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We quantified prosthesis embodiment and phantom pain reduction associated with
motor control and sensory feedback from a prosthetic hand in one human with a
long-term transradial amputation. Microelectrode arrays were implanted in the residual
median and ulnar arm nerves and intramuscular electromyography recording leads were
implanted in residual limb muscles to enable sensory feedback and motor control.
Objective measures (proprioceptive drift) and subjective measures (survey answers)
were used to assess prosthesis embodiment. For both measures, there was a significant
level of embodiment of the physical prosthetic limb after open-loop motor control of the
prosthesis (i.e., without sensory feedback), open-loop sensation from the prosthesis
(i.e., without motor control), and closed-loop control of the prosthesis (i.e., motor
control with sensory feedback). There was also a statistically significant reduction in
reported phantom pain after experimental sessions that included open-loop nerve
microstimulation, open-loop prosthesis motor control, or closed-loop prosthesis motor
control. The closed-loop condition provided no additional significant improvements in
phantom pain reduction or prosthesis embodiment relative to the open-loop sensory
condition or the open-loop motor condition. This study represents the first long-term
(14-month), systematic report of phantom pain reduction and prosthesis embodiment
in a human amputee across a variety of prosthesis use cases.

Keywords: prosthesis embodiment, phantom pain, neural prosthetics, neuroprostheses, sensory feedback,
prosthesis ownership, hand ownership

INTRODUCTION

The emotional, psychological, and functional effects of upper limb amputation can be devastating.
Many amputees undergo a period of mourning, a chronic struggle with depression, and endurance
of life-long phantom pain (Marshall et al., 1992; Desmond and MacLachlan, 2006; Bhuvaneswar
et al., 2007; Ziegler-Graham et al., 2008; Hanley et al., 2009), in addition to practical difficulties
associated with activities of daily living (ADL) and potential loss of employment. These challenges
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often result in long-term use of antidepressants and narcotics
and ongoing medical costs associated with anxiety and
other psychological struggles (van der Schans et al., 2002;
Jensen et al., 2007). We hypothesize that engagement with a
motorized, sensorized prosthetic hand will enhance prosthesis
embodiment—i.e., meaningful integration of the prosthesis
into one’s body image—and phantom pain reduction. Such
consequences, together with sophisticated functional prosthesis
use, may in turn improve many of these aspects of life for
amputees, and may result in substantial cost savings to healthcare
organizations and payment agencies.

The current standard-of-care after upper limb amputation
includes four basic options: (1) use of a body-powered hook;
(2) use of a myoelectric hook or hand prosthesis; (3) use of a
non-functional cosmetic prosthesis; or (4) use of the residual
limb (i.e., no prosthesis) (Biddiss and Chau, 2007). Most body-
powered hooks, myoelectric prostheses, and cosmetic prostheses
do not currently provide sensory feedback directly, and motor
control of these prostheses is often limited to only 1–3 degrees of
freedom (DOF) that typically are not controllable simultaneously.
Many amputees prefer to use their residual limb instead of a
prosthesis, which has been proposed to be due in part to the
presence of sensory feedback (Raichle et al., 2008). Furthermore,
for commercially-available prostheses, the residual limb does not
provide the sophisticated multi-DOF motor control provided by
an intact hand.

Peripheral nerve and muscle interfaces offer an exciting
opportunity to provide subjects with improved prosthesis control
and sensory feedback. Many different peripheral-nerve interfaces
have been used, including transverse intrafascicular multichannel
electrodes (TIMEs) (Raspopovic et al., 2014), flat-interface
nerve electrodes (FINEs) (Tan et al., 2014), and longitudinal
intrafascicular electrodes (LIFEs) (Dhillon et al., 2004, 2005;
Dhillon and Horch, 2005; Horch et al., 2011; Graczyk et al., 2016).
Regular use of commercially available myoelectric prosthetics can
reduce phantom limb pain (Lotze et al., 1999), and improved
prosthesis control and sensory feedback via peripheral nerve
interfaces may further reduce phantom pain. Synchronized visual
and motor feedback (Ramachandran and Rogers-Ramachandran,
1996) or visual and sensory feedback (Schmalzl et al., 2013)
can alleviate phantom pain, and initial evidence suggests that
prosthesis sensory feedback can also reduce phantom pain
(Dietrich et al., 2012; Tan et al., 2014). However, there has been
no systematic study of phantom pain reduction when using these
peripheral nerve interfaces for sensory feedback or for motor
control.

Basic motor control has been provided to amputees using
implanted myoelectric sensors (IMES) and fine wire muscle
electrodes, but outcome measures have focused largely on
functional performance (Baker et al., 2008; Weir et al.,
2009; Cipriani et al., 2014; Smith et al., 2014), with few
reports on psychological and emotional impact metrics such
as prosthesis embodiment and/or pain reduction in response
to prosthesis motor control (Rosén et al., 2009; Ortiz-Catalan
et al., 2014; Souza et al., 2014). Implants have also been placed
in the central nervous system for the purpose of restoring
prostheses motor control and sensory feedback (Kim et al., 2011;

O’Doherty et al., 2011; Hochberg et al., 2012; Tabot et al., 2013;
Flesher et al., 2016); however, most amputees are unwilling to
undergo brain surgery (Engdahl et al., 2015, 2017). Targeted
muscle reinnervation has also been used to restore basic
sensory and motor feedback to human amputees (Kuiken et al.,
2004, 2007; O’Shaughnessy et al., 2008; Hebert et al., 2016),
and prosthesis embodiment was enhanced for two lower-limb
amputees using sensory feedback alone (Marasco et al., 2011).
Cortical stimulation has been shown to enhance prosthesis
embodiment in two intact human subjects (Collins et al., 2017),
but this approach was also limited to open-loop sensory-feedback
trials in which sensory feedback was provided to only a single
hand location.

To date, enhanced prosthesis embodiment due to closed-loop
control of the prosthesis has been demonstrated only with two
upper-limb amputees implanted with FINE electrodes (Schiefer
et al., 2016). This study did not include quantitation of the
subjects’ perceived phantom hand location, nor did it quantify
embodiment relatively across multiple prosthesis use cases. Other
reports of upper-limb amputees’ embodiment of closed-loop
prostheses utilized referred sensations from the residual limb
instead of direct neural stimulation (Rosén et al., 2009).

We have previously reported functional performance
improvements due to closed-loop control using Utah Slanted
Electrode Arrays (USEAs) (Clark et al., 2014; Davis et al.,
2016; Wendelken et al., 2017). As a complement to the
functional outcomes, we here report on the psychological
impact of advanced prosthesis control and sensation. We
report embodiment of a physical prosthesis during closed-loop,
multiple-DOF prosthesis control with multi-channel sensory
feedback from different hand locations in a single human
amputee. We also report embodiment due to open-loop motor
control, as well as embodiment due to multi-sensor open-loop
touch-feedback from the prosthetic hand. This is in contrast to
past embodiment studies which used only open-loop sensory
feedback (Marasco et al., 2011; Collins et al., 2017), or closed-
loop sensory feedback through referred sensations (Rosén et al.,
2009).

