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The extent of sensory eye dominance, a reflection of the interocular suppression in
binocular visual processing, can be quantitatively measured using the binocular phase
combination task. In this study, we aimed to provide a normative dataset for sensory eye
dominance using this task. Based on that, we also assessed the relationship between
perceptual eye dominance and stereopsis. One-hundred and forty-two adults (average
age: 24.00 ± 1.74 years old) with normal or corrected to normal monocular visual
acuity (logMAR < 0.00) participated. Observer’s sensory eye dominance was quantified
in two complementary ways: the interocular contrast ratio when the two eyes were
balanced (i.e., the balance point) and the absolute value of the binocular perceived
phase when each eye viewed maximum contrast stimuli in binocular phase combination
task. Stereo acuities were measured with maximum contrast stimuli using an identical
spatial frequency (0.30 cycles/degree) and stimulus arrangement to that used in the eye
dominance assessment. The averaged balance point was 0.93 ± 0.06 (Mean ± SD),
the averaged absolute value of the binocular perceived phase when both eyes viewed
maximum contrast stimuli was 7.62 ± 5.91◦, and the averaged stereo acuity was
2.19 ± 0.34 log arc seconds. Neither of these two sensory eye dominance measures
were significantly correlated with stereo acuity (Balance point: ρ = 0.14, P = 0.10;
Phase: ρ = −0.13, P = 0.13). The sensory eye dominance, as reflected using a phase
combination task, and stereopsis are not significantly correlated in the normal-sighted
population at low spatial frequencies.
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INTRODUCTION

Information from our two eyes does not necessarily have equal weighting at the level where they
are combined in the visual cortex. The extent to which one eye’s input dominates is referred to as
‘‘sensory eye dominance.’’ Traditionally within the clinical literature, ocular dominance has been
assessed using the sighting dominance test (Porac and Coren, 1976; Ehrenstein et al., 2005; e.g., the
hole-in-the-card test (Dane and Dane, 2004)) and the Worth-4-dot test (Mustonen et al., 1993)
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in clinical practice. These tests give only a qualitative measure.
In recent years, several laboratory-based techniques have been
developed to quantitatively measure the sensory eye dominance
of different individuals, these include the binocular rivalry task
using gratings (Ooi and He, 2001; Handa et al., 2004, 2006, 2012),
letters (Kwon et al., 2015) or noise patterns (Yang et al., 2010),
the binocular phase combination task (Ding and Sperling, 2006;
Huang et al., 2009), the dichoptically presented global motion
coherence task (Hess et al., 2007), the dichoptically presented
global orientation coherence task (Zhou et al., 2013a) and the
binocular orientation combination task (Yehezkel et al., 2016).
These studies, using different stimuli and paradigms, provide a
more quantitative measure based on a computational framework
of the known excitatory and inhibitory interocular networks
(Ding and Sperling, 2006; Meese et al., 2006).

The binocular phase combination that was developed by Ding
and Sperling (2006) is assumed to mainly target the interocular
suppressive process in the primary visual cortex (Huang et al.,
2010), where the left and right eye stimulus phases are processed
by binocular neurons (Anzai et al., 1999). This task is of particular
interest for researchers and clinicians who study normal and
abnormal binocular processing at the level of the primary
visual cortex. Several models have been developed to explain
the binocular phase combination processing, for normal adults
(Ding and Sperling, 2006; Ding et al., 2013; Zhou et al., 2014),
for patients, e.g., amblyopia (Huang et al., 2009, 2011; Ding
et al., 2013) and for interocularly imbalanced luminance viewing
conditions, e.g., monocular luminance deprivation (Zhou et al.,
2013b). Using this task, it has been demonstrated that abnormal
sensory eye dominance occurs in patients with amblyopia
(Huang et al., 2009; Ding et al., 2013), strabismus (Kwon et al.,
2014), anisometropia (Zhou et al., 2016), surgically-corrected
intermittent exotropes (Feng et al., 2015), surgically-corrected
strabismic patients (Zhou et al., 2017), treated amblyopes
(Chen et al., 2017; Zhao et al., 2017) and LASIK-corrected
anisometropes (Feng et al., 2017).

