each
channel in order to determine the localization of brain areas most
predictive to frustration while driving. The univariate approach
was chosen because the model weights of the multivariate fNIRS
regression model are hard to interpret for various reasons
(Reichert et al., 2014; Weichwald et al., 2015; Holdgraf et al.,
2017).

Figures 6A,B show the results presented as unthresholded
t-value maps (difference: Frust-noFrust) from the channel-wise
linear regression of HbR and HbO data for the group level
analysis. The t-value maps indicate the local effect sizes, in
essence they are Cohen’s d scaled by the square root of
the number of samples included in their calculation. The
t-values provide a univariate measure to estimate the importance
of a feature for multivariate classification. The Bonferroni-
corrected t-maps for the group-level analysis are included in
the Supplementary Figures S1A,B. In Figures 6A,B, both
HbR and HbO t-value maps show significant convergence in
brain activation patterns bilaterally in the inferior frontal areas
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TABLE 4 | Relative frequency of attribution of data points from the test set to the cluster centroids extracted from the test set for the two conditions Frust and noFrust.

Frust noFrust Wilcoxon test

M SD M SD Z p

Cluster 1 20.6 13.4 22.6 16.9 −0.32 0.63
Cluster 2 10.3 16.9 10.1 11.0 1.40 0.08
Cluster 3 19.2 14.8 22.8 12.1 0.03 0.49
Cluster 4 27.3 14.8 10.9 12.1 3.95 < 0.001∗

Cluster 5 22.7 10.9 33.7 19.9 −1.87 < 0.05∗

Means (M), standard deviations (SD) and results of Wilcoxon test are presented. Significant differences are marked with an asterisk.

TABLE 5 | Description of the five clusters including the involved AUs and a
potential interpretation of the meaning.

Cluster Involved action units Potential interpretation

1 AU12 neutral to slight smile
2 AU6, AU9, AU10, AU12 smiling
3 AU4, AU9, AU28 frowning
4 AU9, AU17, AU18, AU24 frustrated
5 No above threshold AU neutral

(putative BA45) and the ventral motor cortex (putative BA6).
Additional informative channels can be seen in the right inferior
parietal areas (putative BA22) only for the HbR maps but not
for the HbO maps. This could be due to the averaging effects
of the brain activation on a channel-level across participants
who showed inter-individual variabilities. In both HbR and HbO
maps, some channels in the left temporo-occipital areas (putative
BA21) were found to be predictive to frustrated driving although
the trend is not as strong there as it is in the frontal areas.
Figures 6C,D show t-value maps for the same contrast from the
channel-wise linear regression of HbR and HbO data for the
participant with the highest prediction accuracies. These single
participant brain activation patterns closely resemble the pattern
of the group level map. However, the t-values are much higher
in the single participant than in the group averaged map. Both,
HbR and HbO signals indicate enhanced activation bilaterally
in the inferior frontal and ventral motor areas (t > 10) during
Frust drives in the single participant t-maps whereas the group
averaged t-values rarely exceed t = 4. The reduced t-values
in the averaged maps are due to variability of the predictive
brain activation patterns with respect to both, spatial distribution
and local effects sizes. This can be seen, for example, in the
HbO t-statistic value maps which show predictive activation
in the left inferior parietal and the left temporo-occipital areas
in the single participant maps but less so in the group level
analysis.

We visualized the averaged brain map on the MNI
152 brain in Neurosynth2 and used MRIcron3 to determine
MNI co-ordinates and the corresponding Brodmann areas for
the brain areas with increased activation differences between
Frust and NoFrust drives. Table 7 lists the brain areas, the
MNI-coordinates of the difference maxima and t-values as
indicators of the effect sizes.

2http://neurosynth.org
3https://www.nitrc.org/projects/mricron

DISCUSSION

The goals of this study were to investigate discriminative
properties of facial muscle activity extracted from video
recordings and brain activation patterns using fNIRS for the
automated detection of driver frustration. Therefore, two driving
simulator experiments were conducted in which frustration
was induced through a combination of time pressure and goal
blocking. In Experiment 1, we videotaped the faces of the
participants during the drives and extracted the activity of the
facial muscles using automated video processing. We could
show that the facial expression data can be used to classify
frustration from a neutral state with an average classification
accuracy of almost 62%. Frustration could be discriminated
from a neutral state with above chance accuracy in most
participants, with maximum accuracy up to 78% for the best
participants. In addition, a detailed analysis comparing the
muscle activation in both conditions revealed that the muscles
nose wrinkler, chin raiser, lip pucker and lip pressor are activated
in synchrony more often in the frustrating condition than in
the neutral condition. The approach was then extended to
fNIRS brain activationmeasurements in Experiment 2, where the
discrimination of frustration from the neutral state improved to
average classification accuracy of almost 78% and up to 95% for
the best two participants. An additional univariate GLM analysis
indicated that frustration during driving was reflected in reliable
brain activation modulation bilaterally in ventrolateral inferior
frontal areas in the group-level analysis. Our results demonstrate
that frustration during driving could be detected time resolved
from video recordings of the face and fNIRS recordings of the
brain.