This work represents a case study of our first use of closed-
loop physical prosthesis control with USEA-evoked sensory
feedback in one human amputee. Additionally, to our knowledge,
this is the first report using perceptual phantom hand location
as an objective measurement of prosthesis embodiment for
closed-loop controlled prostheses where feedback is provided
via peripheral nerve microstimulation. This objective metric for
embodiment has been used primarily in previous studies with
intact subjects (Botvinick and Cohen, 1998; Tsakiris et al., 2006;
Kalckert and Ehrsson, 2012; Caspar et al., 2015; Jenkinson and
Preston, 2015; Romano et al., 2015), once with an amputee
receiving sensory feedback from referred sensations (Rosén
et al., 2009), and only once with intact individuals receiving
sensory feedback from cortical stimulation (Collins et al., 2017).
This metric has never been used to assess embodiment due
to closed-loop prosthesis use with amputees receiving sensory
feedback from peripheral nerve microstimulation. We also
provide a 14-month report of phantom pain reduction for the
subject due to participation in experiments including USEA
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microstimulation, open-loop prosthesis control, and closed-loop
prosthesis control.

MATERIALS AND METHODS

Study Volunteer
We implanted USEAs and electromyographic recording leads
(iEMGs) in one transradial amputee. A similar approach was
used with other amputees in prior publications from this group
(Clark et al., 2014; Davis et al., 2016; Dantas et al., 2017, 2018;
Nieveen et al., 2017; Wendelken et al., 2017; Zhang et al., 2017;
George et al., 2018). The subject was recruited by a physician and
evaluated by a psychologist prior to participating in the study.
The subject was a 57-year-old, left-hand-dominant male, whose
left foot and left forearm had been amputated 13 years prior, after
an electrocution injury. His unilateral, left-arm amputation was
midway along the forearm, leaving many extrinsic hand muscles
intact. The subject indicated that he generally preferred to use
his residual arm instead of a prosthesis, although he occasionally
used a body-powered hook for work around his home and a basic
rubber-handed myoelectric prosthesis for cosmetic purposes at
social gatherings.

Several years prior to these experiments, the subject received
experimental nerve-interface implants on two occasions in his
amputated left arm residual nerves. These prior experiments
involved implantation of intraneural electrodes for a duration
of up to 2 weeks each, with experiments including electrode
recording and stimulation for motor control and sensory
feedback from a simple physical prosthesis. We do not
anticipate that these prior experiments substantially impacted
the current results, other than perhaps increasing the subject’s
learning speed for some of the experimental tasks, although
some residual nerve damage or other consequences from
prior implants and experiments cannot be entirely ruled
out.

Preimplant training included mimicking motor hand
movements displayed on a video (Clark et al., 2014; Davis
et al., 2016; Dantas et al., 2017, 2018; Wendelken et al., 2017;
Zhang et al., 2017; George et al., 2018), as well as tactile
stimulation training on the skin of his residual limb and
his intact hand using a mechanical vibrometer. The subject
routinely used gabapentin (800 mg, typically 2–4 times
per day), ibuprofen (800 mg, typically 0–4 times per day),
amitriptyline (25 mg, typically 0–1 times per day) and tramadol
(1000 mg, typically 0–2 times per day) both prior to and
during the implant period. The subject’s medication use was
monitored and documented throughout the study in order
to have an unbiased assessment of phantom pain as a result
from participating in experimental sessions. The most recent
medications prior to the start of each experimental session
consistently included tramadol (9–12 h prior), amitriptyline
(9 h prior), and gabapentin (9–12 h prior and 1–4 h prior).
Informed consent and experimental protocols were carried
out in accordance with the University of Utah Institutional
Review Board and the Department of the Navy Human Research
Protection Program.

Devices
Two Utah Slanted Electrode Arrays (USEAs; Blackrock
Microsystems, Salt Lake City, UT, United States) were implanted
in the subject’s residual limb proximal to the elbow: one in the
median nerve, and the other in the ulnar nerve. USEAs are silicon
microelectrode arrays with 100 electrode shafts on each USEA
arranged in a 10 × 10 grid on a 4-mm × 4-mm base. Electrode
shafts are spaced 400 µm apart, with lengths of shafts varying
along a single dimension from ∼0.75 to 1.5 mm (Branner et al.,
2001). The USEAs used for these experiments had iridium oxide
tips and parylene-C insulation. Four looped platinum wires were
also implanted—two served as electrical ground and stimulation
return, and two served as reference wires for recording. Four
electrodes from the longest row of electrode shafts on the USEA
were also sometimes used as an on-array electrical reference for
recordings (Clark et al., 2011, 2014). The ground and reference
wires, as well as the electrodes on the USEAs, were wired-bonded
to external connectors with helically-wound, silicone-potted
wires and traveled through a percutaneous incision to allow
connection via active or passive Gator Connector Cables (Ripple
LLC, Salt Lake City, UT, United States).

Eight intramuscular electromyographic recording leads
(iEMGs; Ripple LLC, Salt Lake City, UT, United States) were
implanted in the residual arm muscles, with attempted targeting
of each lead to different lower-arm extensor or flexor muscles.
Each of the eight leads contained four electrical contacts, totaling
32 recording channels. A separate iEMG lead was implanted
proximal and posterior to the elbow to provide contacts for an
electrical reference and ground. The implanted EMG electrodes
were also wired via a percutaneous incision to an external Gator
Connector Board (Ripple LLC, Salt Lake City, UT, United States).

Surgical Implant
Starting the day before the implant surgery, the subject was given
an oral prophylactic antibiotic (100 mg minocycline, 7 days, twice
per day), which has been reported to improve neuronal recording
quality in rats (Rennaker et al., 2007). Under general anesthesia,
the USEAs were placed in median and ulnar nerves in the upper
arm, several centimeters proximal to the medial epicondyle.
The iEMGs were implanted midway along the forearm. After
dissection of the epineurium, USEAs were implanted using a
pneumatic inserter tool (Rousche and Normann, 1992). The
epineurium was sutured around each USEA and its ground and
reference wires (Figure 1A). A collagen wrap (AxoGen Inc.,
Alachua, FL, United States) was placed around the median-nerve
USEA and secured with vascular clips. Collagen wrap was not
placed around the USEA in the ulnar nerve, due to limited
tourniquet time and the presence of scar tissue near the desired
implant site from a previous intrafascicular nerve stimulation
study. A 0.1 mg/kg dose of dexamethasone was administered
after tourniquet removal, which has been reported to reduce the
foreign body response and improve neural recordings (Spataro
et al., 2005; Zhong and Bellamkonda, 2007).