In all the above-mentioned clinically related studies, the
normal sensory eye dominance is either assumed to be 1.00
(perfect balance) or assessed using small samples (2–40)
of normal controls. However, there is so far no database
of normal-sighted healthy adults’ sensory eye dominance
using this quantitative laboratory technique. To facilitate the
use of binocular phase combination paradigm in measuring
individuals’ sensory eye dominance in the clinic, we set out, in
this study, to provide a normative database (n = 142) for sensory
eye dominance by deriving two complementary measures from
the standard binocular phase combination paradigm (Ding and
Sperling, 2006; Huang et al., 2009): the interocular contrast
ratio when the two eyes were balanced (i.e., the balance point)
and the absolute value of the binocular perceived phase when
each eye viewed maximum contrast stimuli in binocular phase
combination task.

Like sensory eye dominance, stereopsis, or depth perception
based on the binocular disparity derived from the images
projected onto the two retinas from the surrounding world,
is also an important binocular function, one that plays a
vital role in accurate hand-eye work and 3D perception

(Melmoth et al., 2009). Recently, we showed that the stereo
acuities of both the general population and the student
population (around 20 years of age) are broadly distributed
extending over a range of 2.00 or more log units, and as many
as 30% have moderate to poor stereo (Hess et al., 2015). Similar
to the clinical tests, such as TNO (Bosten et al., 2015), RDSs
(Zaroff et al., 2003) and Frisby (Bohr and Read, 2013), the
visual stimuli used were broadband. Because our sensitivity
for stereopsis is spatial frequency dependent (Reynaud et al.,
2013), we thus wanted to reassess this finding at a fixed
spatial frequency. To simplify the test, and to make it easier
for any further comparison of the two binocular processing
measures (i.e., binocular phase combination and stereopsis),
we measured stereopsis in 142 normal-sighted adults using
stimuli of identical low spatial frequency, contrast and stimulus
arrangement as that used for the binocular phase combination
task. We ask two separate questions, first, how are sensory eye
dominance and stereo acuity distributed within the normal-
sighted population? and second, do subjects with well-balanced
eyes have better stereopsis? Both were evaluated at low spatial
frequency (0.30 cycles/degree).

MATERIALS AND METHODS

Participants
One-hundred and forty-two adults (average age:
24.00 ± 1.74 years old) with normal or corrected to normal
monocular visual acuity (logMAR < 0.00) were recruited in this
study. Subjects wore their habitual optical correction (refractive
errors ranging from Plano to −7.50 D) if necessary. All cases had
no previous history of binocular dysfunction or ocular surgery
and had anisometropia of less than 1.50 D. Except for one of
the authors (YW), all observers were naive as to the purpose
of the experiment. This study was carried out in accordance
with the recommendations of the ethics committee of the
Wenzhou Medical University, with written informed consent
from all subjects after explanation of the nature and possible
consequences of the study.

Apparatus
All measurements were conducted on a PC computer running
Matlab (MathWorks Inc., Natick, MA, USA) with Psychtoolbox
3.0.9 extensions (Brainard, 1997; Pelli, 1997). The stimuli
were dichoptically presented by head-mount Z800 pro goggles
(eMagin Corp., Washington, CA, USA), which was driven by
a Dual-Head2Go display adaptor (Matrox Electronic Systems
Ltd., Dorval, QC, Canada) and had a simulated viewing distance
of 3.60 m, a refresh rate of 60 Hz, a resolution of 800 × 600
(pixels per degree = 26.40) and a mean luminance of 160 cd/m2

in each eye. The Z800 pro goggles contain 2 OLED screens for
the two eyes, which had a linear luminance response thus no
gamma-correction was needed.

Design
The sensory eye dominance was quantitatively assessed
by a binocular phase combination paradigm (Ding and
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FIGURE 1 | Experimental design and visual stimuli. (A) The results of one participant. The horizontal axis represents the interocular contrast ratio (dominant
eye/nondominant eye). The vertical axis represents the binocular perceived phase. The solid line represents a curve fit using the contrast-gain control model (Ding
and Sperling, 2006; Huang et al., 2009). In which, “balance point” and “gamma” are two free parameters. “balance point” represents the interocular contrast ratio
when the two eyes make equal contributions to binocular combination and “gamma” represents a nonlinear factor. (B) An illustration of balance point measure of the
sensory eye dominance. Observers’ sensory eye dominance was quantified by the interocular contrast ratio when the two eyes were balanced (i.e., when the
binocular perceived phase was 0◦). (C) An illustration of binocular perceived phase measure of the sensory eye dominance. Observers’ sensory eye dominance was
quantified by the absolute value of the binocular perceived phase when each eye viewed maximum contrast stimuli.