In both experiments, frustration was induced using a
combination of events blocking goal-directed behavior and time
pressure during simulated drives. According to research on
frustration as well as previous studies on frustrated driving,
this combination generally leads to a state of experienced
frustration for the participants (Lazarus, 1991; Lee, 2010;
Rendon-Velez et al., 2016). The accomplished manipulation
checks showed that the participants rated the frustrating drives
as more negative and more arousing than the non-frustrating
drives in both experiments, which is in line with the
classification of frustration in the valence-arousal space of
emotions (Russell, 1980). Additionally, the participants assigned
a higher score in the NASA-TLX frustration scale to the
frustrating drives in Experiment 1. Therefore, we could
conclude that the experimental manipulation indeed induced
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FIGURE 4 | Scatterplot showing the correlation between the probability
(relative frequency) of Cluster 4 and the subjective frustration rating. The plot
contains data from the Frust (red) and noFrust (turquoise) condition. The
regression line is plotted in dark red.

frustration and was suitable to study the proposed research
questions.

Our approach of using multivariate logistic ridge regression
in combination with cross-validation enabled us to explore the
feasibility of using facial muscle activity extracted from video
recordings of the face and almost whole-head fNIRS as an
estimate for cortical activity for time-resolved characterization
of driver frustration. The multivariate modeling allowed us
to predict frustrated drives from the non-frustrated drives in
a continuous manner with relatively high accuracy. For the
facial muscle activation, the decoding model made predictions
from the evidence values of 18 AU input features which
were pre-selected with the used software. For the fNIRS brain
activation, the input features to the decoding model were
the sample-by-sample pre-processed fNIRS data from all the
selected channels for each participant. On average, we had about
128 input features (SD = 14.9) across all participants. Our
decoding models were able to discriminate driver frustration
from non-frustration with a mean accuracy of 62% for facial
muscle activation and almost 80% for cortical activation.
The cross-validation approach allowed us to estimate the
generalization of our decoding model to new data which our
model had never seen before (i.e., the test dataset) indicating

FIGURE 5 | Ten-fold cross-validated prediction of Frust and NoFrust drives
from deoxy-hemoglobin (HbR) and oxy-hemogflobin (HbO) fNIRS
measurements using multivariate logistic ridge regression analysis for an
example participant (P8).

the true predictive power of our model necessary for online
tracking of user states (Reichert et al., 2014; Holdgraf et al., 2017).
The classification accuracy derived from the facial expression
data is higher than chance level, but likely not high enough
for robust usage in human-machine systems with adaptive
automation. One reason for that may be the fact that humans
do not show the same facial expression constantly over a
period of several minutes, even though they report to be
frustrated in that drive. Moreover, it is conceivable that the
level of frustration also varied during the drives leading to fact
that facial expression indicating other emotions or a neutral
state may have been shown by participants. Together, this
may have biased the training and test set as these not only
included facial expressions of frustration, but also other facial
expressions. This in turn could lead to the lower classification
accuracy for facial expression data in comparison to the brain
activation. Still, we can confirm our initial hypothesis that it
is possible to discriminate driver frustration from a neutral
affective state using facial muscle activity and cortical activation
with above chance accuracy with cortical activation providing
better classification results. It remains to be shown that the
classification accuracy is high enough to ensure user acceptance
in adaptive automation.

Since the supervised classification gives us only an estimate
of how well we would be able to recognize frustration using the
respective data frames, we also conducted a detailed analysis of
the facial muscle and brain activation data to understand which
features are indicative for frustration. For this, a clustering of
the facial muscle activity was conducted in order to identify
patterns of co-activated facial muscles that occur with increased
likelihood if a driver is frustrated. The clustering approach
revealed five different clusters of AU activity, which can be
seen as the facial expressions that were shown (most frequently)
during the drives. Cluster 4 was shown significantly more often