The percutaneous wire sites (Figure 1B) were dressed using an
antibiotic wound patch (Biopatch, Ethicon US LLC, Somerville,
NJ, United States) at least every 10 days. The implants remained
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FIGURE 1 | Surgical methods for Utah Slanted Electrode Arrays (USEAs) and
intramuscular electromyographic implants (iEMG). (A) The epineurium was
separated prior to implantation of a USEA in the median nerve. A USEA was
also implanted in the ulnar nerve (not shown). (B) USEA and iEMG lead wires
were connected to the contact pads of external connector boards via
percutaneous incisions. Hardware was attached to these connector boards
during experiments to enable stimulation and recording via the USEA and
iEMG implants.

intact in the subject for 63 weeks and one local infection
at the iEMG implant site early in the implant period was
successfully resolved with oral antibiotics (keflex and bactrim)
administered for 2–3 weeks. The subject participated in 2–3 h
experimental sessions typically 1–4 days per week. Experimental
sessions included motor-decode training and testing (via iEMG
and/or USEA recordings), sensory-encode training and testing
(via USEA stimulation), and closed-loop control assessments
(via simultaneous recording from USEAs and/or iEMGs and
stimulation via USEAs) as well as impedance testing of the USEAs
and iEMGs at the beginning and end of each session. At the
end of the 63 weeks, the USEAs and iEMGs were surgically
removed from the study as the result of prior mutual agreements
between the volunteer subject and the experimenters regarding
study duration.

Recording/Decode
Neural and electromyography recording were collected using the
512-channel Grapevine System (Ripple LLC, Salt Lake City, UT,
United States). Although neural recordings and iEMG recordings
both served as motor-decode features, iEMG recordings were
used exclusively for the vast majority of experimental sessions.
In addition, iEMG recordings were used exclusively for all
embodiment experiments. The 32 single-ended EMG signals
were acquired at 1 kHz. The raw EMG signals were then filtered
with a 6th-order high-pass Butterworth (cutoff of 15 Hz), a

2nd-order low-pass Butterworth filter (cutoff of 375 Hz), and 60,
120, and 180 Hz notch filters. Differential EMG signals for all 496
possible combinations of channels were then calculated and the
mean absolute value was calculated at 30 Hz. The resulting mean
absolute value was then smoothed using an overlapping 300-ms
rectangular window. The resulting feature dataset consisted of
528 channels (32 single-ended electrodes+ 496 differential pairs)
sampled at 30 Hz. Neural recordings, when used, contributed
an additional 196 features and were processed as described in
Wendelken et al. (2017).

Recordings from iEMGs and USEAs were collected while the
subject mimicked a set of preprogrammed virtual hand training
movements with his phantom hand, which included individuated
movements of different DOF (e.g., flexions/extensions of each
digit, wrist flexion/extension, wrist pronation/supination, thumb
abduction/adduction). Training sets included 5–10 trials for each
training movement.

Outputs of selected channels from the feature dataset, as
well as the instructed positions of each DOF from the training,
were used to fit the parameters of a Kalman filter. The baseline
firing-rate activity for each channel was subtracted from the
overall firing rate prior to training and testing of the Kalman
filter. Selection of channels for input into the Kalman filter
was performed by a stepwise Gram-Schmidt electrode-selection
algorithm (Nieveen et al., 2017). The output of the Kalman filter
was modified using thresholds and gains, as also used previously
(George et al., 2018). The effect of these modifications can be
written as

Modified Output =

{
(Output ·Gain−Threshold)

1−Threshold , Output ≥ Threshold
0, Output < Threshold

}

The default values of the thresholds and gains were initially set to
0.2 and 1.0, respectively, although they were often subsequently
tuned on an individual DOF basis to provide optimal control.
This modified Kalman filter enabled the subject to proportionally
control movements of either a virtual prosthetic hand or a
physical prosthetic hand in real time. The modified Kalman filter
output was either used directly for real-time position or velocity
control.

Stimulation/Encode
Electrical stimulation was delivered via single or multiple
USEA electrodes using the Grapevine System with Micro2+Stim
front ends. All stimulation was delivered as biphasic, cathodic-
first pulses, with 200–320-µs phase durations, and a 100-µs
interphase duration. The stimulation frequency varied between
10–500 Hz, and stimulation amplitudes were in the range of
1–100 µA.

Closed-Loop Control
Closed-loop control (i.e., motor control with USEA-coupled
sensory feedback) was provided to the subject after performing
motor-decode and sensory-encode training. Sensory-encode
training consisted of identifying electrodes that evoked percepts
that could be associated with sensor locations on the virtual
or physical hand. Typically, the assigned electrodes evoked
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sensory percepts with projected fields that matched the location
of sensors on the hand. The frequency of stimulation on an
assigned electrode was mapped to be roughly proportional to the
indentation force of the sensor in real time, although stochastic
variability was added to the stimulation frequency to produce a
firing pattern more reminiscent of biologically-generated firing
patterns. Closed-loop control sessions included performance of
tasks with either the virtual prosthetic hand or the physical
prosthetic hand. During virtual prosthesis use, the position of
the residual limb relative to the subject’s body was tracked and
mapped to the virtual hand using a motion tracking system
(OptiTrack, Corvallis, OR, United States).

Physical and Virtual Prosthesis
During embodiment experiments, the subject used one of two
physical prostheses. During the first 9 months of the study, the
subject used a custom 3D-printed Ada Hand (Open Bionics,
Bristol, United Kingdom). For the final 5 months of the study,
the subject used the newly released, more advanced DEKA LUKE
Arm (DEKA, Manchester, NH, United States).

The first prosthesis, the custom Ada Hand (Figure 2),
was instrumented with PQ-12 linear actuators on each digit
(Firgelli Technologies, Victoria, BC, Canada) and 0.5-cm-
diameter circular, flat, force-sensitive resistors on each digit tip
and a 4-cm × 4-cm, square, flat, force-sensitive resistor on the
palm (Interlink Electronics, Westlake Village, CA, United States).
The physical hand was interfaced with custom software and the
Ripple Grapevine System via an Almond board (Open Bionics,
Bristol, United Kingdom) that allowed real-time feedback control
via all five motors and via four of the six sensors during use. The
physical prosthesis was 3D-printed with peach-colored filament,
and a translucent, nude-Caucasian-tinted surgeon’s glove was
placed over it to cover the electronics and sensors, approximating
the subject’s skin tone.

The second prosthesis, the DEKA LUKE Arm, in its
transradial configuration, had six DOFs (rotation of the wrist,
abduction/adduction of the thumb, and flexion/extension of the
wrist, thumb, and index finger, and coupled flexion/extension
of the remaining three digits). The DEKA LUKE Arm had six
position sensors (one for each DOF) and 13 contact sensors (two
on the palm, one on the lateral edge of the palm, one on the back
of the hand, four on the distal portion of the thumb, one on the
lateral portion of the index finger, and one on each of the three
remaining digits). A semi-translucent rubber glove covered the
DEKA LUKE Arm, and served in place of the nude-Caucasian-
tinted surgeon’s glove.