Sperling, 2006; Huang et al., 2009). In this measure, two
horizontal sine-wave gratings (0.30 cycles/degree), with
opposite vertical phase-shift of +22.50◦ and −22.50◦ related
to the horizontal meridian, were dichoptically presented
to the two eyes. Observers’ sensory eye dominance was
quantified in two complementary ways: the averaged
interocular contrast ratio when the two eyes were balanced
(i.e., the balance point; Figure 1B) and the binocular
perceived phase when each eye viewed maximum contrast
stimuli (Figure 1C). These two measures are illustrated in
Figure 1.

In particular, we measured the binocular perceived phase
when the nondominant eye had a fixed contrast of 100% and
the dominant eye had a contrast of 100% × (0, 0.20, 0.40, 0.60,
0.80 and 1.00). We fitted the binocular perceived phase vs. the
interocular contrast ratio curve, using the contrast-gain control
model, in which each eye exerts gain control on the other eye’s
gain control in proportion to the strength of its own input (Ding
and Sperling, 2006; Huang et al., 2009). Figure 1A shows an
individual subject’s data with curve fits using the contrast-gain
control model (Ding and Sperling, 2006; Huang et al., 2009).

For each interocular contrast ratio, two configurations were
used in the measurement to cancel any potential positional
starting bias: in one configuration, the phase-shift was +22.50◦

in the dominant eye and −22.50◦ in the nondominant eye,
in the other, the reverse. Different conditions (configurations
and interocular contrast ratios) were randomized in different
trials in one test. The perceived phase of the cyclopean
grating at each interocular contrast ratio was quantified by
half of the difference between the measured perceived phases
in these two configurations. The perceived phase and its
standard error were calculated based on eight repetitions in
one test.

Stereo acuity was measured with a 3-down-1-up staircase
method to determine the threshold offset in the depth
discrimination task. In this task, two maximal contrast
(100%) vertical gratings (0.30 cycles/degree), with opposite
horizontal phase-shift of ‘‘±offset/2’’ relative to the vertical
meridian, were dichoptically presented to the two eyes for 1 s
(Figure 2A). The direction of the phase-shift was randomly
set in different trials. Observers were asked to answer whether
the perceived grating was perceived to be in front or behind
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FIGURE 2 | The alignment task and the stereo test. (A) Two maximal contrast
gratings, with equal and opposite phase-shift of “offset/2” relative to the
vertical meridian, were dichoptically presented to the two eyes. Observers
were asked to answer whether the perceived grating was in front or behind
the screen. (B) Observers were asked to adjust the relative positions of the
images to make sure the two eyes were aligned. Surrounding all gratings, a
high-contrast frame (thickness, 0.11◦; length, 6◦) with four white diagonal lines
(thickness, 0.11◦; length, 1.11◦) was always presented during the two tests to
help observers maintain fusion.

the screen. The offset was initially set based on individuals’
performance in the pilot test and controlled by a 3-down-
1-up staircase method in the following trials. The staircase
had a relative step size of 50% in the first trial and 25%
thereafter. Each staircase was repeated three times and the
last six reversals of each repetition were averaged to obtain
the threshold for that staircase (i.e., 18 reversal points in
total).

Both the sensory eye dominance and the threshold offset
were measured twice in 2 days and the results were averaged
based on these two repetitions. Before the start of data collection,
eye alignment (Figure 2B) was provided to ensure the fusion
of two eyes; proper demonstrations of the tasks were provided
by practice trials to ensure observers understood the tasks.
During the test, observers were allowed to take short-term breaks
whenever they felt tired.

Procedure
In measuring the sensory eye dominance, observers were asked
to adjust the reference line to coincide with the perceived center

of the black stripe located in the middle of the binocularly
combined grating. The gratings were presented continually until
subjects made their decision by pressing the space bar and
then followed by a 500-ms blank (with only the surrounding
frame and diagonal bars presented) and the presentation of the
next trial. In the stereo test, observers were asked to answer
whether the perceived grating was in front of or behind the
screen. The gratings were presented for 1 s, which followed
by the eye alignment stimuli (Figure 2B) that were presented
continuously until subjects made their decision by pressing a
corresponding key and then followed by a 500-ms blank (with
only the surrounding frame and diagonal bars presented) and the
presentation of the next trial.