TABLE 6 | Ten-fold cross-validated predictions of Frust and NoFrust drives from fNIRS measurements using multivariate logistic ridge regression analysis for all
participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Mean accuracy (%) 76 75 73 88 65 95 78 95 64 76 88 64
F1-score 0.76 0.74 0.73 0.88 0.64 0.95 0.77 0.95 0.63 0.76 0.87 0.63
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FIGURE 6 | t-value maps obtained from channel-wise linear regression of (A)
HbR and (B) HbO fNIRS data for the group-level analyses and channel-wise
linear regression of (C) HbR and (D) HbO fNIRS data for single participant (P8,
same participant as in Figure 5) for the (Frust- noFrust) condition using
Generalized Linear Model (GLM). High positive t-values are indicated by red
color, high negative values by blue color. Note that the activation of HbO and
HbR maps are in the same direction in spite of the signals being negatively
correlated, because the hemeodynamic response function was reversed for
estimating the GLM co-efficients for HbR.

in the Frust than in the noFrust condition and its probability
additionally correlated with the subjective frustration rating.
Therefore, this pattern subsuming activity from muscles from
the mouth region (chin raiser, lip pucker and lip pressor) and

TABLE 7 | Brain areas showing increased activation in the Frust compared to the
noFrust condition.

Brain areas Putative
Brodmann
Area (BA)

X Y Z t-value

For HbR
Right inferior frontal 45 46 48 24 2.0
Left inferior frontal 45 −49 41 24 3.6∗

Right ventral motor 6 62 7 36 3.5∗

Left ventral motor 6 −58 9 37 3.6∗

Right inferior parietal 22 63 −46 11 4.2∗

Left temporo-occipital 21 −63 −51 1 3.4
For HbO
Right inferior frontal 45 51 31 16 2.2
Left inferior frontal 45 −53 35 20 4.1∗

Right ventral motor 6 61 10 29 3.0
Left ventral motor 6 −59 10 36 3.4
Left temporo-occipital 21 −66 −47 7 2.3

The MNI coordinates of activation and their t-values are shown. ∗ Indicates
statistically significant differences which survived the Bonferroni-corrected
thresholding of p < 0.05.

traces from the nose wrinkle can likely be seen as comprising
the frustrated facial expression. Interestingly, similar patterns of
AU activation have been associated to frustration in previous
research (D’Mello et al., 2005; Grafsgaard et al., 2013; Ihme
et al., in press). In contrast, the Cluster 5 was activated
more often in the non-frustrating drives by the participants.
Because it also has no activated AUs involved, we consider
it as referring to a neutral facial expression. None of the
remaining clusters differed in frequency of occurrence between
the two conditions. Presumably, Cluster 1 can also be seen as
neutral, because it included only little facial muscle activity.
With highest activation in cheek raiser and lip corner puller
(and some activation in the nose wrinkler and the upper
lip raiser), Cluster 2 likely represents a smiling face (Ekman
and Friesen, 2003; Ekman, 2004; Hoque et al., 2012). Finally,
Cluster 3 showed a pattern with high activity in action units
around the eyes (brow lowerer and nose wrinkler), which could
be a frowning as a sign of anger or concentration (Ekman
and Friesen, 2003). One interesting issue is that the nose
wrinkler (AU 9) occurred frequently and, according to our
analysis, is part of Cluster 2 (smiling), 3 (frowning) and 4
(frustration), although most previous research has associated it
predominantly with disgust (e.g., Ekman et al., 1980; Lucey et al.,
2010), which was likely not induced through our experimental
paradigm and set-up. We speculate that two aspects may
explain this frequent occurrence of AU9. First, it could be
that the software which we used misclassified movements of
the eyebrows and attributed these to the nose wrinkler. This
is possible and poses a disadvantage of automated techniques
to extract facial muscle activity compared to manual coding
approaches. Second, it could be that the nose wrinkler is not
a particular sign of disgust, but rather a sign of one factor
of a dimensional model of emotions. For example, Boukricha
et al. (2009) have shown a correlation between AU9 and
low pleasure as well as high dominance. We would like
to stress here that although the frustrated facial expression
(Cluster 4) occurred most often in the frustrated drives, the
results indicate that it was not the only facial expression that has
been shown by the participants (as already speculated above).
Therefore, the approach to cluster time-resolved AU activations
into patterns of co-activation in order to gain information
about the shown facial expressions appears promising to better
understand which facial expressions are shown by the drivers
when they experience frustration or other emotions. Future
studies should evaluate whether the results from the clustering
can be utilized to generate labels that not only indicate the
emotion induction phase from which a sample stems, but the
facial expression that was actually shown by the participant.
This could improve the training data set for the classification
as well as classification accuracy. To sum up, the detailed
cluster analysis revealed that the facial expression of frustration
is mainly linked to the facial muscle activity in the mouth
region.