The virtual prosthesis was simulated and visualized by either
MSMS (Davoodi et al., 2007) or the MuJoCo virtual reality
environment (Roboti LLC, Redmond, WA, United States). The
MSMS hand was a virtual Modular Prosthetic Limb (Johns
Hopkins Applied Physics Lab, Baltimore, MD, United States)
used only for open-loop motor-decode training, and the MuJoCo
hand was a virtual model of the LUKE Arm used for both
open-loop and closed-loop-control tasks using integrated virtual
sensors. Subjective pain scores were measured before and after
experimental sessions using both physical and virtual prostheses.

FIGURE 2 | 3D-printed physical prosthetic hand used for embodiment
experiments. (A) Six force-sensitive resistors were fixed to the prosthetic
hand: one sensor on each digit tip, and a larger sensor on the palm. Activation
of these sensors produced increased USEA stimulation and associated
sensations on the phantom hand. Typically, the USEA electrode(s) assigned to
each sensor evoked a sensory percept that corresponded to the same hand
region as the sensor. Due to hardware limitations, a maximum of four
prosthesis sensors were used simultaneously. (B) On the back of the hand, a
linear actuator was attached to the tip of each digit of the prosthetic hand via
a plastic cable that acted as an artificial tendon. Motor control signals were
generated by decoding recordings from 32 electromyography contacts (eight
leads, with four contacts each) implanted in the forearm muscles of the
residual limb. During most embodiment experiments, the subject was able to
control flexion and relaxation of all five digits of the prosthetic hand
independently.

Embodiment Experiments
We assessed the level of embodiment of the physical prosthetic
hands via two metrics: (1) comparison of the subject’s perceived
phantom-hand position from before versus after an embodiment
training period; and (2) collection of survey responses related
to prosthesis embodiment. Both metrics have been shown to
quantify embodiment (i.e., ownership of a body part) without
addressing agency (i.e., the feeling of control over bodily actions)
(Kalckert and Ehrsson, 2012). Quantification of agency is not
reported in this study.

A total of ten experimental sets were performed, seven with
the Open Bionics prosthesis and three with the DEKA prosthesis.
For statistical analysis, we aggregated the data for the two
prostheses into a single dataset. A direct comparison of the
level of embodiment of the two different prostheses was beyond
the intended scope of the study and would be confounded by
temporal factors such as subject learning.

Quantification of embodiment was performed by assessing a
shift in perceived phantom hand position, as has been performed
previously (Botvinick and Cohen, 1998; Collins et al., 2017). The
physical prosthetic hand was placed palm up on a clear acrylic
table, with the index-fingertip being positioned 13–19 cm to
the right of the medial edge of the pronated residual left arm,
which was also resting on the acrylic table (∼13 cm used in
8/10 experimental sets, ∼19 cm used in 2/10 experimental sets).
A barrier was placed between the physical prosthesis and the
residual limb so that the residual limb was not in sight. The
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subject donned a custom lab coat that was attached to the barrier.
The coat included a conventional left sleeve for the subject’s
residual left arm, plus an additional faux left sleeve that was
stuffed and positioned in the subject’s view, projecting from his
left shoulder to the wrist of the physical prosthesis, such that the
prosthetic hand appeared to extend from this substitute left arm
(Figure 3).

The intact right hand was placed on a lower acrylic surface,
about 10 cm beneath the physical prosthesis and the residual
limb, but was visible to the subject through the upper acrylic
surface. The barrier between the physical prosthesis and the
residual limb was not present on the lower acrylic surface, so
that the intact right hand was free to pass beneath the physical
prosthesis, the barrier, and the residual limb without impediment.
The starting position of the intact right hand prior to a hand-
movement saccade was fixed to be ∼49 cm to the right of
the position of the prosthesis. A ruler was visible along the
lower acrylic surface (but not touched by the subject), and a
sliding T-square was placed on the ruler to allow for precise
measurement of the subject’s intact index-finger location during
the experiments.

FIGURE 3 | Embodiment quantification via measurement of shift in perceived
hand location. The subject was seated facing a two-level plexiglass table. The
subject’s residual limb was placed on the upper surface of the table and was
shielded from his view with a visual barrier. The physical prosthetic hand was
also placed on the upper surface in front of the subject along with a stuffed
sleeve that was draped over the subject’s clothing to give the appearance of
an arm extending from the subject’s left shoulder to the prosthetic hand. The
subject’s right intact hand was placed on the lower surface, allowing it to pass
beneath the prosthetic hand, the visual barrier and the residual limb. Both
before and after each 4-min prosthetic-hand training period, the subject
closed his eyes and moved his intact right hand laterally on the lower surface
until he subjectively felt that his intact index finger was aligned with the index
finger of his phantom hand. The perceived location of his phantom hand was
documented using measurements from a meter stick. The shift in perceived
phantom hand location during each trial was calculated as a metric of
prosthesis embodiment.

Each embodiment experimental set consisted of four trials,
one for each experimental condition. Each trial began by
collecting a baseline assessment of the subject’s perceived
phantom-hand location by placing his intact right hand at the
designated starting position on the lower surface, closing his
eyes, and moving his intact right hand along the lower acrylic
surface until he felt that his right index-fingertip was aligned
with his left phantom index-fingertip. The final position of his
right-hand index finger was noted. A 4-min embodiment training
period then began in which the subject was allowed to view
the prosthesis during one of the following four experimental
conditions: (1) motor control of the prosthesis; (2) sensory
feedback from the prosthesis (experimenter pressed on the
prosthesis sensor locations); (3) closed-loop control of the
prosthesis (squeezing a ball or other object which allowed
activation of the sensors); or (4) a control condition in which
there was no motor control of or sensation from the prosthesis
(visual fixation on the prosthesis). During the sensory feedback
trials, the experimenter pressed only on the 3–4 active sensor
locations in a random fashion, approximately once every 1–
2 s. During the closed-loop control and motor control trials,
the subject was able to move their phantom hand freely,
although they often performed individuated movements (flexion
or extension) of each DOF (thumb, index, middle, ring, pinky)
on the prosthesis, cycling from one movement to the next every
1–3 s. During the visual fixation and sensory feedback trials,
the subject relaxed their phantom hand in a resting position
(indicated by low EMG and no motor-decode activity), although
the subject was not explicitly instructed to keep his hand still. In
order to create the most natural-feeling sensory experience, for
both sensory feedback trials and closed-loop control trials, the
USEA stimulation, and the subject’s resulting sensory experience,
was dependent on the force applied to the sensors of the
prosthetic hand. After the embodiment training period, the
subject again placed his intact right hand at the start position on
the lower surface, closed his eyes, and moved his right hand until
he felt it was aligned with his phantom left hand. The difference
between each pre-trial and post-trial perceived phantom hand
position was used as an objective metric of embodiment. Trials
were presented with a 4-min break between them which involved
covering the physical prosthesis with a shroud and moving the
residual limb and phantom hand as well as massaging, touching,
and visualizing the residual limb to invoke disembodiment of the
prosthetic hand.