RESULTS

The effective contrast ratio at the balance point (dominant
eye/non dominant eye) is plotted as a function of the stereo
acuity for the 142 normal-sighted participants in Figure 3, with
histograms for the twomeasures plotted on the sides. It should be
noted that for 11 observers (7.70%), their fitted effective contrast
ratio at the balance point (for short, ‘‘balance point’’) was larger
than 1, which indicated reversed eye dominance in binocular
phase combination, i.e., their pre-assigned ‘‘dominant eye’’ from
the sighting dominance test (Porac and Coren, 1976; Ehrenstein
et al., 2005) was actually less dominant in the binocular phase
combination measure. To simplify the analysis, we used the
reciprocal value as their balance point. The averaged balance
point was 0.93 ± 0.06 (Mean ± SD; the 95% confidence interval
was from 0.92 to 0.94; median was 0.93; IQR was 0.09). A
Shapiro-Wilk test showed that the balance points were not
normally distributed (P < 0.001). The averaged stereo acuity
was 2.19 ± 0.34 log arc seconds (the 95% confidence interval
was from 2.13 to 2.24; median was 2.15; IQR was: 0.39).
Stereo acuities were also not normally distributed (P = 0.03). A
Spearman’s ρ correlation test showed that the effective contrast
ratio at the balance point and the stereo acuity value were not
significantly correlated (ρ = 0.14, P = 0.10).

On criticism of the above comparison is that while stereo
acuity was measured for stimuli of the same high contrast, the
balance point was measure for stimuli of potentially different
contrast because the nondominant eye viewed a stimulus of
maximum contrast stimuli while the dominant eye viewed
a reduced contrast stimulus (see Figure 1A). The different
interocular stimulus contrast arrangements in the two measures
might have affected their comparison. To better show the
relationship between the binocular phase combination and the
stereopsis, we also quantified the sensory eye dominance using
another method, namely, the absolute value of the binocularly
perceived phase measurement when both eyes viewed maximum
contrast stimuli. In this measure, the absolute value of the
binocularly perceived phase ranges from 0◦ (means the two eyes
were balanced in binocular phase combination) to 22.50◦ (means
one eye totally dominant). The advantage of this comparison is
that the interocular contrasts are identical for the two measures
we want to compare. In Figure 4, we plotted the absolute
value of the binocularly perceived phase when both eyes viewed
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FIGURE 3 | Relationship between the effective contrast ratio at the balance point and the stereo acuity. In the scatter plot, each point represents one observer;
Spearman’s rank correlation coefficient is provided in the figure. The histogram of the effective contrast ratio at the balance point and the histogram of the stereo
acuity are also provided.

maximum contrast stimuli as a function of the stereo acuity
for the 142 observers. The histograms for these two tests
were also provided on the sides of the graph. The averaged
absolute value of the binocular perceived phase when both
eyes viewed maximum contrast stimuli was 7.62 ± 5.91◦(the
95% confidence interval was from 6.64 to 8.59; median was
6.25; IQR was 9.50), which was also not normally distributed
(P < 0.001). A Spearman’s ρ correlation test revealed that
the absolute value of the binocular perceived phase when
both eyes viewed maximum contrast stimuli and the stereo
acuity value were also not significantly correlated (ρ = −0.13,
P = 0.13).

DISCUSSION

In this study, we quantitatively assessed sensory eye dominance
using the binocular phase combination task in a sample of
142 normal-sighted healthy adults using two complementary
measures as illustrated in Figures 1B,C. We show that the
averaged sensory eye dominance was 0.93, which was close to

unity (i.e., perfect binocular balance); neither the balance point
(ρ = 0.14, P = 0.10) nor the absolute value of the perceived phase
when the two eyes viewed maximum contrast stimuli (ρ =−0.13,
P = 0.13) was significantly correlated with stereo acuity. Within
the normal-sighted population, having more balanced eyes does
not ensure better stereopsis. Our results further support a recent
report from Wu et al. (2018), who found no correlation between
sensory eye dominance as measured with the continuous flashing
technique and stereopsis as measured with random dots on the
same CRT monitor used for ocular dominance test.

Only 18 of 142 (i.e., 12.70%) observers had a balance point of
exactly 1.0 (i.e., balanced eyes), while the others (i.e., 87.30%) had
different extents of binocular imbalance. Some cases exhibited a
balance point of 0.90 or less, indicating that the dominant eye
was balanced with the non dominant eye when the interocular
contrast ratio was 0.90 or smaller. These results are consistent
with several studies that have measured sensory eye dominance
using other quantitative techniques: Jiang et al. (2015) found
that 61.30% of non-anisometropic subjects showed strong ocular
dominance using a continuous flashing technique; Li et al.
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FIGURE 4 | Relationship between the absolute value of the binocular perceived phase when both eyes viewed maximum contrast stimuli and the stereo acuity. In the
scatter plot, each point represents result of one observer; Spearman’s rank correlation coefficient is provided in the figure. The histogram of the absolute value of the
binocular perceived phase when both eyes viewed maximum contrast stimuli and the histogram of the stereo acuity are also provided.