To investigate the frustration predictive features from the
fNIRS brain recordings, we performed univariate regression
analyses separately for each channel using GLM to determine
the localization of brain areas most predictive to frustration
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while driving. Our group level results indicate that fNIRS brain
activation patterns of frustrated drivers were clearly discernible
from non-frustrated drivers. Frustration during driving was
reflected with stronger HbR and HbO activation bilaterally in
the inferior frontal areas (putative BA 45) and the ventral
motor cortex (putative BA 6) in the group level analysis. The
fNIRS channels close to the right inferior parietal areas (putative
BA 22) also show increased activation to frustrated driving in
the HbR t-value maps. Additionally, both HbR and HbO t-value
maps show some channels in the left temporo-occipital areas
(putative BA 21) to be predictive for frustrated driving although
the average linear trend is not as strong there as it is in the
frontal areas. Overall, fNIRS revealed brain areas displaying
higher activity in the frustrating drives which are in line with
the literature on frustration-related neuroimaging lab studies.
These areas have been reported to be related with cognitive
appraisal, impulse control and emotion regulation processes.
Previous research has shown the lateral frontal cortices as a
neural correlate for frustration (Siegrist et al., 2005; Hirshfield
et al., 2014; Perlman et al., 2014; Yu et al., 2014; Bierzynska et al.,
2016). BA 45 and BA 6 are thought to play an important role
in modulating emotional response (Olejarczyk, 2007), regulation
of negative affect (Ochsner and Gross, 2005; Phillips et al.,
2008; Erk et al., 2010), processing emotions (Deppe et al., 2005)
and inhibition control (Rubia et al., 2003). BA 22 has been
shown to play a crucial role in attributing intention to others
(Brunet et al., 2000), and in social perception e.g., processing
of non-verbal cues to assess mental states of others (Jou et al.,
2010).

The current study has a few limitations that need to be
mentioned. First of all, for obtaining themultivariate predictions,
the entire Frust condition had been labeled as ‘‘frustrated,’’
while the complete noFrust condition had been labeled as
‘‘non-frustrated.’’ However, it is very likely that the subjectively
experienced level of frustration was not constant across the
entire drives, because blocking events can temporally increase
the level of frustration that also could build up over time (for
instance with increasing number of blocking events). We have
not considered these factors for our analysis in order to reduce
the complexity. In future studies, a more fine-grained analysis
of the current frustration level and its development over time
could improve the ground truth where the decoding model
could discriminate the different levels of frustration (similar to
what Unni et al., 2017 achieved for working memory load).
Second, stressful cognitive tasks as in the case of frustrated
driving may elicit task-related changes in the physiological
parameters such as heart rate, respiration rate, blood pressure etc.
(Tachtsidis and Scholkmann, 2016). These global components
represent a source of noise in the fNIRS data. There are
different approaches to monitor these parameters and use them
as additional regressors in the GLM e.g., using short-separation
fNIRS channels to capture the effects of these physiological
signals (Saager and Berger, 2005) or using principle component
spatial filtering to separate the global and local components
in fNIRS (Zhang et al., 2016). These approaches have been
reviewed by Scholkmann et al. (2014). In our study, for the
fNIRS analysis, we did not separate the influence of these

global components from the intracerebral neural components.
However, the localized predictive activation we find renders it
unlikely that global physiological effects contribute significantly
to our results.

Third, due to the study design with two different participant
cohorts, we could not combine the decoding models from the
two experiments into one single prediction model. We separated
the two experiments because we wanted to have a free view on
participants’ face, which is not covered (partly) by the fNIRS
cap. Since the results revealed that facial expression of frustration
primarily includes activity in the mouth region, we assume that
a combination of both measures is feasible, so that future studies
should investigate the potential for frustration detection using a
combination of facial expressions and brain activity.

Another minor limitation is that we did not use the same
subjective questionnaires in the two experiments, so we did
not explicitly ask the participants to report the frustration level
in the second experiment. Still, the valence and frustration
ratings in the first experiment were highly correlated. Moreover,
the valence and arousal ratings in were comparable in both
experiments and in line with the classification of frustration
according to dimensional theories of emotion (Russell, 1980), so
that a successful induction of frustration in both experiments is
likely.

CONCLUSION AND OUTLOOK

This study demonstrated the potential of video recordings from
the face and whole head fNIRS brain activation measurements
for the automated recognition of driver frustration. Although
the results of this study are relatively promising, future research
is needed to further validate the revealed facial muscle and
brain activation patterns. In addition, a combination of both
measures (potentially even together with further informative
parameters such as peripheral physiology) appears auspicious for
improving our models of driver frustration thereby boosting the
classification accuracy. The availability of wireless and portable
fNIRS devices could make it possible to assess driver frustration
in situ in real driving in the future. Overall, our results pave
the way for an automated recognition of driver frustration
for usage in adaptive systems for increasing traffic safety and
comfort.
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