Additionally, we collected subjective responses to survey
questions related to embodiment of the limb after each
trial. Survey questions were modified from those used in
other rubber-hand illusion tasks (Botvinick and Cohen, 1998;
Dummer et al., 2009; Rosén et al., 2009; Marasco et al.,
2011; Schmalzl and Ehrsson, 2011; Walsh Lee et al., 2011;
Kalckert and Ehrsson, 2012; Dobricki and de la Rosa, 2013;
Caspar et al., 2015; Jenkinson and Preston, 2015; Collins et al.,
2017), and included three predesignated test questions and
six additional questions to control for task compliance and
suggestibility (Figure 4). The subject indicated responses to the
survey questions using a 7-point visual Likert scale. The nine
different survey questions were arranged in different random
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FIGURE 4 | Embodiment survey questions modified from those used in other rubber-hand illusion tasks. The subject responded to nine survey questions following
each prosthetic-hand training period. Three of the questions served as test questions to assess the level of prosthesis embodiment for the four different experimental
conditions (closed-loop control, open-loop motor, open-loop sensation, visual fixation). The remaining six questions served as controls for task compliance and
suggestibility. Eight different orderings of the survey questions were produced, and these different versions were delivered in block-random order. The subject’s
overall impressions were also noted during the experiments.

orderings on eight different versions of the questionnaire,
and the different versions were delivered in block-random
order.

Pain Evaluation
An extensive pre-implant pain evaluation was performed by a
physician. A more concise method was used for routine pre-
implant and post-implant evaluations, which consisted of asking
the subject to rate his pain on a 0–10 scale, where a score of 10
was defined as the most intense pain he had ever experienced.
This concise pain metric was used in place of more sophisticated
pain surveys in order to save experimental time. Many different
experiments were performed in post-implant sessions including
USEA microstimulation, motor control, and closed-loop control
of a virtual prosthesis in addition to embodiment experiments
with a physical prosthesis. For two separate pre-implant sessions,
and at the beginning and end of each post-implant experimental
session, the subject’s pain was documented using the 0–10
rating scale. These questions were posed both for his chronic
background phantom pain, which the subject described as
being “always there,” and for phantom-pain episodes, which
occurred periodically and were more intense. For periodic
phantom-pain episodes, the duration, frequency, and intensity
of episodes was also documented. The subject indicated that

he had never had neuromas resected from his residual arm
nerves.

Pain rating responses were analyzed for the following
four conditions: all 74 experimental sessions, a subset of 55
experimental sessions involving closed-loop control, a subset of
8 experimental sessions involving only open-loop motor control,
and a subset of 17 experimental sessions involving only open-
loop stimulation. The subset of experiments involving open-loop
motor control only consisted of seven full 3-h sessions in which
no stimulation was provided and one 1-h session in which no
stimulation was provided. The subset of experiments involving
only open-loop stimulation involved one 3-h session in which
the subject did not attempt any movements of his phantom hand,
eleven 3-h sessions in which the subject only attempted to move
his phantom hand for a total of 30 s, and one 2-h session in which
the subject did not attempt any movements of his phantom hand,
but which took place immediately following an open-loop motor
session.

The subset of experimental sessions involving the
embodiment experiments were all classified as closed-loop
sessions because each embodiment session involved one
experimental condition that had both motor control and
sensory feedback. Direct comparisons between embodiment and
phantom pain reduction were beyond the intended scope of the
study.
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Statistical Analysis
Outliers in the survey question responses (more than 1.5
interquartile ranges above the upper quartile or below the
lower quartile) were replaced by the next most extreme
value (i.e., winsorizing) before statistical analyses (Tukey,
1977). If any test for normality (Anderson-Darling, Jarque-
Bera and Lilliefors) indicated that the data were not normally
distributed, then non-parametric tests were used. We found
that the embodiment survey responses and pain score responses
deviated from normality, whereas the proprioceptive shift did
not.

For the proprioceptive drift, a statistical analysis of the
perceived phantom hand location after the experimental
condition relative to the perceived phantom hand location before
the experimental condition was performed (paired, two-sided
t-test) to evaluate the level of embodiment (positive shift toward
prosthesis) for each of the four experimental conditions. For
the embodiment survey responses, statistical analysis of the test
question responses relative to the control question responses
was performed (Mann–Whitney U-test) to evaluate the level of
embodiment for each of the four experimental conditions. Lastly,
for the pain score responses, statistical analysis of the pre-session
and post-session pain rating responses was performed (paired,
two-sided, Wilcoxon Sign Rank test) to evaluate the change in
pain rating for the four conditions.

An omnibus parametric one-way analysis of variance
(ANOVA) or non-parametric ANOVA (Kruskal–Wallis) was
performed across all experimental conditions separately for
the proprioceptive drift, embodiment survey and pain scores.
When the omnibus ANOVA showed significance (i.e., for the
proprioceptive drift and embodiment surveys), subsequent post-
hoc multiple comparisons were performed using Fisher’s least
significant difference procedure.

RESULTS

As evidenced by both proprioceptive drift and survey responses,
the subject experienced embodiment of a physical prosthesis
due to (1) open-loop visible motor control, (2) open-loop
visible tactile feedback, and (3) closed-loop visible prosthesis
control, but not after the visual-fixation condition. The subject
also experienced a reduction in phantom pain across (1) all
experimental sessions, (2) the subset of experimental sessions
involving only open-loop motor control, (3) the subset of
experimental sessions involving only open-loop stimulation, and
(4) the subset of experimental sessions involving closed-loop
control. Additionally, this reduction in phantom pain continued
across the entire 14-month study.

Embodiment: Shift in Perceived Hand
Position
Measures of proprioceptive shift showed selective embodiment
in the three test conditions, relative to baseline and to the
visual fixation control condition. The subject’s mean ± standard
deviation perceived shifts in hand position toward the prosthesis
were 0.99 ± 4.20 cm for visual fixation, 4.93 ± 3.31 cm for
open-loop motor-only, 4.85 cm ± 2.42 cm for open-loop
sensory stimulation, and 7.09 ± 3.86 cm for closed-loop control
(Figure 5). A statistically-significant shift in the perceived hand
position toward the prosthesis was observed for open-loop motor
control (p < 0.0005), open-loop sensory feedback (p < 0.0001)
and closed-loop control (p < 0.0001). Importantly, there was no
evidence of a significant shift for the visual fixation condition
(p = 0.47). In addition, there was a statistically-significantly
difference in proprioceptive shift among the four experimental
conditions (ANOVA, p < 0.005). Further, each of the three
test conditions (open-loop motor control, open-loop sensory

FIGURE 5 | Quantification of perceived shift in limb position indicate the level of embodiment in the four experimental conditions (n = 10). Bars indicate the mean (±
standard deviation) shift in perceived phantom limb position between the pre-trial and post-trial measurements for each of four experimental conditions. A significant
shift toward the prosthesis (i.e., compared with no shift) was observed for each of the three test conditions (t-test; p < 0.0005 for motor-only, p < 0.0001 for
sensory-only and closed-loop), whereas no significant shift toward the prosthesis was found for the visual fixation control condition (t-test; p = 0.47). In addition,
each of the three test conditions (motor-only, sensory-only, and closed-loop) showed a greater level of embodiment compared with the visual fixation control
condition (multiple comparisons; p < 0.05, p < 0.05, and p < 0.0005, respectively). No significant differences were found among the three test conditions.
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feedback and closed-loop control) showed a greater level of
embodiment compared to the visual fixation control condition
(p < 0.05, p < 0.05, and p < 0.0005, respectively).