(2010) found that binocular imbalance in 44 normal individuals
was bimodally distributed using a dichoptic motion coherence
threshold test, with 61% of them having a weaker dominance and
the remainder having a stronger imbalance; Handa et al. (2006)
found 71.70% of 60 normal participants and 80% of 10 cataract
patients had weaker binocular imbalance using the binocular
rivalry test; Yang et al. (2010) showed that 62% of observers
among 88 adults had a weak eye dominance using a dichoptic
continuous flash suppression paradigm.

We assessed the relationship between sensory eye dominance
and stereopsis in normal adults. We designed these two tasks
around a common stimulus so that comparisons between
sensory eye dominance and stereopsis would be valid. In
particular, we used the same spatial frequency and a comparable
stimulus arrangement for studying these two visual functions.
Furthermore, we show that neither the effective contrast ratio
at the balance point (dominant eye/non dominant eye) nor
the absolute value of the binocular perceived phase, when
both eyes viewed maximum contrast stimuli, was significantly

correlated with the stereopsis. This makes sense since the
current study relies on normative dataset in normal adults,
whose within-subject variability is relatively small compared
with patients with disorders of binocular vision (e.g., amblyopia,
strabismus) or other age groups. Previous studies have shown
that, for patients with amblyopia, the stronger the departure
from normal sensory eye dominance, as assessed by dichoptically
presented global motion coherence, the poorer the stereo
acuity measured with the standard clinical book tests (Li
et al., 2011). Furthermore, dichoptic visual training designed to
strengthen fusion, and as a consequence, reduce suppression,
has been shown to significantly improve stereopsis (Li et al.,
2013). On the other hand, Feng et al. (2015) found that
treated intermittent exotropes still had a significant degree
of abnormal sensory eye dominance (measured with the
binocular phase combination task) even though they had
near to normal stereo acuity (measured with clinical book
tests), which indicates that in some cases, the sensory eye
dominance might not tightly correlate with the stereopsis.

Frontiers in Human Neuroscience | www.frontiersin.org 6 September 2018 | Volume 12 | Article 357

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Sensory Eye Dominance and Stereopsis

The inconsistent relationship between sensory eye dominance
and stereopsis in these different studies might be due
to small numbers of subjects used (n = 3–43), different
stimulus spatial frequency ranges used in the comparison of
these two measures and/or different disparity resolutions or
non-stereoscopic cues in different tests, e.g., TNO, Titmus,
Lang, Frisby, or other in-house developed tests (Simons, 1981;
Hall, 1982; Garnham and Sloper, 2006). Nevertheless, our study
provides potentially valuable normative data for these cases in
studying the limitations of sensory eye dominance and stereo
acuity.

Last but not least, when referring to our value of stereo
acuity an important proviso must be made, namely that
our measurements were made at a low spatial frequency
(0.30 cycles/degree), as this gave us the required spatial resolution
to make accurate phase measurements for the sensory eye
dominance task. Our conclusions are thus limited to this spatial
scale. Our stereo thresholds are around 150 arc seconds which
is not a particularly high stereo acuity (normally expected to be
around 10–20 arc seconds) but this is simply due to the spatial
frequency used; the higher the spatial frequency the better the
stereo acuity (Schor andWood, 1983). For our 0.30 cycles/degree
stimulus, the stereo acuity is in line with what is expected (Hess
et al., 2002). Similar to our previous observation (Hess et al.,
2015), the stereo acuities are broadly distributed extending over a
range of 2.00 log units. It is surprising that stereopsis shows such
individual variability compared with sensory eye dominance in
normal-sighted young adults. Higher spatial frequencies should

be tested in future studies for both the binocular balance and the
stereopsis. Nevertheless, our study shows clear evidence that, at
low spatial frequency, normal-sighted adults with balanced eyes
in binocular viewing may still have moderate to poor stereo. For
these cases, binocular training on stereo processing, rather than
a binocular approach targeting the interocular suppression (Gao
et al., 2018), should be encouraged to improve their stereo acuity.
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