No significant differences were found among the three test
conditions (open-loop motor vs. open-loop sensory, p = 0.96;
open-loop motor vs. closed-loop, p = 0.18; open-loop sensory
vs. closed-loop, p = 0.16). Although it was not significant, the
closed-loop condition showed a slight trend toward increased
proprioceptive shift relative to the open-loop motor and open-
loop sensory conditions.

Embodiment: Survey Results
Test survey questions also demonstrated selective embodiment
in the three test conditions, relative to the control questions
and to the visual fixation condition. The subject’s median (and
IQR) response to the test survey questions was 1 (2) for visual
fixation, 5 (1) for open-loop motor control, 6 (1) for open-loop
sensory feedback, and 5 (1) for closed-loop control (Figure 6).
We compared the pooled Likert ratings from the three test
questions to the pooled Likert ratings from the six control
questions for each of the four experimental conditions. Open-
loop motor, open-loop sensory, and closed-loop test conditions
each exhibited a significantly higher response on the test
questions compared with the control questions (p < 0.0001 for
each of these three conditions), whereas no significant difference
was found for the visual fixation control condition (p = 0.09).
In addition, there was a statistically significant difference in the
Likert ratings for the test questions among the experimental
conditions (Kruskal–Wallis, p < 0.0001). Each of the three test
conditions (open-loop motor, open-loop sensory, and closed-
loop control) showed a greater level of embodiment compared
with the visual fixation control condition (p < 0.005, p < 0.0001,
and p < 0.0005, respectively).

In addition, the open-loop sensory condition showed a
significantly higher level of embodiment relative to the open-loop
motor condition (p < 0.05). No significant differences were found
among the remaining conditions (open-loop motor vs. closed-
loop, p = 0.42; open-loop sensory vs. closed-loop, p = 0.08).
Although it was not significant, the sensory-only condition
showed a trend toward increased embodiment relative to the
closed-loop condition. The increased embodiment associated
with the open-loop sensory condition may be attributed to
the fact that some of the test survey questions had a sensory
component (Figure 4) and that sensory percepts may have been
more readily activated by the experimenter than by closed-loop
object manipulation.

The subject’s informal comments were also helpful for
assessing embodiment. After an open-loop sensory embodiment
trial, the subject stated, “It does make a difference on the
[stimulation]. It really feels like you’re squeezing my thumb,
’cause where you’re squeezing is where the stimulation is.”
Following a closed-loop embodiment trial, the subject stated, “I
want to clasp my hands together,” at which point he massaged,
touched, and squeezed the prosthetic hand with his intact hand
during closed-loop control for about 20 s. His use of the
wording “my hands” is consistent with a subjective sense of
embodiment.

The subject also indicated that although his perceived range-
of-motion of movement control of the digits of his phantom
hand was normally quite limited, active movement of the digits
of the physical prosthetic hand with visual feedback seemed to
open his phantom hand. At about 10 weeks post-implant (with
experimental sessions several times per week), he reported that
the range-of-motion of his phantom digits was beginning to
widen at times, allowing him to open and close some digits of
his phantom hand, even outside of the experimental sessions.

Phantom Pain Reduction
The subject described two distinct types of phantom pain: (1)
consistent background phantom pain, described as sharp and
burning; and (2) sporadic intense phantom pain events that
typically lasted several seconds, but that occurred only 1–4
times per day. Sporadic phantom pain episodes rarely occurred
during experimental sessions, so the effect of the experiments on
this type of pain was not quantified. The subject’s background
phantom pain increased to a level of 6 during the first 10 days
after the implant and then settled to a relatively stable median
(and IQR) pain score of 4 (1). The maximum subjective pain
score ever reported by the subject was a 7, which occurred while
the subject was at home between sessions. The subject’s median
pre-implant phantom pain was a 4.25 (0.5).

The subject’s verbal scoring of his background phantom pain
indicates a statistically significant reduction in phantom pain
(after vs. before session) across all 74 experimental sessions
(p < 0.0001, Figure 7). This reduction in phantom pain was
consistent across the entire 14-month duration of the study
(Figure 8). The median pre-session pain score was 4 (1), and the
median post-session pain score was 3 (0), yielding a 25% median
reduction in phantom pain. A statistically significant reduction
in phantom pain was also present for the subset of experimental
sessions that involved only open-loop motor control (p < 0.05),
the subset of experimental sessions that involved only open-
loop stimulation (p < 0.005), and the subset of experimental
sessions that involved closed-loop control (p < 0.0001). There
was not a statistically significantly difference in the change in
pain rating response among these three experimental conditions
(Kruskal–Wallis, p = 0.097).

DISCUSSION

We used USEAs implanted in residual peripheral arm nerves and
iEMGs implanted in residual limb muscles to provide one human
subject with touch sensation, motor control, and ultimately
closed-loop control of physical and virtual prosthetic hands.
The subject embodied the physical prosthetic hands in cases
of open-loop motor control, open-loop sensory feedback, and
closed-loop motor control with sensory feedback, and the level
of prosthesis embodiment was significantly increased compared
with embodiment after a visual fixation condition (e.g., similar
to a cosmetic prosthesis). Embodiment experiments were not
performed with the virtual hand. The subject also reported a
reduction in phantom pain during experimental manipulations
that included nerve microstimulation, motor control of a virtual
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FIGURE 6 | Survey question responses indicate the level of embodiment in the four experimental conditions (n = 10). Figure shows the median (bold red line),
interquartile range (blue box), 1.5 times the interquartile range (black whiskers) and one outlier (green +). The motor-only, sensory-only, and closed-loop test
conditions each exhibited a significantly higher response on the test questions compared with the control questions (U-test; p < 0.0001 for each of these three
conditions), whereas no such difference was found for the visual fixation control condition (U-test; p = 0.09). Each of the three test conditions (open-loop motor
control, open-loop sensory feedback and closed-loop control) showed a greater level of embodiment compared with the visual fixation control condition (multiple
comparisons; p < 0.005, p < 0.0001, and p < 0.0005, respectively). The open-loop sensory feedback condition also showed a significantly higher level of
embodiment relative to the open-loop motor control condition (multiple comparisons; p < 0.05).

FIGURE 7 | Reduction in phantom limb pain after experimental sessions. The figure shows the median (bold red line), interquartile range (blue box), 1.5 times the
interquartile range (black whiskers) and the outliers (green +’s). A significant reduction in phantom limb pain (Rank test; p < 0.0001) was observed between the
subject’s pre-session and post-session subjective pain ratings for the 74 experimental sessions leading up to 14 months post-implant. A significant reduction in
phantom pain was also observed for the subsets of sessions involving only motor control of a virtual or physical prosthesis, open-loop nerve microstimulation via
USEAs in sensory-only sessions, and closed-loop sessions involving motor control and sensory feedback (Rank test; p < 0.05, p < 0.005, and p = 0.0001,
respectively). Although full pain relief was not provided for any of these cases (e.g., overall, a median of 25% pain reduction was observed), the subject indicated that
pain reduction is important and helpful for continuing with activities of daily living.
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FIGURE 8 | There was a consistent decrease (difference in post-session vs. pre-session) in pain scores measured in 74 experimental sessions. We collected
subjective ratings of phantom pain across time up to 14 months post-implant for both pre-session phantom pain and post-session phantom pain. Most experimental
sessions resulted in a reduction in phantom pain, evidenced by a negative difference between the post-session and pre-session pain score. This reduction was
relatively consistent across the entire 14-month duration of the study. The subject continued his use of prescription medications for treatment of phantom pain during
the duration of the implant (e.g., gabapentin and tramadol).

prosthesis, closed-loop control of a virtual prosthesis, and
sensory, motor, and closed-loop interaction with a physical
prosthesis.

This work further demonstrates that both open-loop
sensory and open-loop motor conditions can cause prosthesis
embodiment. Additionally, this work shows that open-loop
sensory (USEA nerve microstimulation alone) and open-loop
motor control of a prosthesis were independently able to cause
a reduction in subject reported phantom pain. Importantly, for
both prosthesis embodiment and phantom pain reduction, the
closed-loop condition did not yield significant improvements
over the open-loop conditions.

Embodiment Results
Embodiment metrics included the objective indication of the
subject’s perceived location of his phantom hand before and
after an embodiment training period, as well as subjective
responses to survey responses. Previous studies have used
perceived hand location extensively as an embodiment metric
(Botvinick and Cohen, 1998; Tsakiris et al., 2006; Rosén et al.,
2009; Kalckert and Ehrsson, 2012; Caspar et al., 2015; Jenkinson
and Preston, 2015; Romano et al., 2015; Fuchs et al., 2016;
Collins et al., 2017). However, the present report represents
the first use of the shift in perceived phantom hand location
as a prosthesis embodiment metric for closed-loop controlled
prostheses where feedback is provided via peripheral nerve
microstimulation. We found this metric to be both reliable
and repeatable in providing an objective measurement of
prosthesis embodiment under open-loop motor control, open-
loop sensory feedback, and closed-loop motor control with
sensory feedback.

Several studies have demonstrated the ability to induce
embodiment of a rubber or prosthetic hand through sensory
feedback alone in intact individuals and amputees. More recently

studies have now also shown that movement, and the natural
proprioception associated with it, is enough to induce a sense
of embodiment over a motorized hand (Tsakiris et al., 2006;
Dummer et al., 2009; Rosén et al., 2009; Walsh Lee et al., 2011;
Kalckert and Ehrsson, 2012; Caspar et al., 2015; Jenkinson and
Preston, 2015). Our results confirm these findings and expand
upon them by providing direct comparisons among the visual
fixation (control), motor-only, sensory-only and closed-loop
conditions.

The subject’s shift in perceived phantom hand location
suggests that the strength of the embodiment illusion was
roughly comparable across test conditions. Each one of the test
conditions produced a significant level of embodiment relative
to the control condition, but none of the test conditions were
significantly different from one another. Although the closed-
loop condition resulted in the largest proprioceptive shift among
the test conditions, as might have been expected given that
both the sensory-only and motor-only conditions produced
proprioceptive drift individually, the trend was not significant.

Speculatively, several factors may have diminished or
obscured potentially significant differences among the three test
conditions. For one, differences among the test conditions may
be modest, and hence datasets might require greater sample
sizes in order to reveal statistical significance. In addition,
using the prosthesis for a longer duration may have also
been necessary to produce greater amounts of proprioceptive
shift and hence potentially larger differences among the three
test conditions. Lastly, inconsistent sensor activation and the
resulting sensory feedback in the closed-loop condition may
have limited embodiment under the closed-loop condition.
Alternatively, a ceiling effect may have been present and
sensorimotor interactions may not be necessary to produce
maximal embodiment as quantified by proprioceptive drift and
survey questions.
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The subject’s response to the embodiment survey questions
also demonstrated a significant level of embodiment for each test
condition relative to the control condition. However, this metric
of embodiment was different from proprioceptive drift in that
the sensory-only condition caused a significantly greater level of
embodiment compared with the motor-only condition and had
a strong, but non-significant trend toward greater embodiment
than the closed-loop condition. The increased embodiment
associated with the sensory-only condition may be attributed to
the fact that some of the test survey questions had a sensory
component (Figure 4). Embodiment results can differ based on
the question being analyzed (Dummer et al., 2009). In addition,
the sensory percepts may have been more readily activated by the
experimenter’s precise activation than by the subject’s closed-loop
object manipulation.

Embodiment Limitations and Extensions
It is believed that illusion of ownership or embodiment of
an artificial body or body part, while malleable, depends on
congruence (plausible anatomical orientation), temporal and
spatial synchrony (between visual and proprioceptive or tactile
feedback), and “bodily resemblance” (Schmalzl and Ehrsson,
2011). To this end, we anticipate that the embodiment effect
with amputees controlling advanced prostheses will be strongly
dependent on the extent, naturalism, spatial accuracy, and
latency of the restored sensation and motor control. The
embodiment levels demonstrated here may be reduced due
in part to limits in controllable movement and sensory
feedback.

One important limitation in the motor-only and closed-loop
condition may be the inaccuracies in the prosthetic control
algorithm. All the studies exploring the embodiment associated
with a moving hand either use the hand kinematics of an
intact individual to control the motorized hand (Tsakiris et al.,
2006; Dummer et al., 2009; Walsh Lee et al., 2011; Kalckert
and Ehrsson, 2012; Caspar et al., 2015; Jenkinson and Preston,
2015) or EMG signals from the residual limb of an amputee
(Rosén et al., 2009; Schiefer et al., 2016). Although the relative
amount of temporal synchrony between these two conditions
can be determined, the spatial synchrony and congruence
cannot be compared, as it is difficult to quantify the exact
relationship between the amputee’s intended movement and
the algorithm’s output movement. Future studies, comparing
the level of embodiment associated with movement predicted
by direct hand kinematics relative to residual-forearm EMG-
based estimations of hand kinematics may help elucidate what
enhancements in embodiment may arise from improvements in
prosthetic control algorithms.

The sensory feedback used for these embodiment experiments
was limited to three or four cutaneous sensory percepts. These
percepts were evoked via single-electrode or multi-electrode
stimulation through four different subsets of USEA electrodes
tied to individual prosthesis sensors. Future experiments should
use the rich selection of sensory feedback that can be provided
by USEAs to provide extensive sensory feedback via many
sensors. Additionally, more-biomimetic stimulation patterns
using multielectrode, mixed-receptor-type stimulation tied to

each sensor may evoke more naturalistic sensations and
improved embodiment and/or phantom pain relief (Saal and
Bensmaia, 2014). Self-touching of prosthesis sensors may also
assist in generating a stronger sense of embodiment via restored
tactile feedback. It is also important to note that embodiment
conditions explored in this study lacked extrinsically provided
proprioceptive feedback, which has been shown to contribute to
embodiment (Walsh Lee et al., 2011). Endogenous proprioceptive
feedback from residual extrinsic hand muscles and efference copy
may have remained.

We hypothesize that the level of prosthesis embodiment will
increase with more sophisticated motor control and sensory
feedback and ultimately, more extended use in ADL. Future work
should include a quantification of the level of embodiment of
the prosthetic limb as a function of: (1) the number of sensors
used for sensory feedback; (2) the range of sensation intensity
encoded by prosthesis sensors; (3) the number of DOF included
in the motor decode; (4) the precision of proportional motor
control; and 5) the extent and duration of use. Fitt’s law is
a functional performance metric that indicates that the time
required to complete a functional motor task is proportional
to the task’s complexity (Fitts, 1954). We speculatively propose
that a parallel law exists for psychological or emotional impact
metrics, such as embodiment or phantom pain relief, in which the
level of embodiment or phantom pain reduction may increase in
proportion to the extent of naturalistic sensory feedback and/or
motor control provided.

We also anticipate that the nature of the neural interface
used for restoration of sensation will influence the extent of
prosthesis embodiment by indirectly determining the capabilities
for sensory encoding. In informal pre-implant testing using intact
hands, we subjectively observed that the rubber hand illusion
was more salient when multiple different hand locations were
touched in a seemingly unpredictable pattern. During prosthesis
embodiment trials, our subject indicated verbally that touch of
the prosthesis palm and thumb were particularly meaningful to
him and seemed to enhance the sense of embodiment. In future
studies, more sensors should be integrated into the prosthetic
hand and coupled to additional electrodes for restoring sensory
percepts representing, for example, the tip of each digit, the
midsection of each digit, multiple areas of the palm, the lateral
edge of the hand, and the back of the hand. The scotoma
effect, or the tendency for sensory perception to “fill in” between
adjacent sites of sensation, may enable perception of full-hand
cutaneous sensation even in locations where tactile sensors are
not present.

The metrics used in this manuscript are limited in their
ability to accurately quantify embodiment. Responses to survey
questions can vary on the basis of the question being analyzed
(Dummer et al., 2009), and proprioceptive drift may be
dissociated from the feeling of embodiment (Rohde et al., 2011).
Furthermore, both metrics may have varied effectiveness among
individuals (Bekrater-Bodmann et al., 2012).

Despite these limitations, the ability for the test conditions to
elicit a sense of embodiment relative to the control condition is a
testament to the synchrony and congruence of the motor control
and sensory feedback algorithms, as it has been shown that
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inconsistencies or delays between the intended movement and
actual movement can eliminate the sense of embodiment (Caspar
et al., 2015). With improved sensory feedback and motor control,
we hypothesize that the closed-loop condition will ultimately
provide increased embodiment for both proprioceptive drift and
questionnaires.

Phantom Pain Discussion and
Extensions
Phantom pain reduction was reported by our subject for
many experimental sessions, which included USEA nerve
microstimulation, motor control, and closed-loop control of a
virtual or physical prosthesis. When we first questioned him
about his sensory awareness of his phantom hand, the subject
indicated, “Probably the reason that I can feel it’s there is the
phantom pain.” He reported that he had previously attempted
mirror-box therapy (Ramachandran and Rogers-Ramachandran,
1996), transcutaneous electrical nerve stimulation therapy, and
magnet therapy for phantom pain relief with no perceived
improvement. During his first experimental session, while he
was controlling the movements of the virtual hand, he indicated,
“That just feels good, actually—seeing it open all the way up.” He
later stated, “It’s interesting, ‘cause the mirror [box] didn’t give
me that same sensation.”

Although we observed only modest pain relief due to
experimental manipulations, the subject indicated that phantom
pain reduction is important, helping to keep the pain at
a manageable level. For example, the subject stated that
although his pain medications do not completely relieve him
of his phantom pain, they keep it at a level which is
bearable and which allows him to carry on with ADL. Even
the modest reductions on the scale noted herein may have
additional benefits. Future studies should also make use of
more sophisticated pain questionnaires that are validated for
the amputee population in order to better estimate the clinical
relevance of the pain reduction detailed here. Further, daily use of
a dexterous, sensorized prosthesis may provide greater reductions
in phantom pain and extended prosthesis embodiment. Future
studies investigating long-term phantom pain reduction and its
relationship to prosthesis embodiment may help elucidate the
underlying mechanism of phantom pain.

The mechanisms of phantom pain formulation are not well
understood, with evidence suggesting peripheral and/or central
mechanisms (Subedi and Grossberg, 2011; Vaso et al., 2014;
Yanagisawa et al., 2016). Although we did not formally assess the
specific nature of the phantom pain reduction, the location of the
subject’s phantom pain reduction seemed at times to be related
to the innervation distribution of the nerve being stimulated.
For example, median-nerve stimulation sessions often resulted
in pain reduction on the first, second, and third digits, but
not on the fourth and fifth digits. In addition, when describing
the pain reduction, the subject often stated the pain reduction
occurred in the same location as the perceived stimulation and
that the modality of pain shifted from a “constant, background
burning” to a “pressure-like” sensation resembling that of the
stimulation.

Visual-motor integration coupled with internal efference
copy, such as is generated during dexterous prosthesis motor
control, represents the convergence of many rich correlative
signals that seem capable of masking perception of background
phantom pain. We anticipate that advanced closed-loop control
of a sophisticated prosthesis that is attached to the limb and used
for daily tasks may represent an even stronger masking signal,
potentially providing more substantial pain reduction.

CONCLUSION

The challenges associated with limb loss include not only
functional deficits, but also the emotional difficulty associated
with losing a body part, and in many cases chronic phantom
pain. These psychological and emotional factors may be
more important to patients’ overall health and well-being
than functional outcomes (Dolan, 2002; Pressman and Cohen,
2005; Zhang and Li, 2005). The results presented here extend
previous studies by showing that USEA stimulation and iEMG-
and neural-based movement decodes can provide meaningful
psychological benefits to amputees. The subject embodied
prosthetic hands, as evidenced by a shift in his perceived phantom
hand location toward the prosthesis and by his response to
survey questions. Additionally, the subject consistently reported
a reduction in phantom pain after movement decode and
microstimulation sessions. This work represents the first long-
term and systematic report of prosthesis embodiment and pain
reduction during closed-loop prosthesis use in a human amputee.

Restoration of sophisticated prosthesis motor control and
prosthesis sensation provided a sense of limb-restoration that
was meaningful to our subject, and which may assist future
amputees improve their emotional health. Ultimately, we
envision development of a take-home, wearable, closed-loop
prosthesis system that may serve not only as a helpful tool, but
also as a limb replacement that provides subjective psychological
as well as physical benefits.
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